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Section 1.3. The Probability Set Function

Note. For an experiment we denote by C the sample space of all possible outcomes.

We need to define a set function that assigns a probability to subsets of C; the

subsets of C for which the probability is defined is called an event. We denote the

collection of events as B. If C is a finite set, then we hope to assign a probability

to all subsets of C (that is, to define a probability set function on the power set

of C). More generally, we require that the collection of subsets of C for which a

probability (i.e., the events in B) is defined to satisfy: (1) the sample space C itself

is an event, (2) the complement of every event is again an event, and (3) every

countable union of events is again an event. Symbolically, this means (1) B ∈ B,

(2) if A ∈ B then Ac ∈ B, and (3) if A1, A2, . . . ∈ B then ∪∞n=1An ∈ B. Combining

(2) and (3), we see by DeMorgan’s Law (for countable unions) that if A1, A2, . . . ∈ B

then ∩∞n=1An ∈ B ( since ∩∞n=1An = (∪∞n=1A
c
n)

c). So the collection of events B is

closed under complements, countable unions, and countable intersections. Such a

collection of sets form a σ-field (or σ-algebra).

Note. For more information on σ-fields (or “σ-algebras) we shoudl consider the

introductory material on measure theory. See my online notes for Real Analysis 1

(MATH 5210) on Section 1.4. Borel Sets. In Real Analysis 1 we introduce Lebesgue

measure on a collection of subsets of the real numbers which form a σ-algebra (the

σ-algebra of Lebesgue measurable sets). Lebesgue measure is a generalization of

the length of an interval and is used to set up Lebesgue integration, which is

a generalization of Riemann integration. A class on modern probability theory

http://faculty.etsu.edu/gardnerr/5210/notes/1-4.pdf


1.3. The Probability Set Function 2

requires a knowledge of Lebesgue measure and Lebesgue integration (given in Real

Analysis 1, MATH 5210), abstract measure and integration (given in Real Analysis

2, MATH 5220), and Hilbert space, and linear operators on normed linear spaces

(given in Fundamentals of Functional Analysis, MATH 5740). You can find my

class notes for these classes, as well as notes on probability theory as follows:

• Real Analysis 1

• Real Analysis 2

• Fundamentals of Functional Analysis

• Measure Theory Based Probability

The book Probability and Statistics, 4th Edition, by M. H. DeGroot and M. J.

Schervish (Pearson, 2012), a text for a slightly less advanced course than Mathe-

matical Statistics 1 (MATH 4047/5047), does a nice job of addressing some of these

ideas. See the online notes from this source on 1.4. Set Theory.

Note. Based on the intuitive relative frequency approach to probability (see Sec-

tion 1.1), we are motivated to state the following definition.

Definition 1.3.1. Let C be a sample space and let B be the set of all events

(thus, B is a σ-field). Let R be a real-valued function defined on B. Then P is a

probability set function if P satisfies the following three conditions:

1. P (A) ≥ 0 for all A ∈ B.

http://faculty.etsu.edu/gardnerr/5210/notes1.htm
http://faculty.etsu.edu/gardnerr/5210/notes3.htm
http://faculty.etsu.edu/gardnerr/Func/notes.htm
http://faculty.etsu.edu/gardnerr/Probability/notes.htm
http://faculty.etsu.edu/gardnerr/Intermediate-Prob-Stats/notes-DeGroot4/DeGroot4-1-4.pdf
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2. P (C) = 1.

3. If {An} is a sequence of events in B and Am ∩ An = ∅ for all m 6= n, then

P (∪·∞n=1An) =
∑∞

n=1 P (An) (in measure theory, this is called countable addi-

tivity).

Definition. A collection of events {An | n ∈ I} (where I is some indexing set)

such that Ai ∩ Aj = ∅ is a mutually exclusive collection of events. A countable

collection of mutually exclusive events {An | n ∈ N} such that ∪∞n=1An = C is

called exhaustive (and notice
∑∞

n=1 P (An) = 1) and the sets {An | n ∈ N} is said

to partition sample space C.

Note. For mutually exclusive events A and B, we denote their union as A ∪· B

(and similarly for a countable collection of mutually exclusive events).

Note. In what follows, it is understood that the probability set function (or simply

“probability function”) is defined on some σ-field B of events. For example, if A is

an event, then Ac is an event.

Theorem 1.3.1. For each event A ∈ B, P (A) = 1− P (Ac).

Theorem 1.3.2. The probability of the null set is zero; that is, P (∅) = 0.



