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Section 1.9. Some Special Expectations

Note. In this section we use the expectation operator to define the mean, variance,

and moment generating function of a random variable.

Definition 1.9.1. Let X be a random variable whose expectation exists. The

mean value p of X is defined as p = FE[X].

Definition 1.9.2. Let X be a random variable with finite mean p and such that
E[(X — p)?] is finite. Then the wariance of X is E[(X — p)?]. The variance is
commonly denoted o2 on Var(X). The standard deviation of X is 0 = Vo? =

VEIX — 7]

Note 1.9.A. We have by the linearity of F (given in Theorem 1.8.2) that
0% = B[(X — p)’] = BIX? = 2uX + ] = E[X?] — 2uB[X] + E[)’]

= E[X?] — 20° + p* = E[X?] — .

Note. The variance “operator” is not linear, but we have the following result

related to a special transformation of X.

Theorem 1.9.1. Let X be a random variable with finite mean p and finite variance

o?. Then for all constants @ and b we have Var(aX + b) = a*Var(X).
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Example. Exercise 1.9.3(a). Let X have distribution f(x) = 6z(1—2) = 6z — 622,

0 < x < 1, zero elsewhere. Compute P(u — 20 < X < pu+ 20).

Definition 1.9.3. Let X be a random variable such that for some A > 0, the
expectation of e exists for —h < t < h. The moment generating function (or

mgf) of X is the function M(t) = E[e"X] for —h <t < h.

Note. When a moment generating function exists, we must have for ¢ = 0 that

M(0) = E[e"X] = E[1] = 1.

Example. Exercise 1.9.7. Show that the moment generating function of the
random variable X having the probability density function f(z) =1/3, -1 < z < 2,

zero elsewhere, is
2t t

M (1) = = for t # 0
1 for t = 0.

Note. The next theorem (the proof of which “is beyond the scope of this text”)
shows that a distribution that has a moment generating function M is completely

determined by M.

Theorem 1.9.2. Let X and Y be random variables with moment generating
functions Mx and My, respectively, existing in open intervals about 0. Then
Fx(z) = Fy(z) for all z € R if and only if Mx(t) = My(t) for all t € (—h,h) for

some h > 0.
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Example 1.9.A. We now illustrate Theorem 1.9.2 with a continuous example.
Suppose M (t) = 1/(1 —t), t < 1. We observe (since the book gives this informa-

tion...we’ll give more information below concerning this) that with f(z) = e %,

0 < x < 00, zero elsewhere, then

/:: e f(z) dz = /OOO ¢ () da = /OOO ey

1 > 1 1
_ (t-De|  _ y; (Db _ 1y —
¢ 0 im (e ) T

b—oot — 1
Since, by Theorem 1.9.2, f is uniquely determined by M then we must have f(z) =

e’ 0 < x < oo, zero elsewhere.

Note 1.9.B. In analysis (see Proposition IV.2.1 of my online notes for Complex
Analysis [MATH 5510] on IV.2. Power Series Representation of Analytic Func-
tions) we have that if ¢(s,t) is continuous on [a,b] X [¢,d] (and real valued for
us) and if g(t) = fab ©(s,t)ds then ¢ is continuously differentiable on [c, d] and
gt) = / b g—f(s,t) ds (this is sometimes called Liebniz’s Rule). We are interested
in diﬂ?ereiltiating M(t) = [ e f(z)dz, so the only hypothesis we need is that

the probability density function f is continuous. We then have

M'(t) = % [/OO e f(x) dx] = /Z%[emf(x)] dx = /Oo ze' f(x) dx;

(0. 9] (0. 9]

in the discrete case, we have

d d . .
M) = ) = o [Z ¢ p<x>] = 3 wetpl).
With ¢ = 0, we have M’(0) = 1 in both the discrete and continuous case. Next,

M"(t) = /_Oo z?e f(x) dx or M"(t) = ZxQGtxp(x)

(0.9]


http://faculty.etsu.edu/gardnerr/5510/notes/IV-2.pdf
http://faculty.etsu.edu/gardnerr/5510/notes/IV-2.pdf
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so that M”(0) = E[X?] and
Var(X) = o? = E[X?] — u2 = M"(0) — (M'(0))>.

