Section 1.7. Continuous Random Variables

Note. We now formally define more of the ideas introduced in Section 1.5.

Definition 1.7.1. A random variable X is a continuous random variable if its cumulative distribution function F_{X} is a continuous function for all $x \in \mathbb{R}$.

Note. By Theorem 1.5.3, for random variable X we have

$$
P(X=x)=F_{X}(x)-F_{X}\left(x^{-}\right)=F_{X}(x)-\lim _{z \rightarrow x^{-}} F_{X}(z) \text { for all } x \in \mathbb{R}
$$

So if the cumulative distribution function F_{X} is continuous that $\lim _{z \rightarrow x^{-}} F_{X}(z)=$ $F_{X}(x)$ and $P(X=x)=0$. That is, for continuous random variable X we have $P(X=x)=0$ for all $x \in \mathbb{R}$.

Definition. If for continuous random variable X we have that the cumulative distribution function F_{X} satisfies $F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$ for some function f_{X}, then f_{X} is the probability density function ($p d f$) of X. In this case, the support of X is $\mathcal{S}=\left\{x \in \mathbb{R} \mid f_{X}(x)>0\right\}$.

Note 1.7.A. If the probability density function f_{X} of continuous random variable X is itself continuous, then by the Fundamental Theorem of Calculus (see my online notes for Calculus 1 on 5.4. The Fundamental Theorem of Calculus) we have

$$
\frac{d}{d x}\left[F_{X}(x)\right]=\frac{d}{d x}\left[\int_{-\infty}^{x} f_{X}(t) d t\right]=f_{X}(x)
$$

Note. The text book mentions absolute continuity on page 49. If we use Lebesgue integration instead of Riemann integration then we can get a lot of use out of absolute continuity and we can even generalize the previous note. We now explore some of this, which is covered in Real Analysis 1 (MATH 5210). The following two definitions and one theorem are based on my online notes for 6.4. Absolutely Continuous Functions and 6.5. Integrating Derivatives: Differentiating Indefinite Integrals.

Definition. A real-valued function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a, b]$ if for each $\varepsilon>0$ there is $\delta>0$ such that for every finite disjoint collection $\left\{\left(a_{k}, b_{k}\right)\right\}_{k=1}^{n}$ of open intervals in (a, b),

$$
\text { if } \sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<\delta \text { then } \sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\varepsilon
$$

Definition. A function f on closed, bounded interval $[a, b]$ is the indefinite integral of g over $[a, b]$ if g is Lebesgue integrable over $[a, b]$ and

$$
f(x)=f(a)+\int_{a}^{x} g \text { for all } x \in[a, b] .
$$

Theorem 6.11. A function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a, b]$ if and only if it is an indefinite integral over $[a, b]$.

Note. We can conclude that if the cumulative distribution function F_{X} of continuous random variable X satisfies the ε / δ absolute continuity definition given above, then $F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$ for some probability density function f_{X}. Alternatively, we can follow the approach commonly taken in a Measure Theory Based Probability class (which ETSU does not have) where a random variable X is defined as absolutely continuous if there is some nonnegative function f_{X} (a "Borel measurable" function) defined on \mathbb{R} such that

$$
P(X \leq x)=F_{X}(x)=\int_{-\infty}^{x} f(t) d t \text { for all } x \in \mathbb{R}
$$

where the integral here is the Lebesgue integral (see my online notes on 4.6. Random Variables). In this class, we overlook these subtleties and most of our examples will involve Riemann integrals.

Note. If X is a continuous random variable with probability density function f_{X} then we can calculate the probability that X lies in an interval as follows:

$$
\begin{aligned}
P(a \leq X \leq b)= & P(a<X \leq b)=P(a \leq X<b)=P(a<X<b) \\
& =F_{X}(b)-F_{X}(a)=\int_{a}^{b} f_{X}(t) d t .
\end{aligned}
$$

We can similarly find the probability that X lies in a union of intervals.

Example 1.7.1. Suppose a point is selected at random in the interior of a circle of radius 1 in such a way that the probability that the point lies in an open disk D of area A is $P(D)=\operatorname{area}(A) / \pi$. Let X be the distance of the selected point from the origin. The sample space is $\mathcal{C}=\left\{(w, y) \mid x^{2}+y^{2}<1\right\}$. For $0<x<1$, the
event $\{X \leq x\}$ corresponds to the point lying in a circle of radius x centered at the origin. So $P(X \leq x)=\pi x^{2} / \pi=x^{2}$ and hence the cumulative distribution function of X is

$$
F_{X}(x)=\left\{\begin{array}{cl}
0 & \text { for } x<0 \\
x^{2} & \text { for } 0 \leq x \leq 1 \\
1 & \text { for } x>1
\end{array}\right.
$$

