Section 1.5. Random Variables

Note. We now assign a numerical value to each element c of the sample space C. We use this assignment (called a "random variable") to associate probabilities with the events (i.e., subsets) in C.

Definition 1.5.1. Consider a random experiment with a sample space C. A function X which assigns to each $c \in C$ one and only one real number X(c) = x is a random variable. The space (or range) of X is the set of real numbers $\mathcal{D} = \{x \mid x = X(c) \text{ for some } c \in C\}$. If \mathcal{D} is a countable set then X is a discrete random variable and if \mathcal{D} is an interval of real numbers then X is a continuous random variable.

Note. We discuss discrete random variables in more detail in the next section (Section 1.6) and discuss continuous random variables in Section 1.7. We illustrate some special cases now.

Note/Definition. Suppose X is a discrete random variable with a finite space (i.e., range) $\mathcal{D} = \{d_1, d_2, \ldots, d_m\}$. Define the function $p_X : \mathcal{D} \to [0, 1]$ as $p_X(d_i) = P(\{c \mid X(c) = d_i\})$ for $i = 1, 2, \ldots, m$. In Section 1.6, p_X is called the *probability* mass function of X. The induced probability distribution, P_X , mapping subsets of \mathcal{D} to [0, 1] is $P_X(D) = \sum_{d_i \in D} p_X(d_i)$ for $D \subset \mathcal{D}$. Exercise 1.5.11 shows that $P_X(D)$ actually is a probability on \mathcal{D} . **Example 1.5.1. Rolling Two Dice.** Let X be the sum of the surfaces on a roll of a pair of fair 6-sided dice with faces labeled 1 through 6. The sample space is the set of ordered pairs (we assume one die can be distinguished from the other) $C = \{(i, j) \mid 1 \leq i, j \leq 6\}$. Since the dice are fair, $P(\{(i, j)\}) = 1/36$. The 36 outcomes are:

Define random variable X on the elements of C as X((i, j)) = i + j (so the space is $\mathcal{D} = \{2, 3, \dots, 11, 12\}$). that the probability mass function satisfies:

x	2	3	4	5	6	7	8	9	10	11	12
$p_X(x)$	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Suppose $B_1 = \{x \mid x = 7, 11\} = \{7, 11\}$ and $B_2 = \{2, 3, 12\}$ (notice that B_1 and B_2 are subset of \mathcal{D}). Then

$$P_X(B_1) = \sum_{x \in B_1} p_X(x) = p_X(7) + p_x(11) = \frac{6}{36} + \frac{2}{36} = \frac{8}{36},$$
$$P_X(B_2) = \sum_{x \in B_2} p_X(x) = p_X(2) + p_x(3) + p_X(12) = \frac{1}{36} + \frac{2}{36} + \frac{1}{36} = \frac{4}{36}$$

Note/Definition. In practice, when X is a continuous random variable, it often represents measurements (the book refers to a person's weight as an example; see page 38). In this case, we usually have a nonnegative function $f_X(x)$ such that for intervals $(a, b) \in \mathcal{D}$, the induced probability distribution of X, P_X , is defined as

$$P_X((a,b)) = P(\{c \in \mathcal{C} \mid a < X(c) < b\}) = \int_a^b f_X(x) \, dx.$$

Such an f_X will be called a *probability density function* (or *pdf*) in X in Section 1.7. Notice that we require $\int_{\mathcal{D}} f_X(x) dx = 1$ so that the definition of probability is satisfied by P_X .

Note. So, with \mathcal{C} as the sample space, we have the random variable $X : \mathcal{C} \to \mathbb{R}$, the space (or range) $\mathcal{D} = \operatorname{range}(X) \subset \mathbb{R}$, and the probability distribution P_X mapping subsets of \mathcal{D} to [0,1] where P_X is defined by summing on investigating the probability denoted mass function f_X or p_X over the subset of \mathcal{D} .

