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Section 1.6. Discrete Random Variables

Note. We now formally define some of the ideas illustrated in the previous section.

Definition 1.6.1. A random variable is a discrete random wvariable if the space

(its range) is either finite or countable.

Example 1.6.1. Suppose a fair coin is flipped an infinite number of times. Let the
random variable X equal the number of flips needed to obtain the first head (H).
Then the sample space C consists of all sequences of H'’s and T’s (an uncountable
sample space). The spaceis D = {1,2,...} = N, so X is a discrete random variable.
Notice that X = 1 corresponds to the events ¢ € C such that X(c) = 1, so that
this includes all sequences of events that start with H (an uncountable collection).
For z € N we have P(X = z) = (1/2)" since this requires a sequence of (x — 1) 1”s
followed by a H. Fach such outcome has probability 1/2 so the value of P(X = z)
follows. The probability that X is odd is

P(X €{1,3,5,...}) = i (%)2171 22 G)x :211/3/4 _ %

r=1

Notice the similarity of this to Exercise 1.4.18.

Note. Notice that each element of the sample space in Example 1.6.1, that is each
infinite sequence of T’s and H’s, has probability 0. This gives an example of an
experiment where an event is possible yet it has probability 0 (consider the outcome

TTT ---, for example, or any outcome for that matter).
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Definition 1.6.2. Let X be a discrete random variable with space D. The proba-
bility mass function of X is px(z) = P(X = x) for x € D. The support of discrete
random variable X, denoted S, is the set of points in the space (“range”) of X

which has positive probability: S = {z € D | px(z) = P(X = z) > 0}.

Note. By Theorem 1.5.3, P(X = z) = Fx(x)—Fx(z~) where Fx(z7) = lim, .- Fx(2),
so P(X = z) = 0 if and only F is continuous at z. So the support of discrete ran-
dom variable X is the set of points of discontinuity of the cumulative distribution

function F.

Note. The following can be shown “in a more advanced class” (see Hogg, McKean,

and Craig page 46).

Theorem 1.6.A. Let D be a finite or countable set of real numbers. Then function
px : D — R is a probability mass function for some discrete random variable X is

and only if

(i) 0 <px(z) <1forall x € D, and

(if) 2 eppx(@) = 1.

Example 1.6.2. A lot of 100 fuses is inspected by the following process. Five
of these fuses are chosen at random and tested; if all five “blow” at the correct

amperage, then the lot is accepted. Let X be the number of defective fuses among
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the five that are inspected. Then X is a discrete random variable with space

D =1{0,1,2,3,4,5}. The probability mass function of X is

20 80
GG g —0.1,2.3.4.5
px(x) = (%)

0 elsewhere.

This is a particular example of a hypergeometric distribution, which we will explore

in some detail in Chapter 3.

Note/Definition. Suppose we have a random variable X with distribution py.
If for some function g we have Y = ¢(X) then ¢ is called a transformation. If
X is a discrete random variable and the space X is Dy, then the space of Y is

Dy = {g(z) | * € Dx}. If function g~! exists (i.e., if g is one to one) then

py(y) =PY =y)=Pg(X)=y)=P(X =g '(y) =px(g ' (y).

Example 1.6.4. Let discrete random variable X have probability mass function

#lx), (%)x (%)3_96 forx =0,1,2,3

px(z) =
0 elsewhere.

Let Y be the discrete random variable defined as Y = X2, With y = g(x) = 22
as the transformation we have Dx = {0,1,2,3} and Dy = {y = g(z) = 2? | z €
Dx} = {0,1,4,9}. Since g is one to one on Dy then we have the relationship

= /y=g '(y) for y € Dy and so

3l (2\WY (13 for v = 0.1.4.9

o y=Vu,1,4,

py(y) = px(yg) = { VDBV () (3)
0 elsewhere.
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Example. Consider again the random variable of Example 1.6.1 which is equal to
the number of flips of a fair coin needed to obtain the first head (H). Define the new
discrete random variable Z = (X —2)? so that the transformation is g(z) = (2 —2)2.
Since Dx = {1,2,3,...} then Dz = {g(x) | z € Dx} ={0,1,4,9,16,...} but g is
not one to one on all of Dx. Now Z = 0 if and only if X = 2, and Z = 1 if and only
if X =1 or X = 3. For the other values of Z (i.e., for z > 4) we have x = /2 + 2.

So we have the probability mass function for Z as

4

px(2) = (1/2)? =1/4 for z =0
pz(z) =19 px(1) +px(3)=1/24+1/8=5/8 forz=1
px(VzZ +2) = (1/2)V++2 for z =4,9,16,....

Notice that

0 Vn2+2
2 pa(z) =pz(0) +pz () + D lw®6+2%=i+g+ 1<%>

2€Dyz 2€{4,9,16,...} n=
7 /1N T 1S
—§+n§<§> s+ (
7

_T ! 1/4 Tl
8 4\1-1/2) 8 8

(this last observation is Exercise 1.6.11). So by Theorem 1.6.A, pz actually is a

probability mass function.
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