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Section 1.6. Discrete Random Variables

Note. We now formally define some of the ideas illustrated in the previous section.

Definition 1.6.1. A random variable is a discrete random variable if the space

(its range) is either finite or countable.

Example 1.6.1. Suppose a fair coin is flipped an infinite number of times. Let the

random variable X equal the number of flips needed to obtain the first head (H).

Then the sample space C consists of all sequences of H’s and T ’s (an uncountable

sample space). The space is D = {1, 2, . . .} = N, so X is a discrete random variable.

Notice that X = 1 corresponds to the events c ∈ C such that X(c) = 1, so that

this includes all sequences of events that start with H (an uncountable collection).

For x ∈ N we have P (X = x) = (1/2)x since this requires a sequence of (x− 1) T ’s

followed by a H. Each such outcome has probability 1/2 so the value of P (X = x)

follows. The probability that X is odd is

P (X ∈ {1, 3, 5, . . .}) =
∞∑

x=1

(
1

2

)2x−1

= 2
∞∑

x=1

(
1

4

)x

= 2
1/4

1− 1/4
=

2

3
.

Notice the similarity of this to Exercise 1.4.18.

Note. Notice that each element of the sample space in Example 1.6.1, that is each

infinite sequence of T ’s and H’s, has probability 0. This gives an example of an

experiment where an event is possible yet it has probability 0 (consider the outcome

TTT · · ·, for example, or any outcome for that matter).
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Definition 1.6.2. Let X be a discrete random variable with space D. The proba-

bility mass function of X is pX(x) = P (X = x) for x ∈ D. The support of discrete

random variable X, denoted S, is the set of points in the space (“range”) of X

which has positive probability: S = {x ∈ D | pX(x) = P (X = x) > 0}.

Note. By Theorem I.5.3, P (X = x) = FX(x)−FX(x−) where FX(x−) = limz→x− FX(z),

so P (X = x) = 0 if and only FX is continuous at x. So the support of discrete ran-

dom variable X is the set of points of discontinuity of the cumulative distribution

function FX .

Note. The following can be shown “in a more advanced class” (see Hogg, McKean,

and Craig page 46).

Theorem 1.6.A. Let D be a finite or countable set of real numbers. Then function

pX : D → R is a probability mass function for some discrete random variable X is

and only if

(i) 0 ≤ pX(x) ≤ 1 for all x ∈ D, and

(ii)
∑

x∈D pX(x) = 1.

Example 1.6.2. A lot of 100 fuses is inspected by the following process. Five

of these fuses are chosen at random and tested; if all five “blow” at the correct

amperage, then the lot is accepted. Let X be the number of defective fuses among
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the five that are inspected. Then X is a discrete random variable with space

D = {0, 1, 2, 3, 4, 5}. The probability mass function of X is

pX(x) =


(20

x )(
80

5−x)
(100

5 )
for x = 0, 1, 2, 3, 4, 5

0 elsewhere.

This is a particular example of a hypergeometric distribution, which we will explore

in some detail in Chapter 3.

Note/Definition. Suppose we have a random variable X with distribution pX .

If for some function g we have Y = g(X) then g is called a transformation. If

X is a discrete random variable and the space X is DX , then the space of Y is

DY = {g(x) | x ∈ DX}. If function g−1 exists (i.e., if g is one to one) then

pY (y) = P (Y = y) = P (g(X) = y) = P (X = g−1(y)) = pX(g−1(y).

Example 1.6.4. Let discrete random variable X have probability mass function

pX(x) =

 3!
x!(3−x)!

(2
3

)x (1
3

)3−x
for x = 0, 1, 2, 3

0 elsewhere.

Let Y be the discrete random variable defined as Y = X2. With y = g(x) = x2

as the transformation we have DX = {0, 1, 2, 3} and DY = {y = g(x) = x2 | x ∈

DX} = {0, 1, 4, 9}. Since g is one to one on DX then we have the relationship

x =
√

y = g−1(y) for y ∈ DY and so

pY (y) = pX(
√

y) =

 3!
(
√

y)!(3−√y)!

(2
3

)√y (1
3

)3−√y
for y = 0, 1, 4, 9

0 elsewhere.
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Example. Consider again the random variable of Example 1.6.1 which is equal to

the number of flips of a fair coin needed to obtain the first head (H). Define the new

discrete random variable Z = (X−2)2 so that the transformation is g(x) = (x−2)2.

Since DX = {1, 2, 3, . . .} then DZ = {g(x) | x ∈ DX} = {0, 1, 4, 9, 16, . . .} but g is

not one to one on all of DX . Now Z = 0 if and only if X = 2, and Z = 1 if and only

if X = 1 or X = 3. For the other values of Z (i.e., for z ≥ 4) we have x =
√

z + 2.

So we have the probability mass function for Z as

pZ(z) =


pX(2) = (1/2)2 = 1/4 for z = 0

pX(1) + pX(3) = 1/2 + 1/8 = 5/8 for z = 1

pX(
√

z + 2) = (1/2)
√

z+2 for z = 4, 9, 16, . . . .

Notice that∑
z∈DZ

pZ(z) = pZ(0) + pZ(1) +
∑

z∈{4,9,16,...}

pZ(
√

z + 2) =
1

4
+

5

8
+

∞∑
n=1

(
1

2

)√
n2+2

=
7

8
+

∞∑
n=1

(
1

2

)n+2

=
7

8
+

1

4

∞∑
n=2

(
1

2

)n

=
7

8
+

1

4

(
1/4

1− 1/2

)
=

7

8
+

1

8
= 1

(this last observation is Exercise 1.6.11). So by Theorem 1.6.A, pZ actually is a

probability mass function.
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