So the probability density function satisfies

$$
f_{X}(x)=\frac{d}{d z}\left[F_{X}(x)\right]=\left\{\begin{array}{cl}
2 x & \text { if } 0 \leq x<1 \\
0 & \text { if } x>1
\end{array}\right.
$$

Notice that $\frac{d}{d x}\left[F_{X}(x)\right]$ is undefined at $x=1$, but for a continuous random variable, F_{X} is unaffected by the value of f_{X} at a finite number of points so we take $f_{X}(1)=0$ and then

$$
f_{X}(x)=\left\{\begin{array}{cl}
2 x & \text { if } 0 \leq x<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Definition 1.7.2. Let $0<p<1$. A quantile of order p of the cumulative distribution function F_{X} of random variable X is a value ξ_{p} such that $P\left(X<\xi_{p}\right) \leq$ p and $P\left(X \leq \xi_{p}\right) \geq p$. If is also called the (100p)th percentile of X.

Note. For X a continuous random variable we have $P\left(X=\xi_{p}\right)=0$ so that $P\left(X<\xi_{p}\right)=P\left(X \leq \xi_{p}\right)$ and for ξ_{p} a quantile of p then we have both $P\left(X \leq \xi_{p}\right) \leq p$ and $P\left(\xi_{p} \geq p\right.$ so that $P\left(X \leq \xi_{p}\right)=p$. This behavior need not be the case for a discrete random variable.

Note. The definition of quantile of order p refers to "a" value ξ_{p}. This value may not be unique, as the follow example shows.

Example. Consider the probability density function

$$
f_{X}(x)=\left\{\begin{array}{cl}
2(1-x)(x-2) & \text { for } 1<x<2 \\
3(3-x)(x-4) & \text { for } 3<x<4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

For $\xi \in[2,3]$ we have

$$
P(X<\xi)=P(X \leq \xi) \text { since } P(X=\xi)=0 \text { because }
$$

we have a continuous random variable

$$
\begin{aligned}
& =F_{X}(\xi)=\int_{-\infty}^{\xi} f_{X}(x) d x \\
& =\int_{-\infty}^{1} f_{X}(x) d x+\int_{1}^{2} f_{X}(x) d x+\int_{2}^{\xi} f_{X}(x) d x \\
& =\int_{-\infty}^{1} 0 d x+\int_{1}^{2}\left(-3 x^{2}+9 x-6\right) d x+\int_{x}^{\xi} 0 d x \\
& =\left.\left(-x^{3}+\frac{9}{2} x^{2}-6 x\right)\right|_{1} ^{2}=(-8+18-12)-(-1+9 / 2-6)=1 / 2
\end{aligned}
$$

So $P(X<\xi) \leq 1 / 2=p$ and $P\left(\xi \leq \xi_{p}\right) \geq 1 / 2=p$. Therefore a quantile of order $p=1 / 2$ is ξ for any $\xi \in[2,3]$.

Definition. A median of a random variable X is a quantile of order $p=1 / 2, \xi_{1 / 2}$. A first quartile is a quantile of order $p=1 / 4, \xi_{1 / 4}$, and a third quartile is a quantile of order $p=3 / 4, \xi_{1 / 4}$. A difference $\xi_{3 / 4}-\xi_{1 / 4}$ is an interquartile range of X.

Note. A median is often used as a measure of the center of the distribution of X and an interquartile range is used as a measure of the spread of the distribution of X.

Note. We can transform a continuous random variable, just as we transformed a discrete random variable. We illustrate this with some examples.

Example 1.7.4. Consider again Example 1.7 .1 where a point is selected in an open unit disk and the cumulative distribution function of random variable X, the distance of the point from the center of the disk, is

$$
F_{X}(x)=\left\{\begin{array}{cl}
0 & \text { for } x<0 \\
x^{2} & \text { for } 0 \leq x \leq 1 \\
1 & \text { for } x>1
\end{array}\right.
$$

Let Y be the distance square of the point from the center of the circle so that $Y=X^{2}$. Since the support of X is $\mathcal{S}_{X}=(0,1)$ then the support of Y is $\mathcal{S}_{Y}=(0,1)$. The cumulative distribution function of Y satisfies

$$
F_{Y}(y)=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})=F_{X}(\sqrt{y})= \begin{cases}0 & \text { for } y<0 \\ y & \text { for } 0 \leq y \leq 1 \\ 1 & \text { for } y>1\end{cases}
$$