In general, for m € N we have

oo

M™(t) = /OO ame f(x) da or MU™(t) = Z e p(x)

so that M) (0) = E[X™].

Definition. For X a random variable and m € N, the mth moment of the distri-

bution (of X) is E[X™].

Note. In mechanics, the term “moment” is used when dealing with “twisting
forces.” See my online notes for Applied Mechanics 1 (Statics) (formerly MATH
2610, but now “Statics” [CEE 2110] in the TTU-ETSU dual degree program in
engineering) 4.1. Two-Dimensional Description of the Moment, 4.2. The Moment
Vector, 4.3. Moment of a Force About a Line, Chapter 8. Moments of Inertia, my
Calculus 2 online notes on 6.6. Moments and Centers of Mass (in two dimensions),
and my Calculus 3 online notes on 15.6. Moments and Centers of Mass (in three
dimensions). The term “moment” used in the Statics and Calculus notes corre-
sponds to our use of the term when m = 1, and the use of the term “moment of
inertia” in the Statics and Calculus notes corresponds to our use of the term when

m = 2. This is the reason the term “moment” is as defined previously for us.


http://faculty.etsu.edu/gardnerr/2610/notes/Section-4-1.pdf
http://faculty.etsu.edu/gardnerr/2610/notes/Section-4-2.pdf
http://faculty.etsu.edu/gardnerr/2610/notes/Section-4-2.pdf
http://faculty.etsu.edu/gardnerr/2610/notes/Section-4-3.pdf
http://faculty.etsu.edu/gardnerr/2610/notes/Section-8-0.pdf
http://faculty.etsu.edu/gardnerr/1920/12/c6s6.pdf
http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s6.pdf
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Example 1.9.6. Let X be a continuous random variable with probability density
1 1

a2+ 1
introduced in Exercise 1.7.24. Let t > 0 be given. If x > 0 then by the Mean Value

function f(z) =

for € R. This is the Cauchy probability density function

Theorem applied to e” on the interval [0, tz], there is some 0 < &, < tz such that

etac_l etm_l

tr — 0 tx

= ¢%0 > 1.
So et > 1+ tx > tx. So we have

< 1 1 1 1
M(t) = / el = dx > / el = dx
- 0

1 tx .t 5 b
> || Syt g e+ = oo

Since t > 0 is arbitrary, the integral does not exist in an open interval of 0. So the

moment generating function of the Cauchy distribution does not exist.

Example 1.9.7. Let X have the moment generating function M (t) = e''/?, —o0 <
t < o0o. We'll see in Chapter 3 that this is the moment generating function for the

standard normal distribution. The Maclaurin series for e!'/2 is

e N2 EMO©),
MO =P =) S =g
k=0 k=0 /=0

So we see that for £ odd, we have M) (0) = 0 and for £ even (say ¢ = 2k) we have
MR)(0) 1

2k)!
(2k)! — ok M®R(0) (2F) From this we have the moments

T OoREl

M=) = E[X®1] =0 for k € N,

!
M) (0) = B[ X% = % for k € N.
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Note. A function f such that [7_|f(z)]dz < oo is said to be in L'(R). The

Fourier transform of f € L!(R) is

fzkx d.CU

F(f) = f(k m/

Since we consider f a probability distribution function, then [*_|f(z)|dz =1 and
so the Fourier transform of all probability density functions is defined. However,

we are interested now in the inverse Fourier transform which is defined for all

f € L*(R) where

L*(R) = { RHR‘/ dx<oo}

For f € L2(R), we define the Fourier transform f = .Z{f} using functions in L' (R)
(see Definition 4.11.2 in my online notes for Applied Math 1 [MATH 5610] on 4.11.
The Fourier Transform) and we find that f € L2(R). We then define for f € L3(R),

the inverse Fourier transform .Z ! as

A

—1{f( zkxf

v ).

We then have that .# and .# ! are one to one and onto mappings from L?(R)
to L*(R) (% and .Z ! are, in fact, “Hilbert space isomorphisms” of L?(R) with
L?(R)). This is all described in some detail in my online notes for Applied Math 1

on 4.11. The Fourier Transform.

