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Section 1.4. Conditional Probability and Independence

Note. The idea behind conditional probability is that the initial sample space C

has been replaced with some subset A ⊂ C. In practice, this could be due to some

additional information about the outcome of an experiment. For example, you

might choose a card at random from a deck of 52. The probability that you draw

a king is 1/52. But if you are told that you have a face card (that is, a J , Q, or

K) then the probability is 4/12 = 1/3. When set A ⊂ C is the new sample space,

that is the “given” information, then the probability of event B ⊂ C is denoted

P (B | A), read “the probability of B given A.” We desire P (A | A) = 1 and

P (B | A) = P (A∩B | a). We expect the ratio of the probabilities of events A∩B

and A (relative to space A) to be the same as the ration of the probabilities of

these events relative to space C:
P (A ∩B | A)

P (A | A)
=

P (A ∩B)

P (A)
(Hogg, McKean, and

Craig inspire this with the comment about the “relative frequency point of view”;

see page 24). This leads to the following definition.

Definition 1.4.1. Let B and A be events with P (A) > 0. Then the conditional

probability of B given A as P (B | A) =
P (A ∩B)

P (A)
.

Theorem 1.4.A. Let A, B, B1, B2, . . . be events with P (A) > 0. Then

1. P (B | A) ≥ 0.

2. P (A | A) = 1.

3. P (∪·∞n=1Bn | A) =
∑∞

n=1 P (Bn | A) provided B1, B2, . . . are mutually exclusive.



1.4. Conditional Probability and Independence 2

Note. Hogg, McKean, and Craig comment on page 24: “It should be noted that

this conditional probability set function, given A, is defined at this time only when

P (A) > 0.” But there are cases when P (B | A) is meaningful when P (A) = 0.

Consider the function f(x) = 1 on [0, 1]. For A ⊂ [0, 1] define P (A) =
∫

A f(x) dx.

Then P is a probability set function on a σ-field of subsets of [0, 1] which contains all

open subsets of [0, 1] (this σ-field includes all Borel sets), provided we use Lebesgue

integration (in which case P (B) = m(B) where m denotes Lebesgue measure).

For example, if a number in [0, 1] is chosen using this probability measure, the

probability that the number is between 1/2 and 1 is
∫

[1/2,1] 1 dx = 1/2. Suppose a

first and second number are chosen from [0, 1]. We want the probability that the

sum of the two numbers is greater than or equal to 1 given that the first number

is 1/2; but this is simply the probability that the second numbers is in [1/2, 1],

which is 1/2. However, notice that the probability that the first number is 1/2

is
∫

[1/2,1/2] 1 dx = 0. So this is an example of a conditional probability where the

probability of the first event is 0. So it isn’t that such a conditional probability

cannot be defined, but that it is not addressed in this level of a class. For more

details on this idea, see my online notes on Measure Theory Based Probability,

in particular the section 5.3. The General Concept of Conditional Probability and

Expectation.

Note/Definition. If A and B are events where P (A) > 0 then P (A ∩ B) =

P (A)P (B | A) by Definition 1.4.1. This is called the multiplication rule also. For

these events A, B, C where P (A ∩B) > 0, we have

P (A∩B∩C) = P ((A∩B)∩C) = P (A∩B)P (C | A∩B) = P (a)P (B | A)P (C | A∩B).

http://faculty.etsu.edu/gardnerr/Probability/notes.htm
http://faculty.etsu.edu/gardnerr/Probability/notes/Prob-5-3.pdf
http://faculty.etsu.edu/gardnerr/Probability/notes/Prob-5-3.pdf
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Of course, by mathematical induction, this can be extended to any finite number

of events.

Example. Exercise 1.4.6.

Theorem 1.4.B. Law of Total Probability.

Let A1, A2, . . . , Ak be events such that P (Ai) > 0 for i = 1, 2, . . . , k and are mutu-

ally exclusive and exhaustive (that is, C = ∪· k
i=1Ak). Let B be another event such

that P (B) > 0. Then

P (B) =
k∑

i=1

P (Ai)P (B | Ai).

Note. We now state and prove the most important result concerning conditional

probability.

Theorem 1.4.1. Bayes’ Theorem.

Let A1, A2, . . . , Ak be events such that P (Ai) > 0 for i = 1, 2, . . . , k. Assume that

A1, A2, . . . , Ak form a partition of the sample space C. Let B be any event. Then

for each j = 1, 2, . . . , k we have

P (Aj | B) =
P (Aj)P (B | Aj)∑k
i=1 P (Ai)P (B | Ai)

.

Example. Example 1.4.5.
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Note/Definition. In Example 1.4.5, given event B we know that a red chip has

been selected, so it is intuitive that P (A2 | B) > P (A1 | B) since Bowl A2 contains

more red chips that Bowl A1. The probabilities P (A1) and P (A2) are called prior

probabilities since they are given simply based on the method of choice of Bowl

A1 or Bowl A2. The probabilities P (A1 | B) an dP (A2 | B) are called posterior

probabilities since they reflect how P (A1) and P (A2) change after the additional

given information that event B has occurred.

