Section 1.6. Discrete Random Variables

Note. We now formally define some of the ideas illustrated in the previous section.

Definition 1.6.1. A random variable is a discrete random variable if the space (its range) is either finite or countable.

Example 1.6.1. Suppose a fair coin is flipped an infinite number of times. Let the random variable X equal the number of flips needed to obtain the first head (H). Then the sample space \mathcal{C} consists of all sequences of H 's and T 's (an uncountable sample space). The space is $\mathcal{D}=\{1,2, \ldots\}=\mathbb{N}$, so X is a discrete random variable. Notice that $X=1$ corresponds to the events $c \in \mathcal{C}$ such that $X(c)=1$, so that this includes all sequences of events that start with H (an uncountable collection). For $x \in \mathbb{N}$ we have $P(X=x)=(1 / 2)^{x}$ since this requires a sequence of $(x-1) T$'s followed by a H. Each such outcome has probability $1 / 2$ so the value of $P(X=x)$ follows. The probability that X is odd is

$$
P(X \in\{1,3,5, \ldots\})=\sum_{x=1}^{\infty}\left(\frac{1}{2}\right)^{2 x-1}=2 \sum_{x=1}^{\infty}\left(\frac{1}{4}\right)^{x}=2 \frac{1 / 4}{1-1 / 4}=\frac{2}{3} .
$$

Notice the similarity of this to Exercise 1.4.18.

Note. Notice that each element of the sample space in Example 1.6.1, that is each infinite sequence of T 's and H 's, has probability 0 . This gives an example of an experiment where an event is possible yet it has probability 0 (consider the outcome $T T T \cdots$, for example, or any outcome for that matter).

Definition 1.6.2. Let X be a discrete random variable with space \mathcal{D}. The probability mass function of X is $p_{X}(x)=P(X=x)$ for $x \in \mathcal{D}$. The support of discrete random variable X, denoted \mathcal{S}, is the set of points in the space ("range") of X which has positive probability: $\mathcal{S}=\left\{x \in \mathcal{D} \mid p_{X}(x)=P(X=x)>0\right\}$.

Note. By Theorem I.5.3, $P(X=x)=F_{X}(x)-F_{X}\left(x^{-}\right)$where $F_{X}\left(x^{-}\right)=\lim _{z \rightarrow x^{-}} F_{X}(z)$, so $P(X=x)=0$ if and only F_{X} is continuous at x. So the support of discrete random variable X is the set of points of discontinuity of the cumulative distribution function F_{X}.

Note. The following can be shown "in a more advanced class" (see Hogg, McKean, and Craig page 46).

Theorem 1.6.A. Let \mathcal{D} be a finite or countable set of real numbers. Then function $p_{X}: \mathcal{D} \rightarrow \mathbb{R}$ is a probability mass function for some discrete random variable X is and only if
(i) $0 \leq p_{X}(x) \leq 1$ for all $x \in \mathcal{D}$, and
(ii) $\sum_{x \in \mathcal{D}} p_{X}(x)=1$.

Example 1.6.2. A lot of 100 fuses is inspected by the following process. Five of these fuses are chosen at random and tested; if all five "blow" at the correct amperage, then the lot is accepted. Let X be the number of defective fuses among
the five that are inspected. Then X is a discrete random variable with space $\mathcal{D}=\{0,1,2,3,4,5\}$. The probability mass function of X is

$$
p_{X}(x)=\left\{\begin{array}{cl}
\frac{\binom{20}{x}\binom{80}{50-x}}{\binom{10}{5}} & \text { for } x=0,1,2,3,4,5 \\
0 & \text { elsewhere. }
\end{array}\right.
$$

This is a particular example of a hypergeometric distribution, which we will explore in some detail in Chapter 3.