Definition. Let f be a probability density function for continuous random variable

X and suppose f € L*(R). The function

o0

o) = M(it) = Ele™) = [ e fa)do = F71(f),

e.¢]

Then ¢ is the characteristic function of the distribution of X.


http://faculty.etsu.edu/gardnerr/Func/notes-DM1/DM1-4-11.pdf
http://faculty.etsu.edu/gardnerr/Func/notes-DM1/DM1-4-11.pdf
http://faculty.etsu.edu/gardnerr/Func/notes-DM1/DM1-4-11.pdf
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Note. In the text’s Examples 1.9.5 and 1.9.6 it is shown that not every distribution
has a moment generating function. However, Hogg, McKean, and Craig claim on
page 74 that every distribution has a characteristic function. This is a bit suspect
since ! is only necessarily defined for f € L?*(R) and all we know is that a

probability density function f is in L*(R). For example,

2
1 x~1/2 :
2 <1+lnx|) if 2 >0

f(z) =
0 if £ <0

is in L}(R) (the integral is 1 so that f is a pdf) but it is not in L?(R) (see Exercise
7.2.7(b) in Royden and Fitzpatrick’s Real Analysis, 4th Edition).

Note. Hogg, McKean, and Craig also claim (page 75): “Every distribution has
a unique characteristic function; and to each characteristic function there corre-
sponds a unique distribution of probability.” Since .# and .# ! are Hilbert space
isomorphisms of L*(R) with itself, then this is true for f and fin L3(R)...but for
for fin LY(R)? In Robert B. Ash’s (with contributions from Catherine Doleans-
Dade) Probability and Measure Theory, 2nd Edition (Academic Press, 2000), the
following definition is given.

Definition 7.1.1 of Ash. Let u be a finite measure on the real Borel

sets. The characteristic function of u is the mapping from R to C given

by h(u) = [ €™ du(x) where u € R. Thus h is the Fourier transform

of p. If F'is a distribution function corresponding to p (in which case

we write h(u) = [p " dF(x)) then h is the characteristic function of

distribution F', or the characteristic function of random variable X if

X has distribution function F'.
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A “finite measure” is a measure for which the universal set (the real numbers, here)
has finite measure. So Ash’s rigorous presentation of probability also imposes a kind
of boundedness. We move on, a bit concerned about the existence of characteristic
functions. However, in this class we’ll encounter characteristic functions one more
time, in Section 5.3. Central Limit Theorem when we give a partial proof of the
Central Limit Theorem using moment generating functions (which we have seen
do not always exist for a given distribution) and refer to a more advanced course
for a proof of the Central Limit Theorem based on characteristic functions (which
always exist...we suppose!). The “more advanced course” would be a measure
theory based probability class, such as one based on Ash’s Probability and Measure
Theory.

Note. As a final comment, we explain why we chose f(z) = e™* in Example 1.9.A

when considering the equation

17— Ele'¥] :/ e f(x)dw, t < 1.

The Laplace transform of f is

25(1)) = / e (s) ds

See my online notes on “A Second Course in Differential Equations” (not an official
ETSU class, but possibly corresponding to some of the material covered in Intro-
duction to Applied Math [MATH 4027/5027]) on 6.1. Definition of the Laplace
Transform. So to find f in [ e" f(x)dx, where t < 1 and f(z) = 0 for z < 0,
we need to find f such that ZL{f(¢)} = [, e f(x)dz, t > —1. That is (in our


https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-5-3.pdf
http://faculty.etsu.edu/gardnerr/Differential-Equations/DE-BoyceDiprima5-notes/BoyceDiPrima5-6-1.pdf
http://faculty.etsu.edu/gardnerr/Differential-Equations/DE-BoyceDiprima5-notes/BoyceDiPrima5-6-1.pdf
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example) we need

£() = 2! {/OOO e~ f(2) d:z:} _ g {1_;(_&} _ g {%H} |

1

1+t
Page 289 Number 12 in my online notes on 6.2. Solutions of Initial Value Problems).

From the theory of Laplace transforms, we have £} { } = ¢~ (see Example

This is where the choice of f(x) = e ™ comes from in Example 1.9.A.

Revised: 7/2/2021


http://faculty.etsu.edu/gardnerr/Differential-Equations/DE-BoyceDiprima5-notes/BoyceDiPrima5-6-1.pdf