So the probability density function of Y is

$$
f_{X}(x)= \begin{cases}1 & \text { for } 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Example 1.7.5. Let $f_{X}(x)=\left\{\begin{array}{cl}1 / 2 & \text { for }-1<x<1 \\ 0 & \text { elsewhere }\end{array}\right.$ be the probability density function of random variable X. Define the random variable $Y=X^{2}$. If $0 \leq y \leq 1$ then we have

$$
\begin{aligned}
P(Y \leq y) & =P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =P(X \leq \sqrt{y})-P(X<-\sqrt{y}) \\
& =P(X \leq \sqrt{y})-P(X \leq-\sqrt{y}) \text { since } P(X=\sqrt{y})=0 \\
& =F_{X}\left(\sqrt{y}-F_{X}(-\sqrt{y})=\int_{x=-\infty}^{x=\sqrt{y}} \frac{1}{2} d x-\int_{-\infty}^{x=-\sqrt{y}} \frac{1}{2} d x\right. \\
& =\int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{2} d x=\sqrt{y} .
\end{aligned}
$$

If $y<0$ then $P(Y \leq y)=0$ and if $y>1$ then $P(Y \leq y)=1$. That is,

$$
P(Y \leq y)=F_{Y}(y)=\left\{\begin{array}{cl}
0 & \text { for } y<0 \\
\sqrt{y} & \text { for } 0 \leq y \leq 1 \\
1 & \text { for } 1<y
\end{array}\right.
$$

So the probability density function of Y is

$$
f_{Y}(y)=\left\{\begin{array}{cl}
\frac{1}{\sqrt{y}} & \text { for } 0<y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Note. In the previous two examples, we have the transformation $g(x)=x^{2}$ so that $Y=g(X)=X^{2}$. In Example 1.7.5 g is not one-to-one so that g^{-1} does not exist. However, in Example 1.7.4 g is one-to-one on the support of X so that we could find the cumulative distribution function of Y using g^{-1}, as described in the next theorem.

Theorem 1.7.1. The Cumulative Distribution Function Technique.

Let X be a continuous random variable with probability density function f_{X} and support \mathcal{S}_{X}. Let $Y=g(X)$ where g is a one-to-one differentiable function on the $x=g^{-1}(y)$ and let $d x / d y=\frac{d}{d y}\left[g^{-1}(y)\right]$. Then the probability density function of Y is given by $f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)|d x / d y|$ for $y \in \mathcal{S}_{Y}$ where the support of Y is the set $\mathcal{S}_{Y}=\left\{y=g(x) \mid x \in \mathcal{S}_{X}\right\}$.

Note. The test refers to the quantity $d x / d y=d\left[g^{-1}(y)\right] / d x$ in Theorem 1.7.1 as the "Jacobian." However, this term is more commonly used in the setting of functions of several variables; see my online notes for Calculus 3 (MATH 2110) on 15.8. Substitution in Multiple Integrals.

Note. Theorem 1.7.1 can be expressed as an algorithm for finding the probability density function of Y where $Y=g(X)$ for one-to-one differentiable g as follows:

1. Find the support of Y.
2. Solve $y=g(x)$ for $x=g^{-1}(y)$.
3. Calculate $\left.d x / d y=d] g^{-1}(y)\right] / d y$.
4. The probability density function of Y is $f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d x}{d y}\right|$.

Example. Exercise 1.7.24.

Note. For random variable X, we can have a cumulative distribution function that is a mixture of discrete and continuous distributions. By Theorem 1.5.1(d), every cumulative distribution function is right continuous and by Theorem 1.5.3 $P(X=x)=F_{X}(x)-\lim _{z \rightarrow x^{-}} F_{X}(z)$ So we can combine these two behaviors to get a mixed cumulative density function.

Example 1.7.7. Consider the cumulative density function

$$
F_{X}(x)=\left\{\begin{array}{cl}
0 & \text { for } x<0 \\
(x+1) / 2 & \text { for } 0 \leq x<1 \\
1 & \text { for } 1 \leq x
\end{array}\right.
$$

Then $P(X=0)=F_{X}(0)-\lim _{z \rightarrow z^{-}} F_{X}(z)=1 / 2-0=1 / 2, P(X \leq 0)=F_{X}(0)=$ $1 / 2$, and $P(0<X \leq 1)=P(X \leq 1)-P(X \leq 0)=F_{X}(1)-1 / 2=1-1 / 2=1 / 2$. Since the random variable X has an uncountable space (or "range") then X is not a discrete random variable (see Definition 1.6.1). Since the cumulative density function F_{X} is not continuous then X is not a continuous random variable (see Definition 1.7.1). Therefore, the cumulative density function F_{X} is a mixture of continuous and discrete types. Since th eprobability mass function of a discrete random variable involves summation (or series) and the probability density function of a continuous random variable is an integral, then we cannot find a probability density/mass function for the random variable with cumulative density function F_{X}.