Example 1.4.A. An application of Theorem 2.1.1 can be found in the Math Fun

Facts webpage of Harvey Mudd College. “Suppose that you are worried that you

might have a rare disease. You decide to get tested, and suppose that the testing

methods for this disease are correct 99 percent of the time (in other words, if you

have the disease, it shows that you do with 99 percent probability, and if you don’t

have the disease, it shows that you do not with 99 percent probability). Suppose

this disease is actually quite rare, occurring randomly in the general population in

only one of every 10,000 people. If your test results come back positive, what are

your chances that you actually have the disease?” We let A be the event that one

has the disease, and let B be the event that one tests positive for the disease. Then

we are given P (A) = 1/10, 000 = 0.0001, P (B|A) = 0.99, P (Ac) = 9, 999/10, 000 =

0.9999, and P (B|Ac) = 0.01 (P (B|Ac) is the probability of a “false positive”), and

we want to find P (A|B). By Bayes’ Theorem, Theorem 1.4.1,

P (A|B) =
P (A)P (B|A)

P (B|A)P (A) + P (B|Ac)P (Ac)
=

(0.0001)(0.99)

(0.99)(0.0001) + (0.01)(0.9999)

=
(0.0001)(0.99)

.010098
≈ 0.0098.

https://www.math.hmc.edu/funfacts/ffiles/30002.6.shtml
https://www.math.hmc.edu/funfacts/ffiles/30002.6.shtml
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So given that you tested positive, the probability that you actually have the dis-

ease is less then 1%. Numbers such as these are an argument against widespread

drug testing, for example. There are some problems with this particular example,

though. The statement of the problem includes the claim that “you are worried

that you might have a rare disease.” So it appears that “you” have some additional

information leading you to this suspicion; so it does not sound like you were chosen

at random from the population, thus affecting the value of P (A) (notice that if

P (A) increases then it has a strong effect on P (A|B) in this case). Notice that

in drug testing a population (such as job applicants), presumably the probability

of drug use is small, individuals are chosen at random to be tested, and then the

numbers above are realistic indicating the probability of a large number of false

positives.

Note. Thomas Bayes was born on the outskirts of London and graduated in 1719

from the University of Edinburgh where he studied logic and theology. He became

a minister in a Presbyterian chapel near London. Bayes published his theory of

probability in “Essay Towards Solving a Problem in the Doctrine of Chances,”

Philosophical Transactions of the Royal Society of London in 1764. He was elected

a Fellow of the Royal Society in 1742, even though he never published in math in his

lifetime under his own name, although he did work in the foundations of calculus

(on “the theory of fluxions” and some work on series). This biograpical information

(and the following image) is from the MacTutor History of Mathematics Archive

biography of Thomas Bayes.

https://www-history.mcs.st-andrews.ac.uk/
https://www-history.mcs.st-andrews.ac.uk/Biographies/Bayes.html


1.4. Conditional Probability and Independence 6

Thomas Bayes (1702–1761)

Note. If the occurrence of event B has no effect on event A, and conversely, then

the events are “independent.” More formally, we have the following.

Definition 1.4.2. Let A and B be two events. Then A and B are independent if

P (A ∩B) = P (A)P (B).

Theorem 1.4.C. Suppose A and B are independent events. The the following

three pairs of events are independent: Ac and B, A and Bc, and Ac and Bc.

Definition. Events A1, A2, . . . , An are mutually independent if for every collection

of k events of these 2 ≤ k ≤ n and for every permutation d1, d2, . . . , dk of 1, 2, . . . , k,

we have

P (Ad1
∩ Ad2

∩ · · · ∩ Adk
) = P (Ad1

)P (Ad2
) · · ·P (Adk

).

In particular, if A1, A2, . . . , An are mutually independent then P (A1 ∩ A2 ∩ · · · ∩
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An) = P (A1)P (A2) · · ·P (An).

Note. As with two sets, combinations of mutually independent events and their

complements are mutually independent.

Example. Exercise 1.4.18.

Exercise 1.4.30. Monty Hall Problem.

Suppose there are three curtains. Behind one curtain there is a nice prize, while

behind the other two there are worthless prizes. A contestant selects one curtain at

random, and then Monty Hall (of Let’s Make a Deal fame) opens one of the other

two curtains to reveal a worthless prize. Hall then expresses a willingness to trade

the curtain that the contestant has chosen for the other curtain that has not been

opened. Should the contestant switch curtains or stick with the one that she has?

To answer the question, determine the probability that she wins the prize if she

switches.

Solution. Unlike many solutions to be found online and in the literature, we

explicitly give the sample space and describe each possible outcome in terms of

events in the sample space. We take indices i, j, k to be 1, 2, 3 and we number

the curtains #1, #2, #3. Three things happen in the game. First, the nice prize is

behind some curtain; if the nice prize is behind curtain i, denote this as Pi. Second,

the contestant chooses a curtain; we denote the choice of curtain #j as Cj. Finally,

Monty Hall reveals what is behind curtain k, which we denote of Rk. The sample
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space is then {(Pi, Cj, Rk) | i, j, k = 1, 2, 3}. The event that the contestant selects

the curtain containing the nice prize is the event {(Pi, Ci, Rk) | i, k = 1, 2, 3}.