Note/Definition. Suppose we have a random variable X with distribution p_{X}. If for some function g we have $Y=g(X)$ then g is called a transformation. If X is a discrete random variable and the space X is \mathcal{D}_{X}, then the space of Y is $\mathcal{D}_{Y}=\left\{g(x) \mid x \in \mathcal{D}_{X}\right\}$. If function g^{-1} exists (i.e., if g is one to one) then

$$
p_{Y}(y)=P(Y=y)=P(g(X)=y)=P\left(X=g^{-1}(y)\right)=p_{X}\left(g^{-1}(y)\right.
$$

Example 1.6.4. Let discrete random variable X have probability mass function

$$
p_{X}(x)=\left\{\begin{array}{cl}
\frac{3!}{x!(3-x)!}\left(\frac{2}{3}\right)^{x}\left(\frac{1}{3}\right)^{3-x} & \text { for } x=0,1,2,3 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Let Y be the discrete random variable defined as $Y=X^{2}$. With $y=g(x)=x^{2}$ as the transformation we have $\mathcal{D}_{X}=\{0,1,2,3\}$ and $\mathcal{D}_{Y}=\left\{y=g(x)=x^{2} \mid x \in\right.$ $\left.\mathcal{D}_{X}\right\}=\{0,1,4,9\}$. Since g is one to one on \mathcal{D}_{X} then we have the relationship $x=\sqrt{y}=g^{-1}(y)$ for $y \in \mathcal{D}_{Y}$ and so

$$
p_{Y}(y)=p_{X}(\sqrt{y})=\left\{\begin{array}{cl}
\frac{3!}{(\sqrt{y})!(3-\sqrt{y})!}\left(\frac{2}{3}\right)^{\sqrt{y}}\left(\frac{1}{3}\right)^{3-\sqrt{y}} & \text { for } y=0,1,4,9 \\
0 & \text { elsewhere. }
\end{array}\right.
$$

Example. Consider again the random variable of Example 1.6.1 which is equal to the number of flips of a fair coin needed to obtain the first head (H). Define the new discrete random variable $Z=(X-2)^{2}$ so that the transformation is $g(x)=(x-2)^{2}$. Since $\mathcal{D}_{X}=\{1,2,3, \ldots\}$ then $\mathcal{D}_{Z}=\left\{g(x) \mid x \in \mathcal{D}_{X}\right\}=\{0,1,4,9,16, \ldots\}$ but g is not one to one on all of \mathcal{D}_{X}. Now $Z=0$ if and only if $X=2$, and $Z=1$ if and only if $X=1$ or $X=3$. For the other values of Z (i.e., for $z \geq 4$) we have $x=\sqrt{z}+2$. So we have the probability mass function for Z as

$$
p_{Z}(z)=\left\{\begin{array}{cl}
p_{X}(2)=(1 / 2)^{2}=1 / 4 & \text { for } z=0 \\
p_{X}(1)+p_{X}(3)=1 / 2+1 / 8=5 / 8 & \text { for } z=1 \\
p_{X}(\sqrt{z}+2)=(1 / 2)^{\sqrt{z}+2} & \text { for } z=4,9,16, \ldots
\end{array}\right.
$$

Notice that

$$
\begin{gathered}
\sum_{z \in \mathcal{D}_{Z}} p_{Z}(z)=p_{Z}(0)+p_{Z}(1)+\sum_{z \in\{4,9,16, \ldots\}} p_{Z}(\sqrt{z}+2)=\frac{1}{4}+\frac{5}{8}+\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{\sqrt{n^{2}}+2} \\
=\frac{7}{8}+\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n+2}=\frac{7}{8}+\frac{1}{4} \sum_{n=2}^{\infty}\left(\frac{1}{2}\right)^{n} \\
=\frac{7}{8}+\frac{1}{4}\left(\frac{1 / 4}{1-1 / 2}\right)=\frac{7}{8}+\frac{1}{8}=1
\end{gathered}
$$

(this last observation is Exercise 1.6.11). So by Theorem 1.6.A, p_{Z} actually is a probability mass function.