Example 1.5.2. Consider the probability density function

$$f_X(x) = \begin{cases} 1 & \text{if } 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Then for a, b with $0 \le a < b \le 1$ we have

$$P_X((a,b)) = \int_a^b f_X(x) \, dx = \int_a^b 1 \, dx = b - a,$$

and, in particular, $P_X(\mathbb{R}) = P_X((0,1)) = 1$. Notice that P_X is defined on all open intervals of real numbers. Since for Riemann integrals, $\int_a^a f_X(x) dx = 0$ then P_x is also defined on all single points (where it is zero; $P_X(\{x\}) = 0$ for all $x \in \mathbb{R}$). We can then define P_X for any closed interval $[a, b] \subset [0, 1]$ also as $P_X([a, b]) = \int_a^b f_X(x) dx = b - a$. We want the subsets of \mathbb{R} (or subsets of [0, 1]) to form a σ -field and, if we restrict ourselves to Riemann integrals, then we have problems. A σ -field which contains all open intervals also contains all Borel sets (see my online notes for Real Analysis 1, MATH 5210, on 1.4. Borel Sets). An example of a Borel set is $S = \{x \in [0, 1] \mid x \in \mathbb{R} \setminus \mathbb{Q}\}$ (the irrational numbers between 0 and 1). We cannot define a Riemann integral of f_X over set S. But the Lebesgue integral of f_X over X doesn't exist. In fact, if S is any Borel set then $P_X(S) = m(S)$ where m(S) denotes the Lebesgue measure of set S. More generally, if S is any measurable set (the Borel sets are a proper subset of the Lebesgue measurable sets) then $P_X(S) = m(S)$). This discussion is evidence as to why measure theory and Lebesgue integration play such an important role in probability and statistics.

Definition 1.5.2. Let X be a random variable. Its *cumulative distribution func*tion (or *cdf*) mapping $F_X : \mathbb{R} \to [0, 1]$ is

$$F_X(x) = P_X((-\infty, x]) = P(\{x \in \mathcal{C} \mid X(c) \le x\}) = P(X \le x).$$

Exercise 1.5.4. In Example 1.5.2 we have the probability density function

$$f_X(x) = \begin{cases} 1 & \text{if } 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

If $x \leq 0$ then $P(X \leq x) = \int_{-\infty}^{x} f_X(t) dt = \int_{-\infty}^{x} 0 dt = 0$, if 0 < x < 1 then $P(X \leq x) = \int_{-\infty}^{x} f_X(t) dt = \int_{-\infty}^{0} f_X(t) dt + \int_{0}^{x} f_X(t) dt = \int_{-\infty}^{0} 0 dt + \int_{0}^{x} 1 dt = x$, and if $x \ge 1$ then $P(X \le x) = \int_{-\infty}^{x} f_X(t) dt = \int_{-\infty}^{0} f_X(t) dt + \int_{0}^{1} f_X(t) dt \int_{1}^{x} f_X(t) dt = \int_{-\infty}^{0} 0 dt + \int_{0}^{1} 1 dt + \int_{1}^{x} 0 dt = 0 + 1 + 0 = 1$. So the cumulative distribution function is

$$F_X(x) = P_X((-\infty, x]) = \int_{-\infty}^x f_X(t) dt = \begin{cases} 0 & \text{if } x < 0\\ x & \text{if } 0 \le x < 1\\ 1 & \text{if } x \ge 1. \end{cases}$$

Notice that $\frac{d}{dx}[F_X(x)] = \frac{d}{dx}\left[\int_{-\infty}^x f_X(t) dt\right] = f_X(t)$ (except at x = 0 and x = 1 where f_X is not differentiable) by the Fundamental Theorem of Calculus.

Definition. Let X and Y be random variables. Then X and Y are equal in distribution, denoted $X \stackrel{D}{=} Y$, if the cumulative distribution functions are equal, $F_X(x) = F_Y(x)$ for all $x \in \mathbb{R}$.

