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Section 1.9. Some Special Expectations

Note. In this section we use the expectation operator to define the mean, variance,

and moment generating function of a random variable.

Definition 1.9.1. Let X be a random variable whose expectation exists. The

mean value µ of X is defined as µ = E[X].

Definition 1.9.2. Let X be a random variable with finite mean µ and such that

E[(X − µ)2] is finite. Then the variance of X is E[(X − µ)2]. The variance is

commonly denoted σ2 on Var(X). The standard deviation of X is σ =
√

σ2 =√
E[(X − µ)2].

Note 1.9.A. We have by the linearity of E (given in Theorem 1.8.2) that

σ2 = E[(X − µ)2] = E[X2 − 2µX + µ2] = E[X2]− 2µE[X] + E[µ2]

= E[X2]− 2µ2 + µ2 = E[X2]− µ2.

Note. The variance “operator” is not linear, but we have the following result

related to a special transformation of X.

Theorem 1.9.1. Let X be a random variable with finite mean µ and finite variance

σ2. Then for all constants a and b we have Var(aX + b) = a2Var(X).
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Example. Exercise 1.9.3(a). Let X have distribution f(x) = 6x(1−x) = 6x−6x2,

0 < x < 1, zero elsewhere. Compute P (µ− 2σ < X < µ + 2σ).

Definition 1.9.3. Let X be a random variable such that for some h > 0, the

expectation of etX exists for −h < t < h. The moment generating function (or

mgf) of X is the function M(t) = E[etX ] for −h < t < h.

Note. When a moment generating function exists, we must have for t = 0 that

M(0) = E[e0X ] = E[1] = 1.

Example. Exercise 1.9.7. Show that the moment generating function of the

random variable X having the probability density function f(x) = 1/3, −1 < x < 2,

zero elsewhere, is

M(t) =

 e2t−e−t

3t for t 6= 0

1 for t = 0.

Note. The next theorem (the proof of which “is beyond the scope of this text”)

shows that a distribution that has a moment generating function M is completely

determined by M .

Theorem 1.9.2. Let X and Y be random variables with moment generating

functions MX and MY , respectively, existing in open intervals about 0. Then

FX(z) = FY (z) for all z ∈ R if and only if MX(t) = MY (t) for all t ∈ (−h, h) for

some h > 0.
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Example 1.9.A. We now illustrate Theorem 1.9.2 with a continuous example.

Suppose M(t) = 1/(1 − t), t < 1. We observe (since the book gives this informa-

tion. . . we’ll give more information below concerning this) that with f(x) = e−x,

0 < x < ∞, zero elsewhere, then∫ ∞

−∞
etxf(x) dx =

∫ ∞

0
etxf(x) dx =

∫ ∞

0
e(t−1)x dx

=
1

t− 1
e(t−1)x

∣∣∣∣∞
0

= lim
b→∞

1

t− 1
(e(t−1)b − 1) =

1

1− t
.

Since, by Theorem 1.9.2, f is uniquely determined by M then we must have f(x) =

e−x, 0 < x < ∞, zero elsewhere.

Note 1.9.B. In analysis (see Proposition IV.2.1 of my online notes for Complex

Analysis [MATH 5510] on IV.2. Power Series Representation of Analytic Func-

tions) we have that if ϕ(s, t) is continuous on [a, b] × [c, d] (and real valued for

us) and if g(t) =
∫ b

a ϕ(s, t) ds then g is continuously differentiable on [c, d] and

g′(t) =

∫ b

a

∂ϕ

∂t
(s, t) ds (this is sometimes called Liebniz’s Rule). We are interested

in differentiating M(t) =
∫∞
−∞ etxf(x) dx, so the only hypothesis we need is that

the probability density function f is continuous. We then have

M ′(t) =
d

dt

[∫ ∞

−∞
etxf(x) dx

]
=

∫ ∞

−∞

∂

∂t
[etxf(x)] dx =

∫ ∞

−∞
xetxf(x) dx;

in the discrete case, we have

M ′(t) =
d

dt
[M(t)] =

d

dt

[∑
x

etxp(x)

]
=

∑
x

xetxp(x).

With t = 0, we have M ′(0) = µ in both the discrete and continuous case. Next,

M ′′(t) =

∫ ∞

−∞
x2etxf(x) dx or M ′′(t) =

∑
x

x2etxp(x)

http://faculty.etsu.edu/gardnerr/5510/notes/IV-2.pdf
http://faculty.etsu.edu/gardnerr/5510/notes/IV-2.pdf
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so that M ′′(0) = E[X2] and

Var(X) = σ2 = E[X2]− µ2 = M ′′(0)− (M ′(0))2.

