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Section 1.7. Continuous Random Variables

Note. We now formally define more of the ideas introduced in Section 1.5.

Definition 1.7.1. A random variable X is a continuous random variable if its

cumulative distribution function FX is a continuous function for all x ∈ R.

Note. By Theorem 1.5.3, for random variable X we have

P (X = x) = FX(x)− FX(x−) = FX(x)− lim
z→x−

FX(z) for all x ∈ R.

So if the cumulative distribution function FX is continuous that limz→x− FX(z) =

FX(x) and P (X = x) = 0. That is, for continuous random variable X we have

P (X = x) = 0 for all x ∈ R.

Definition. If for continuous random variable X we have that the cumulative

distribution function FX satisfies FX(x) =
∫ x

−∞ fX(t) dt for some function fX , then

fX is the probability density function (pdf) of X. In this case, the support of X is

S = {x ∈ R | fX(x) > 0}.

Note 1.7.A. If the probability density function fX of continuous random variable

X is itself continuous, then by the Fundamental Theorem of Calculus (see my online

notes for Calculus 1 on 5.4. The Fundamental Theorem of Calculus ) we have

d

dx
[FX(x)] =

d

dx

[∫ x

−∞
fX(t) dt

]
= fX(x).

http://faculty.etsu.edu/gardnerr/1910/Notes-12E/c5s4.pdf
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Note. The text book mentions absolute continuity on page 49. If we use Lebesgue

integration instead of Riemann integration then we can get a lot of use out of

absolute continuity and we can even generalize the previous note. We now explore

some of this, which is covered in Real Analysis 1 (MATH 5210). The following

two definitions and one theorem are based on my online notes for 6.4. Absolutely

Continuous Functions and 6.5. Integrating Derivatives: Differentiating Indefinite

Integrals.

Definition. A real-valued function f on a closed, bounded interval [a, b] is abso-

lutely continuous on [a, b] if for each ε > 0 there is δ > 0 such that for every finite

disjoint collection {(ak, bk)}n
k=1 of open intervals in (a, b),

if
n∑

k=1

(bk − ak) < δ then
n∑

k=1

|f(bk)− f(ak)| < ε.

Definition. A function f on closed, bounded interval [a, b] is the indefinite integral

of g over [a, b] if g is Lebesgue integrable over [a, b] and

f(x) = f(a) +

∫ x

a

g for all x ∈ [a, b].

Theorem 6.11. A function f on a closed, bounded interval [a, b] is absolutely

continuous on [a, b] if and only if it is an indefinite integral over [a, b].

http://faculty.etsu.edu/gardnerr/5210/notes/6-4.pdf
http://faculty.etsu.edu/gardnerr/5210/notes/6-4.pdf
http://faculty.etsu.edu/gardnerr/5210/notes/6-5.pdf
http://faculty.etsu.edu/gardnerr/5210/notes/6-5.pdf
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Note. We can conclude that if the cumulative distribution function FX of con-

tinuous random variable X satisfies the ε/δ absolute continuity definition given

above, then FX(x) =
∫ x

−∞ fX(t) dt for some probability density function fX . Alter-

natively, we can follow the approach commonly taken in a Measure Theory Based

Probability class (which ETSU does not have) where a random variable X is de-

fined as absolutely continuous if there is some nonnegative function fX (a “Borel

measurable” function) defined on R such that

P (X ≤ x) = FX(x) =

∫ x

−∞
f(t) dt for all x ∈ R

where the integral here is the Lebesgue integral (see my online notes on 4.6. Random

Variables). In this class, we overlook these subtleties and most of our examples

will involve Riemann integrals.

Note. If X is a continuous random variable with probability density function fX

then we can calculate the probability that X lies in an interval as follows:

P (a ≤ X ≤ b) = P (a < X ≤ b) = P (a ≤ X < b) = P (a < X < b)

= FX(b)− FX(a) =

∫ b

a

fX(t) dt.

We can similarly find the probability that X lies in a union of intervals.