1.3. The Probability Set Function 4

Note. We now have, by Definition 1.3.1(3) (countable additivity), for finite number

of mutually exclusive events A1, A2, . . . , AN that with AN+1 = AN+2 = · · · = ∅,

P (A1 ∪· A2 ∪· · · · ∪· AN) = P (∪∞n=1An) =
∞∑

n=1

P (An) =
N∑

n=1

P (An).

This property is called finite additivity, so we see that this is an implication of

Definition 1.3.1 and the fact that the events form a σ-field.

Theorem 1.3.3. If A and B are events such that A ⊂ B, then P (A) ≤ P (B) (in

measure theory, this is called monotonicity).

Theorem 1.3.4. For each event A ∈ B we have 0 ≤ P (A) ≤ 1.

Theorem 1.3.5. If A and B are events in C, then P (A ∪ B) = P (A) + P (B) −

P (A ∩B).

Examples. Exercises 1.3.4 and 1.3.6.

Definition 1.3.2. Let C = {x1, x2, . . . , xm} be a finite sample space. Let pi = 1/m

for i = 1, 2, . . . ,m and for all subsets A of C define

P (A) =
∑
xi∈A

1

m
=
|A|
m

=
#(A)

m
,

where |A| = #(A) denotes the number of elements in set A. Then P is a probability

on C and is called the equilikely case.
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Note. The equilikely case arises in several common examples, such as rolling dice

or dealing cards.

Note. We now address three counting techniques or “rules.”

Note/Rule 1. Let A1 = {x1, x2, . . . , xm} and B − {y1, y2, . . . ,m } so that |A| = m

and |B| = n. Then there are mn ordered pairs (xi, yj) where i = 1, 2, . . . ,m and

j = 1, 2, . . . , n; that is,

|{xi, yi) | xi ∈ A, yj ∈ B}| = mn.

This is called the mn-rule or the multiplicative rule.

Definition. Let A be a set where |A| = n. An ordered k-tuple of distinct elements

of A is called a permutation (of size k) of elements of A.

Note. We can use the multiplicative rule to count the number of permutations of

size k on a set of size n. There are n choices for the first element of the k-tuple,

then n − 1 choices for the second element (since the elements of the k-tuples are

disjoint), then n− 2 choices for the third, and so forth up to the kth (last) element

of the k-tuple for which there are n − k + 1 choices. The multiplication rule tells

us that the total number of permutations is the product of the number of choices.
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Note/Rule 2. The number of permutations of size k on a set of size n is

P n
n = n(n− 1)(n− 2) · · · (n− (k − 2))(n− (k − 1)) =

n!

(n− k)!

where n-factorial is n! = n(n− 1)(n− 2) · · · (2)(1) and 0! = 1.

Example 1.3.3. The Birthday Problem.

Suppose there are k people in a room where k < 365 and the people are “chosen

at random.” We want to find the probability that at least two people have the

same birthday. First, number the people 1, 2, . . . , k. Create the k-tuples consisting

of the birthdays (in order) of the k people. Since there are 365 possible birthdays

then there are 365k possible k-tuples of birthdays by the multiplication rule and

these make up the sample space. We have that each birthday is equilikley (this

is where “chosen at random” comes in) and so the probability of each k-tuple is

1/365k. The complement event of “at least two people have the same birthday”

is the event “all birthdays are different.” The number of k-tuples representing k

different birthdays is the number of permutations of size k from a set of size of

n = 365, of which there are P 365
k =

365!

(365− k)!
. So the probability that at least two

people share a birthday is

1− P 365
k

265n
= 1 =

365!

(365− k)!365n
.

Given the large numbers, these are awkward computations, Some values of the

probability for different values of k are:
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k Probability k Probability

2 0.003 21 0.444

3 0.008 22 0.476

4 0.016 23 0.507

5 0.027 24 0.538

6 0.040 25 0.569

7 0.056 26 0.598

8 0.074 27 0.627

9 0.095 28 0.654

10 0.117 29 0.681

11 0.141 30 0.706

12 0.167 31 0.730

13 0.194 32 0.753

14 0.223 33 0.775

15 0.253 34 0.795

16 0.283 35 0.814

17 0.315 40 0.891

18 0.347 50 0.970

19 0.379 60 0.994

20 0.411 100 0.9999997

Notice the surprising fact that at least two people in a random crowd have hte

same birthday first tops 50% when there are only 23 people in the crowd.
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Definition. Let A be a set where |A| = n. A subset of A of size k is a combination

of k things taken from a set of n things.