In general, for m ∈ N we have

M (m)(t) =

∫ ∞

−∞
xmetxf(x) dx or M (m)(t) =

∑
x

xmetxp(x)

so that M (m)(0) = E[Xm].

Definition. For X a random variable and m ∈ N, the mth moment of the distri-

bution (of X) is E[Xm].

Note. In mechanics, the term “moment” is used when dealing with “twisting

forces.” See my online notes for Applied Mechanics 1 (Statics) (formerly MATH

2610, but now “Statics” [CEE 2110] in the TTU-ETSU dual degree program in

engineering) 4.1. Two-Dimensional Description of the Moment, 4.2. The Moment

Vector, 4.3. Moment of a Force About a Line, Chapter 8. Moments of Inertia, my

Calculus 2 online notes on 6.6. Moments and Centers of Mass (in two dimensions),

and my Calculus 3 online notes on 15.6. Moments and Centers of Mass (in three

dimensions). The term “moment” used in the Statics and Calculus notes corre-

sponds to our use of the term when m = 1, and the use of the term “moment of

inertia” in the Statics and Calculus notes corresponds to our use of the term when

m = 2. This is the reason the term “moment” is as defined previously for us.

http://faculty.etsu.edu/gardnerr/2610/notes/Section-4-1.pdf
http://faculty.etsu.edu/gardnerr/2610/notes/Section-4-2.pdf
http://faculty.etsu.edu/gardnerr/2610/notes/Section-4-2.pdf
http://faculty.etsu.edu/gardnerr/2610/notes/Section-4-3.pdf
http://faculty.etsu.edu/gardnerr/2610/notes/Section-8-0.pdf
http://faculty.etsu.edu/gardnerr/1920/12/c6s6.pdf
http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s6.pdf
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Example 1.9.6. Let X be a continuous random variable with probability density

function f(x) =
1

π

1

x2 + 1
for x ∈ R. This is the Cauchy probability density function

introduced in Exercise 1.7.24. Let t > 0 be given. If x > 0 then by the Mean Value

Theorem applied to ex on the interval [0, tx], there is some 0 < ξ0 < tx such that

etx − 1

tx− 0
=

etx − 1

tx
= eξ0 ≥ 1.

So etx ≥ 1 + tx ≥ tx. So we have

M(t) =

∫ ∞

−∞
et 1

π

1

x2 + 1
dx ≥

∫ ∞

0
etx 1

π

1

x2 + 1
dx

≥
∫ ∞

0

1

π

tx

x2 + 1
dx = lim

b→∞

t

2π
ln(x2 + 1)b

0 = ∞.

Since t > 0 is arbitrary, the integral does not exist in an open interval of 0. So the

moment generating function of the Cauchy distribution does not exist.

Example 1.9.7. Let X have the moment generating function M(t) = et2/2, −∞ <

t < ∞. We’ll see in Chapter 3 that this is the moment generating function for the

standard normal distribution. The Maclaurin series for et2/2 is

M(t) = et2/2 =
∞∑

k=0

(t/2)k

k!
=

∞∑
k=0

t2k

2kk!
=

∞∑
`=0

M (`)(0)

`!
t`.

So we see that for ` odd, we have M (`)(0) = 0 and for ` even (say ` = 2k) we have
M (2k)(0)

(2k)!
=

1

2kk!
or M (2k)(0) =

(2k)!

2kk!
. From this we have the moments

M (2k−1)(0) = E[X2k−1] = 0 for k ∈ N,

M (2k)(0) = E[X2k] =
(2k)!

2kk!
for k ∈ N.
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Note. A function f such that
∫∞
−∞ |f(x)| dx < ∞ is said to be in L1(R). The

Fourier transform of f ∈ L1(R) is

F (f) = f̂(k) =
1√
2π

∫ ∞

−∞
e−ikxf(x) dx.

Since we consider f a probability distribution function, then
∫∞
−∞ |f(x)| dx = 1 and

so the Fourier transform of all probability density functions is defined. However,

we are interested now in the inverse Fourier transform which is defined for all

f ∈ L2(R) where

L2(R) =

{
f : R → R

∣∣∣∣∫ ∞

−∞
|f(x)|2 dx < ∞

}
.

For f ∈ L2(R), we define the Fourier transform f̂ = F{f} using functions in L1(R)

(see Definition 4.11.2 in my online notes for Applied Math 1 [MATH 5610] on 4.11.

The Fourier Transform) and we find that f̂ ∈ L2(R). We then define for f̂ ∈ L2(R),

the inverse Fourier transform F−1 as

F−1{f̂(k)} =
1√
2π

∫ ∞

−∞
eikxf̂(k) dk.

We then have that F and F−1 are one to one and onto mappings from L2(R)

to L2(R) (F and F−1 are, in fact, “Hilbert space isomorphisms” of L2(R) with

L2(R)). This is all described in some detail in my online notes for Applied Math 1

on 4.11. The Fourier Transform.