Example 1.7.1. Suppose a point is selected at random in the interior of a circle

of radius 1 in such a way that the probability that the point lies in an open disk D

of area A is P (D) = area(A)/π. Let X be the distance of the selected point from

the origin. The sample space is C = {(w, y) | x2 + y2 < 1}. For 0 < x < 1, the

http://faculty.etsu.edu/gardnerr/Probability/notes/Prob-4-6.pdf
http://faculty.etsu.edu/gardnerr/Probability/notes/Prob-4-6.pdf
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event {X ≤ x} corresponds to the point lying in a circle of radius x centered at the

origin. So P (X ≤ x) = πx2/π = x2 and hence the cumulative distribution function

of X is

FX(x) =


0 for x < 0

x2 for 0 ≤ x ≤ 1

1 for x > 1.

So the probability density function satisfies

fX(x) =
d

dz
[FX(x)] =

 2x if 0 ≤ x < 1

0 if x > 1.

Notice that
d

dx
[FX(x)] is undefined at x = 1, but for a continuous random variable,

FX is unaffected by the value of fX at a finite number of points so we take fX(1) = 0

and then

fX(x) =

 2x if 0 ≤ x < 1

0 elsewhere.

Definition 1.7.2. Let 0 < p < 1. A quantile of order p of the cumulative

distribution function FX of random variable X is a value ξp such that P (X < ξp) ≤

p and P (X ≤ ξp) ≥ p. If is also called the (100p)th percentile of X.

Note. For X a continuous random variable we have P (X = ξp) = 0 so that

P (X < ξp) = P (X ≤ ξp) and for ξp a quantile of p then we have both P (X ≤ ξp) ≤ p

and P (ξp ≥ p so that P (X ≤ ξp) = p. This behavior need not be the case for a

discrete random variable.
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Note. The definition of quantile of order p refers to “a” value ξp. This value may

not be unique, as the follow example shows.

Example. Consider the probability density function

fX(x) =


2(1− x)(x− 2) for 1 < x < 2

3(3− x)(x− 4) for 3 < x < 4

0 elsewhere.

For ξ ∈ [2, 3] we have

P (X < ξ) = P (X ≤ ξ) since P (X = ξ) = 0 because

we have a continuous random variable

= FX(ξ) =

∫ ξ

−∞
fX(x) dx

=

∫ 1

−∞
fX(x) dx +

∫ 2

1
fX(x) dx +

∫ ξ

2
fX(x) dx

=

∫ 1

−∞
0 dx +

∫ 2

1
(−3x2 + 9x− 6) dx +

∫ ξ

x

0 dx

=

(
−x3 +

9

2
x2 − 6x

)∣∣∣∣2
1

= (−8 + 18− 12)− (−1 + 9/2− 6) = 1/2.

So P (X < ξ) ≤ 1/2 = p and P (ξ ≤ ξp) ≥ 1/2 = p. Therefore a quantile of order

p = 1/2 is ξ for any ξ ∈ [2, 3].

Definition. A median of a random variable X is a quantile of order p = 1/2, ξ1/2.

A first quartile is a quantile of order p = 1/4, ξ1/4, and a third quartile is a quantile

of order p = 3/4, ξ1/4. A difference ξ3/4 − ξ1/4 is an interquartile range of X.
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Note. A median is often used as a measure of the center of the distribution of X

and an interquartile range is used as a measure of the spread of the distribution of

X.

Note. We can transform a continuous random variable, just as we transformed a

discrete random variable. We illustrate this with some examples.

Example 1.7.4. Consider again Example 1.7.1 where a point is selected in an

open unit disk and the cumulative distribution function of random variable X, the

distance of the point from the center of the disk, is

FX(x) =


0 for x < 0

x2 for 0 ≤ x ≤ 1

1 for x > 1.

Let Y be the distance square of the point from the center of the circle so that

Y = X2. Since the support of X is SX = (0, 1) then the support of Y is SY = (0, 1).

The cumulative distribution function of Y satisfies

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (X ≤ √
y) = FX(

√
y) =


0 for y < 0

y for 0 ≤ y ≤ 1

1 for y > 1.