We assume that the prize is randomly assigned to one of the curtains and that

the contestant randomly chooses a curtain. The event that the nice prize is behind

curtain #i is {(Pi, Cj, Rk) | j, k = 1, 2, 3} and the event that the contestant chooses

curtain #j is {(Pi, Cj, Rk) | 1, k = 1, 2, 3}, and both of the events have probability

1/3. We also assume the Monty Hall neither reveals the location of the nice prize nor

reveals what is behind the chosen curtain; so ((P1, Cj, Ri) = 0 for i, j = 1, 2, 3 and

P ((Pi, Cj, Rj)) = 0 for i, j = 1, 2, 3. Finally, we assume that when the contestant

has chosen the curtain with the nice prize then Monty Hall reveals one of the other

two curtains with probability 1/2 (with the flip of a coin, for example). We then

have the following 27 possibilities:

P1 P2 P3

R1 R2 R3

C1 0 1/18 1/18

C2 0 0 1/9

C3 0 1/9 0

R1 R2 R3

C1 0 0 1/9

C2 1/18 0 1/18

C3 1/9 0 0

R1 R2 R3

C1 0 1/9 0

C2 1/9 0 0

C3 1/18 1/18 0

So the probability that the contestant wins without changing after the revelation

is simply the probability of the event W1 = {(Pi, Ci, Rk) | i, k = 1, 2, 3} is

P (W1) =

(
1

18
+

1

18

)
+

(
1

18
+

1

18

)
+

(
1

18
+

1

18

)
=

1

3
;

the elements of the event with nonzero probability are (P1, C1, R2), (P1, C1, R3),

(P2, C2, R1), (P2, C2, R3), (P3, C3, R1), and (P3, C3, R2). The probability that the

contestant loses without changing after the revelation is therefore 2/3 (or(
1

9
+

1

9

)
+

(
1

9
+

1

9

)
+

(
1

9
+

1

9

)
=

2

3
;



1.4. Conditional Probability and Independence 9

the elements of the event with nonzero probability are (P1, C2, R3), (P1, C3, R2),

(P2, C1, R3), (P2, C3, R1), (P3, C1, R2), and (P3, C2, R1)). With the obvious assump-

tions that, if the contestant switches curtains, then she does not switch to the

revealed curtain (which has been revealed to contain a worthless prize), then the

contestant wins the nice prize by switching if and only if the contest originally had

NOT chosen the curtain hiding the nice prize. So the event that represents the con-

testant winning after switching is W2 = {(Pi, Cj, Rk) | u, j, k = 1, 2, 3 and i 6= j}

which has probability

P (W2) =

(
1

9
+

1

9

)
+

(
1

9
+

1

9

)
+

(
1

9
+

1

9

)
=

2

3
.

Therefore, a contestant doubles her probability of winning by switching after the

reveal.

Note. To intuitively understand the surprising result of the Monty Hall Problem,

notice that the reveal does not give the contestant any information about what

she has chosen and so the probability that the contestant has originally chosen

the curtain with the nice prize does not change following the reveal. But the

reveal does give the contestant information about what she has not chosen and this

new information changes the probability that the unrevealed and unchosen curtain

contains the the nice prize (the probability changes from 1/3 to 1/3).

Note. For a possibly more convincing intuitive argument, suppose that there

were 100 instead of 3 curtains. If the contestant chooses curtain #35, say, and

Monty Hall reveals what is behind the 98 curtains marked #1–#34, #36–#73, and
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#75–#100, showing that each of these contain a worthless prize. The contestant

would think it unlikely that she had chosen the curtain with the nice prize (with

probability 1/100) and more likely that the nice prize is behind one of the other

curtains (with probability 99/100). Learning what is behind 98 of the 99 other

curtains is very suggestive that something is special about curtain #74; in fact,

there is a 99/100 probability (after the reveal) that this curtain contains the nice

prize.

Note. The Monty Hall Problem has a well-documented, and sometimes humorous,

background. It spread widely through popular culture in 1990 when Marilyn vos

Savant discussed it in her “Ask Marilyn” column in Parade Magazine (a widely

circulated insert in the Sunday newspaper of many newspapers throughout the

U.S.). Many Ph.D.s wrote her explaining whey her argument is incorrect. The

solution she gave is, roughly, the (correct) one given above. Details on the history

of the problem and some related problems can be found on the Monty Hall Problem

Wikipedea page. For more academic references, see the following two papers which

appeared in publications of the Mathematical Association of America:

1. Ed Barbeau, Fallacies, Flaws, and Flimflam, The College Mathematics Journal

24(2), 149–154 (March 1993).

2. Leonard Gillman, The Car and the Goats, The American Mathematical Monthly

bf 99(1), 3–7 (January 1992).
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https://en.wikipedia.org/wiki/Monty_Hall_problem
https://en.wikipedia.org/wiki/Monty_Hall_problem