Definition. Let f be a probability density function for continuous random variable

X and suppose f ∈ L2(R). The function

ϕ(t) = M(it) = E[eitX ] =

∫ ∞

−∞
eitxf(x) dx = F−1{f}.

Then ϕ is the characteristic function of the distribution of X.

http://faculty.etsu.edu/gardnerr/Func/notes-DM1/DM1-4-11.pdf
http://faculty.etsu.edu/gardnerr/Func/notes-DM1/DM1-4-11.pdf
http://faculty.etsu.edu/gardnerr/Func/notes-DM1/DM1-4-11.pdf
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Note. In the text’s Examples 1.9.5 and 1.9.6 it is shown that not every distribution

has a moment generating function. However, Hogg, McKean, and Craig claim on

page 74 that every distribution has a characteristic function. This is a bit suspect

since F−1 is only necessarily defined for f ∈ L2(R) and all we know is that a

probability density function f is in L1(R). For example,

f(x) =


1
2

(
x−1/2

1+| lnx|

)2
if x > 0

0 if x ≤ 0

is in L1(R) (the integral is 1 so that f is a pdf) but it is not in L2(R) (see Exercise

7.2.7(b) in Royden and Fitzpatrick’s Real Analysis, 4th Edition).

Note. Hogg, McKean, and Craig also claim (page 75): “Every distribution has

a unique characteristic function; and to each characteristic function there corre-

sponds a unique distribution of probability.” Since F and F−1 are Hilbert space

isomorphisms of L2(R) with itself, then this is true for f and f̂ in L2(R). . . but for

f or f̂ in L1(R)? In Robert B. Ash’s (with contributions from Catherine Doleans-

Dade) Probability and Measure Theory, 2nd Edition (Academic Press, 2000), the

following definition is given.

Definition 7.1.1 of Ash. Let µ be a finite measure on the real Borel

sets. The characteristic function of µ is the mapping from R to C given

by h(u) =
∫

R eiux dµ(x) where u ∈ R. Thus h is the Fourier transform

of µ. If F is a distribution function corresponding to µ (in which case

we write h(u) =
∫

R eiux dF (x)) then h is the characteristic function of

distribution F , or the characteristic function of random variable X if

X has distribution function F .
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A “finite measure” is a measure for which the universal set (the real numbers, here)

has finite measure. So Ash’s rigorous presentation of probability also imposes a kind

of boundedness. We move on, a bit concerned about the existence of characteristic

functions. However, in this class we’ll encounter characteristic functions one more

time, in Section 5.3. Central Limit Theorem when we give a partial proof of the

Central Limit Theorem using moment generating functions (which we have seen

do not always exist for a given distribution) and refer to a more advanced course

for a proof of the Central Limit Theorem based on characteristic functions (which

always exist. . . we suppose!). The “more advanced course” would be a measure

theory based probability class, such as one based on Ash’s Probability and Measure

Theory.

Note. As a final comment, we explain why we chose f(x) = e−x in Example 1.9.A

when considering the equation

1

1− t
= E[etX ] =

∫ ∞

−∞
etxf(x) dx, t < 1.

The Laplace transform of f is

L {f(t)} =

∫ ∞

0
e−stf(s) ds.

See my online notes on “A Second Course in Differential Equations” (not an official

ETSU class, but possibly corresponding to some of the material covered in Intro-

duction to Applied Math [MATH 4027/5027]) on 6.1. Definition of the Laplace

Transform. So to find f in
∫∞
−∞ etxf(x) dx, where t < 1 and f(x) = 0 for x ≤ 0,

we need to find f such that L {f(t)} =
∫∞

0 e−txf(x) dx, t > −1. That is (in our

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-5-3.pdf
http://faculty.etsu.edu/gardnerr/Differential-Equations/DE-BoyceDiprima5-notes/BoyceDiPrima5-6-1.pdf
http://faculty.etsu.edu/gardnerr/Differential-Equations/DE-BoyceDiprima5-notes/BoyceDiPrima5-6-1.pdf
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example) we need

f(t) = L −1
{∫ ∞

0
e−txf(x) dx

}
= L −1

{
1

1− (−t)

}
= L −1

{
1

1 + t

}
.

From the theory of Laplace transforms, we have L −1
{

1

1 + t

}
= e−t (see Example

Page 289 Number 12 in my online notes on 6.2. Solutions of Initial Value Problems).

This is where the choice of f(x) = e−x comes from in Example 1.9.A.
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http://faculty.etsu.edu/gardnerr/Differential-Equations/DE-BoyceDiprima5-notes/BoyceDiPrima5-6-1.pdf