Note/Rule 3. First, the number of permutations of size k of elements of a set of

size n is P n
k =

n!

(n− k)!
. Now any subset of size k of the given set can be arranged

in P k
k = k!/0! = k! ways, so the number of combinations of k things taken from a

set of n things, denoted
(
n
k

)
or Cn

k , is(
n

k

)
= Cn

k =
P n

k

k!
=

n!

k!(n− k)!
.

Note. The number of combinations
(
n
k

)
arises in the Binomial Theorem as coeffi-

cients (so
(
n
k

)
is also called a binomial coefficient):

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

Example 1.3.4. Poker Hands. A standard deck of playing cards contain 52

cards. There are 4 suits, spade, club, diamond, heart, and 13 cards in each suit. If

you are dealt 5 cards (at random) then the number of possible outcomes for this

(since order doesn’t matter) is C52
5 =

52!

5!47!
=

(52)(51)(50)(49)(48)

(5)(4)(3)(2)(1)
= 2,598,960.

Let E be the event that you are dealt three-of-a-kind (the other two cards are

distinct and are of different kids). We apply the multiplication rule to count the

possible number of hands containing three-of-a-kind. First, choose the “kind”;

there are 13 different kinds of cards (namely, 2, 3, . . . , 9, 10, J,Q,K, A) so there is(13
1

)
= 13 ways to choose the kind. Given the kind, there are 4 such cards (one
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of each suit) so there are
(4
3

)
= 4 ways to choose the cards of a given kind. Now

the other two cards must be one of the 12 remaining kinds and must themselves

be different kinds. So there are
(12

2

)
= 66 ways to choose the other two kinds and

then
(4
1

)
= 4 ways to choose each the fast two given kinds of cards. So, the possible

number of hands of cards containing three-of-a-kind is
(13

1

)(4
3

)(12
2

)(4
1

)2
= 54,912 and

the probability of being dealt such a hand is

P (E) =

(13
1

)(4
3

)(12
2

)(4
1

)2(52
5

) ≈ 0.0211.

Example. Exercise 1.3.19.

Note. Recall that a function f defined in an open interval containing point a is

continuous at x = a when limx→a f(x) = f(a). This terminology motivates the

name of the following result. Also recall that the σ-field of events is closed under

countable unions and countable intersections.

Theorem 1.3.6. Continuity of the Probability Functions.

Let {Cn} be a nondecreasing sequence of events. Then

lim
n→∞

P (Cn) = P
(

lim
n→∞

Cn

)
= P (∪∞n=1Cn) .

Let {Cn} be a nonincreasing sequence of sets. Then

lim
n→∞

P (Cn) = P
(

lim
n→∞

Cn

)
= P (∩∞n=1Cn) .
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Note. The next theorem is called “countable subadditivity” in measure theory.

Theorem 1.3.7. Boole’s Inequality/Countable Subadditivity.

Let {Cn} be an arbitrary sequence of events. Then

P (∪∞n=1Cn) ≤
∞∑

n=1

P (Cn).

Note. The following is established in Exercise 1.3.9.

Theorem 1.3.A. Inclusion Exclusion Formula.

For events C1, C2, C3 we have

P (C1 ∪ C2 ∪ C3) = p1 − p2 + p3

where

p1 = P (C1) + P (C2) + P (C3)

p2 = P (C1 ∩ C2) + P (C1 ∩ C3) + P (C2 ∩ C3)

p3 = P (C1 ∩ C2 ∩ C3).

Note. By induction, we can shoe the following more general version of the Inclusion

Exclusion Formula; for a proof, see my online notes on Intermediate Probability

and Statistics, Theorem 1.10.2 in 1.10. The Probability of a Union of Events.

http://faculty.etsu.edu/gardnerr/Intermediate-Prob-Stats/notes-DeGroot4/DeGroot4-1-10.pdf
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Theorem 1.3.B. Inclusion Exclusion Formula.

For events C1, C2, . . . , Ck we have

P (C1 ∪ C2 ∪ · · · ∪ Ck) = p1 − p2 + p3 − · · ·+ (−1)kpk−1 + (−1)k+1pk

where pi equals the sum of the probabilities of all possible intersections involving i

sets.

Note. When k = 2 in Theorem 1.3.B, we have Theorem 1.3.5:

P (C1 ∪ C2) = P (C1) + P (C2)− P (C1 ∩ C2).

Since P (C1 ∪C2) ≤ 1, this implies P (C1 ∩C2) ≥ P (C1) + P (C2)− 1. This is called

Bonferroni’s Inequality.
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