So the probability density function of Y is

fX(x) =

 1 for 0 < y < 1

0 otherwise.
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Example 1.7.5. Let fX(x) =

 1/2 for − 1 < x < 1

0 elsewhere
be the probability density

function of random variable X. Define the random variable Y = X2. If 0 ≤ y ≤ 1

then we have

P (Y ≤ y) = P (X2 ≤ y) = P (−√y ≤ X ≤ √
y)

= P (X ≤ √
y)− P (X < −√y)

= P (X ≤ √
y)− P (X ≤ −√y) since P (X =

√
y) = 0

= FX(
√

y − FX(−√y) =

∫ x=
√

y

x=−∞

1

2
dx−

∫ x=−√y

−∞

1

2
dx

=

∫ √
y

−√y

1

2
dx =

√
y.

If y < 0 then P (Y ≤ y) = 0 and if y > 1 then P (Y ≤ y) = 1. That is,

P (Y ≤ y) = FY (y) =


0 for y < 0

√
y for 0 ≤ y ≤ 1

1 for 1 < y.

So the probability density function of Y is

fY (y) =

 1√
y for 0 < y ≤ 1

0 otherwise.

Note. In the previous two examples, we have the transformation g(x) = x2 so that

Y = g(X) = X2. In Example 1.7.5 g is not one-to-one so that g−1 does not exist.

However, in Example 1.7.4 g is one-to-one on the support of X so that we could

find the cumulative distribution function of Y using g−1, as described in the next

theorem.
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Theorem 1.7.1. The Cumulative Distribution Function Technique.

Let X be a continuous random variable with probability density function fX and

support SX . Let Y = g(X) where g is a one-to-one differentiable function on the

x = g−1(y) and let dx/dy = d
dy [g

−1(y)]. Then the probability density function of

Y is given by fY (y) = fX(g−1(y))|dx/dy| for y ∈ SY where the support of Y is the

set SY = {y = g(x) | x ∈ SX}.

Note. The test refers to the quantity dx/dy = d[g−1(y)]/dx in Theorem 1.7.1

as the “Jacobian.” However, this term is more commonly used in the setting of

functions of several variables; see my online notes for Calculus 3 (MATH 2110) on

15.8. Substitution in Multiple Integrals.

Note. Theorem 1.7.1 can be expressed as an algorithm for finding the probability

density function of Y where Y = g(X) for one-to-one differentiable g as follows:

1. Find the support of Y .

2. Solve y = g(x) for x = g−1(y).

3. Calculate dx/dy = d]g−1(y)]/dy.

4. The probability density function of Y is fY (y) = fX(g−1(y))

∣∣∣∣dx

dy

∣∣∣∣ .

Example. Exercise 1.7.24.

http://faculty.etsu.edu/gardnerr/2110/notes-12e/notes.htm
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Note. For random variable X, we can have a cumulative distribution function

that is a mixture of discrete and continuous distributions. By Theorem 1.5.1(d),

every cumulative distribution function is right continuous and by Theorem 1.5.3

P (X = x) = FX(x)− limz→x− FX(z) So we can combine these two behaviors to get

a mixed cumulative density function.

Example 1.7.7. Consider the cumulative density function

FX(x) =


0 for x < 0

(x + 1)/2 for 0 ≤ x < 1

1 for 1 ≤ x.

Then P (X = 0) = FX(0)− limz→z− FX(z) = 1/2− 0 = 1/2, P (X ≤ 0) = FX(0) =

1/2, and P (0 < X ≤ 1) = P (X ≤ 1)− P (X ≤ 0) = FX(1)− 1/2 = 1− 1/2 = 1/2.

Since the random variable X has an uncountable space (or “range”) then X is

not a discrete random variable (see Definition 1.6.1). Since the cumulative density

function FX is not continuous then X is not a continuous random variable (see

Definition 1.7.1). Therefore, the cumulative density function FX is a mixture of

continuous and discrete types. Since th eprobability mass function of a discrete

random variable involves summation (or series) and the probability density function

of a continuous random variable is an integral, then we cannot find a probability

density/mass function for the random variable with cumulative density function

FX .
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