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Section 1.5. Random Variables

Note. We now assign a numerical value to each element c of the sample space C.

We use this assignment (called a “random variable”) to associate probabilities with

the events (i.e., subsets) in C.

Definition 1.5.1. Consider a random experiment with a sample space C. A

function X which assigns to each c ∈ C one and only one real number X(c) = x is a

random variable. The space (or range) of X is the set of real numbers D = {x | x =

X(c) for some c ∈ C}. If D is a countable set then X is a discrete random variable

and if D is an interval of real numbers then X is a continuous random variable.

Note. We discuss discrete random variables in more detail in the next section

(Section 1.6) and discuss continuous random variables in Section 1.7. We illustrate

some special cases now.

Note/Definition. Suppose X is a discrete random variable with a finite space

(i.e., range) D = {d1, d2, . . . , dm}. Define the function pX : D → [0, 1] as pX(di) =

P ({c | X(c) = di}) for i = 1, 2, . . . ,m. In Section 1.6, pX is called the probability

mass function of X. The induced probability distribution, PX , mapping subsets of

D to [0, 1] is PX(D) =
∑

di∈D pX(di) for D ⊂ D. Exercise 1.5.11 shows that PX(D)

actually is a probability on D.



1.5. Random Variables 2

Example 1.5.1. Rolling Two Dice. Let X be the sum of the surfaces on a roll

of a pair of fair 6-sided dice with faces labeled 1 through 6. The sample space is

the set of ordered pairs (we assume one die can be distinguished from the other)

C = {(i, j) | 1 ≤ i, j ≤ 6}. Since the dice are fair, P ({(i, j)}) = 1/36. The 36

outcomes are:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6).

Define random variable X on the elements of C as X((i, j)) = i + j (so the space

is D = {2, 3, . . . , 11, 12}). that the probability mass function satisfies:

x 2 3 4 5 6 7 8 9 10 11 12

pX(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Suppose B1 = {x | x = 7, 11} = {7, 11} and B2 = {2, 3, 12} (notice that B1 and B2

are subset of D). Then

PX(B1) =
∑
x∈B1

pX(x) = pX(7) + px(11) =
6

36
+

2

36
=

8

36
,

PX(B2) =
∑
x∈B2

pX(x) = pX(2) + px(3) + pX(12) =
1

36
+

2

36
+

1

36
=

4

36
.
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Note/Definition. In practice, when X is a continuous random variable, it often

represents measurements (the book refers to a person’s weight as an example; see

page 38). In this case, we usually have a nonnegative function fX(x) such that for

intervals (a, b) ∈ D, the induced probability distribution of X, PX , is defined as

PX((a, b)) = P ({c ∈ C | a < X(c) < b}) =

∫ b

a

fX(x) dx.

Such an fX will be called a probability density function (or pdf) in X in Section

1.7. Notice that we require
∫
D fX(x) dx = 1 so that the definition of probability is

satisfied by PX .

Note. So, with C as the sample space, we have the random variable X : C → R,

the space (or range) D = range(X) ⊂ R, and the probability distribution PX

mapping subsets of D to [0, 1] where PX is defined by summing on investigating

the probability denoted mass function fX or pX over the subset of D.

Example 1.5.2. Consider the probability density function

fX(x) =

 1 if 0 < x < 1

0 otherwise.

Then for a, b with 0 ≤ a < b ≤ 1 we have

PX((a, b)) =

∫ b

a

fX(x) dx =

∫ b

a

1 dx = b− a,

and, in particular, PX(R) = PX((0, 1)) = 1. Notice that PX is defined on all

open intervals of real numbers. Since for Riemann integrals,
∫ a

a fX(x) dx = 0

then Px is also defined on all single points (where it is zero; PX({x}) = 0 for
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all x ∈ R). We can then define PX for any closed interval [a, b] ⊂ [0, 1] also as

PX([a, b]) =
∫ b

a fX(x) dx = b − a. We want the subsets of R (or subsets of [0, 1])

to form a σ-field and, if we restrict ourselves to Riemann integrals, then we have

problems. A σ-field which contains all open intervals also contains all Borel sets

(see my online notes for Real Analysis 1, MATH 5210, on 1.4. Borel Sets). An

example of a Borel set is S = {x ∈ [0, 1] | x ∈ R \ Q} (the irrational numbers

between 0 and 1). We cannot define a Riemann integral of fX over set S. But

the Lebesgue integral of fX over X doesn’t exist. In fact, if S is any Borel set

then PX(S) = m(S) where m(S) denotes the Lebesgue measure of set S. More

generally, if S is any measurable set (the Borel sets are a proper subset of the

Lebesgue measurable sets) then PX(S) = m(S)). This discussion is evidence as

to why measure theory and Lebesgue integration play such an important role in

probability and statistics.

Definition 1.5.2. Let X be a random variable. Its cumulative distribution func-

tion (or cdf) mapping FX : R → [0, 1] is

FX(x) = PX((−∞, x]) = P ({x ∈ C | X(c) ≤ x} = P (X ≤ x).

Exercise 1.5.4. In Example 1.5.2 we have the probability density function

fX(x) =

 1 if 0 < x < 1

0 otherwise.