Note. We can have $X \stackrel{D}{=} Y$ even though X and Y are different. With Y = 1 - X where X is based on the probability density function of Example 1.5.4 we have $X \neq Y$ and (1) for y < 0,

$$F_Y(y) = P(Y \le y) = P(1 - X \le y) = P(X \ge 1 - y)$$

= $P(X \ge 1 - y) = 1 - P(X < 1 - y) = 1 - (1)$ since $1 - y > 1$
= 0,

(2) for $y \ge 1$,

$$F_Y(y) = P(Y \le y) = P(1 - X \le y) = P(X \ge 1 - y)$$

= $P(X \ge 1 - y) = 1 - P(X < 1 - y) = 1 - (0)$ since $1 - y \le 0$

= 1,

and (3) for $0 \le y < 1$,

$$F_Y(y) = P(Y \le y) = P(1 - X \le y) = P(X \ge 1 - y)$$

= $P(X \ge 1 - y) = 1 - P(X < 1 - y) = 1 - (1 - y)$ since $0 < 1 - y \le 1$
= y .
So $F_Y(y) = P(Y \le y) = \begin{cases} 0 & \text{if } y < 0 \\ y & \text{if } 0 \le y < 1 \\ 1 & \text{if } y \ge 1. \end{cases}$ and hence $X \stackrel{D}{=} Y$.

Note. The following theorem gives some properties of the cumulative density function of a random variable.

Theorem 1.5.1. Let X be a random variable with cumulative distribution function F(x). Then

- (a) For all a and b, if a < b then $F(a) \leq F(b)$ (i.e., F is nondecreasing).
- (b) $\lim_{x\to -\infty} F(x) = 0.$
- (c) $\lim_{x\to\infty} F(x) = 1.$
- (d) $\lim_{x \downarrow x_0} F(x) = \lim_{x \to x_0^+} F(x) = F(x_0)$ (i.e., F is right continuous).

Note. Theorem 1.5.1(d) does not hold for $x \uparrow x_0$ or $x \to x_0^-$. That is, the cumulative distribution function need not be continuous from the left. In fact, the cumulative distribution function of the experiment of rolling a fair 6-sided die is not continuous from the right, as shown in Figure 1.5.1.

Figure 1.5.1. The cdf for the random variable associated with rolling a fair 6-sided die.

Note. The next formula relates certain probabilities to the cumulative distribution function.

Theorem 1.5.2. Let X be a random variable with cumulative distribution function F_X . Then for a < b we have $P(a < X \le b) = F_X(b) - F_X(a)$.

Note. By Theorem 1.5.1(a), we see that a cumulative distribution function is nondecreasing (i.e., "monotone increasing") and by definition a cdf function is defined on \mathbb{R} . Such a function can have at most a countable number of discontinuities (see my online Analysis 1, MATH 4127/5127, notes on 4.2. Monotone and Inverse Functions; see Theorem 4-14). The next theorem shows that the discontinuities of the cdf "has mass"; that is, if F_X is discontinuous at x then P(X = x) > 0. **Theorem 1.5.3.** For random variable X, $P(X = x) = F_X(x) - F_X(x^-)$ for all $x \in \mathbb{R}$, where $F_X(x^-) = \lim_{z \to x^-} F_X(z)$.

Example 1.5.5. Let X be the lifetime in years of a mechanical part. Assume the cdf for X is

$$F_X(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 - e^{-x} & \text{for } x \ge 0. \end{cases}$$

If we calculate the probability density function by differentiating F_X then we get

$$\frac{d}{dx}[F_X(x)] = \begin{cases} e^{-x} & \text{for } x > 0\\ 0 & \text{for } x < 0 \end{cases}$$

since the derivative is modified at x = 0. The textbook was Theorem 1.5.3 to justify defining the pdf f_X at x = 0 as $f_X(0) = 0$. However, since the cfd and pdf are related as $F_X(x) = \int_{-\infty}^x f_X(t) dt$ then we can let $f_X(0)$ be any value because a Riemann integral is unaffected by the value of the integrand at a single point (a Lebesgue integral is also unaffected; however Riemann-Stieltjes and Lebesgue-Stieltjes integrals can be affected by single values of the integrand; see 6.3. The Riemann-Stieltjes Integral from Analysis 2, MATH 4127/5127, and 20.3. Cumulative Distribution Functions and Borel Measures on \mathbb{R} from Real Analysis 2, MATH 5220).

Note. We further explore random variables, pdf's, and cdf's in the next two sections.