If x ≤ 0 then P (X ≤ x) =
∫ x

−∞ fX(t) dt =
∫ x

−∞ 0 dt = 0, if 0 < x < 1 then

P (X ≤ x) =
∫ x

−∞ fX(t) dt =
∫ 0
−∞ fX(t) dt+

∫ x

0 fX(t) dt =
∫ 0
−∞ 0 dt+

∫ x

0 1 dt = x, and

http://faculty.etsu.edu/gardnerr/5210/notes/1-4.pdf
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if x ≥ 1 then P (X ≤ x) =
∫ x

−∞ fX(t) dt =
∫ 0
−∞ fX(t) dt +

∫ 1
0 fX(t) dt

∫ x

1 fX(t) dt =∫ 0
−∞ 0 dt+

∫ 1
0 1 dt+

∫ x

1 0 dt = 0+1+0 = 1. So the cumulative distribution function

is

FX(x) = PX((−∞, x]) =

∫ x

−∞
fX(t) dt =


0 if x < 0

x if 0 ≤ x < 1

1 if x ≥ 1.

Notice that
d

dx
[FX(x)] =

d

dx

[∫ x

−∞
fX(t) dt

]
= fX(t) (except at x = 0 and x = 1

where fX is not differentiable) by the Fundamental Theorem of Calculus.

Definition. Let X and Y be random variables. Then X and Y are equal in

distribution, denoted X
D
= Y , if the cumulative distribution functions are equal,

FX(x) = FY (x) for all x ∈ R.

Note. We can have X
D
= Y even though X and Y are different. With Y = 1−X

where X is based on the probability density function of Example 1.5.4 we have

X 6= Y and (1) for y < 0,

FY (y) = P (Y ≤ y) = P (1−X ≤ y) = P (X ≥ 1− y)

= P (X ≥ 1− y) = 1− P (X < 1− y) = 1− (1) since 1− y > 1

= 0,

(2) for y ≥ 1,

FY (y) = P (Y ≤ y) = P (1−X ≤ y) = P (X ≥ 1− y)

= P (X ≥ 1− y) = 1− P (X < 1− y) = 1− (0) since 1− y ≤ 0
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= 1,

and (3) for 0 ≤ y < 1,

FY (y) = P (Y ≤ y) = P (1−X ≤ y) = P (X ≥ 1− y)

= P (X ≥ 1− y) = 1− P (X < 1− y) = 1− (1− y) since 0 < 1− y ≤ 1

= y.

So FY (y) = P (Y ≤ y) =


0 if y < 0

y if 0 ≤ y < 1

1 if y ≥ 1.

and hence X
D
= Y .

Note. The following theorem gives some properties of the cumulative density

function of a random variable.

Theorem 1.5.1. Let X be a random variable with cumulative distribution function

F (x). Then

(a) For all a and b, if a < b then F (a) ≤ F (b) (i.e., F is nondecreasing).

(b) limx→−∞ F (x) = 0.

(c) limx→∞ F (x) = 1.

(d) limx↓x0
F (x) = limx→x+

0
F (x) = F (x0) (i.e., F is right continuous).
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Note. Theorem 1.5.1(d) does not hold for x ↑ x0 or x → x−0 . That is, the

cumulative distribution function need not be continuous from the left. In fact, the

cumulative distribution function of the experiment of rolling a fair 6-sided die is

not continuous from the right, as shown in Figure 1.5.1.

Figure 1.5.1. The cdf for the random variable

associated with rolling a fair 6-sided die.

Note. The next formula relates certain probabilities to the cumulative distribution

function.

Theorem 1.5.2. Let X be a random variable with cumulative distribution function

FX . Then for a < b we have P (a < X ≤ b) = FX(b)− FX(a).

Note. By Theorem 1.5.1(a), we see that a cumulative distribution function is non-

decreasing (i.e., “monotone increasing”) and by definition a cdf function is defined

on R. Such a function can have at most a countable number of discontinuities

(see my online Analysis 1, MATH 4127/5127, notes on 4.2. Monotone and Inverse

Functions; see Theorem 4-14). The next theorem shows that the discontinuities of

the cdf “has mass”; that is, if FX is discontinuous at x then P (X = x) > 0.

http://faculty.etsu.edu/gardnerr/4217/notes/4-2.pdf
http://faculty.etsu.edu/gardnerr/4217/notes/4-2.pdf


1.5. Random Variables 8

Theorem 1.5.3. For random variable X, P (X = x) = FX(x) − FX(x−) for all

x ∈ R, where FX(x−) = limz→x− FX(z).

Example 1.5.5. Let X be the lifetime in years of a mechanical part. Assume the

cdf for X is

FX(x) =

 0 for x < 0

1− e−x for x ≥ 0.

If we calculate the probability density function by differentiating FX then we get

d

dx
[FX(x)] =

 e−x for x > 0

0 for x < 0

since the derivative is modified at x = 0. The textbook was Theorem 1.5.3 to

justify defining the pdf fX at x = 0 as fX(0) = 0. However, since the cfd and pdf

are related as FX(x) =
∫ x

−∞ fX(t) dt then we can let fX(0) be any value because

a Riemann integral is unaffected by the value of the integrand at a single point

(a Lebesgue integral is also unaffected; however Riemann-Stieltjes and Lebesgue-

Stieltjes integrals can be affected by single values of the integrand; see 6.3. The

Riemann-Stieltjes Integral from Analysis 2, MATH 4127/5127, and 20.3. Cumula-

tive Distribution Functions and Borel Measures on R from Real Analysis 2, MATH

5220).

Note. We further explore random variables, pdf’s, and cdf’s in the next two

sections.
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