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Section 2.2. Transformations: Bivariate

Random Variables

Note. We now consider transformations of random vectors, say Y = g(X1, X2). We

desire to find the cumulative distribution function of Y . We give several examples,

but state no new theorems.

Note. In the discrete case, let pX1,X2
(xx, x2) be the joint probability mass function

of discrete random vector (X1, X2) with support S. Let y1 = u1(x1, x2) and y2 =

u2(x1, x2) define a one-to-one transformation that map S onto some set T ⊂ R2.

Since U : S → T , where U(x1, x2) = (y1, y2) = (u1(x1, x2), u2(x1, x2)), is one-

to-one then there is an inverse U−1 : T → S where U−1(y1, y2) = (x1, x2) =

(w1(y1, y2), w2(y1, y2)). The joint probability mass function of (Y1, Y2) is

pY1,Y2
(y1, y2) =

 pX1,X2
(w1(y1, y2), w2(y1, y2)) for (y1, y2) ∈ T

0 elsewhere.

Example 2.2.1. In a large city, there are two strains of flu, strain A and strain

B. For a given week, let X1 and X2 be the respective number of reported cases of

strains A and B with the joint probability mass function

pX1,X2
(x1, x2) =

µx1
1 µx2

2 e−µ1e−µ2

x1!x2!
for x1 = 0, 1, 2, . . . , x2 = 0, 1, 2, , . . .

and 0 elsewhere (here, µ1 and µ2 are some positive real numbers). Now

E[X1] =
∞∑

x1=0

∞∑
x2=0

x1pX1,X2
(x1, x2) =

∞∑
x1=0

∞∑
x2=0

x1
µx2

1 µx2
2 e−µ1e−µ2

x1!x2!

= e−µ1e−µ2

( ∞∑
x1=0

x1
µx1

2

x1!

)( ∞∑
x2=0

µx2
2

x2!

)



2.2. Transformations: Bivariate Random Variables 2

= e−µ1e−µ2

( ∞∑
x1=1

x1
µx1

1

x1!

)
eµ
2

= e−µ1

( ∞∑
x1=0

x1
µx1+1

1

(x1 + 1)!

)
= e−µ1

( ∞∑
x1=0

µ1
µx1

1

x1!

)
= e−µ1µ1e

µ1 = µ1.

Similarly E[X2] = µ2. We are interested in the random variable Y1 = X1 + X2

(the total number of cases of strain A and strain B flue combined in a week). We

have by Theorem 2.1.1 that E[Y1] = E[X1 + X2] = E[X1] + E[X2] = µ1 + µ2. To

illustrate the above note, we need a second random variable Y2. We take Y2 = X2.

Then we have y1 = u1(x1, x2) = x1 + x2 and y2 = u2(x1, x2) = x2 and this is a

one-to-one mapping of S to T = {(y1, y2) | y1 = 0, 1, 2, . . . , y2 = 0, 1, 2 . . .} with

inverse x1 = w1(y1, y2) = y1 − y2 and x2 = w2(y1, y2) = y1. So the joint probability

mass function of Y1 and Y2 is

pY1,Y2
(y1, y2) = pX1,X2

(w1(y1, y2), w2(y1, y2)) =
µy1−y2

1 µy2

2 e−µ1eµ2

(y1 − y2)!y2!

for y1 = 0, 1, 2, . . ., y2 = 0, 1, 2, . . . and 0 elsewhere. The marginal probability mass

function of Y1 is then

pY1
(y1) =

y1∑
y2=0

pY1,Y2
(y1, y2) (notice for given y1 that y2 can be

0, 1, 2, . . . , y1 since x1 = y1 − y2)

=

y1∑
y2=0

µy1−y2

1 µy2

2 e−µ1e−µ2

(y1 − y2)!y2!

=
e−µ1−µ2

y1!

y1∑
y2=0

y1!

(y1 − y2)!y2!
µy1−y2

1 µy2

2

=
e−µ1−µ2

y1!
(µ1 + µ2)

y1 by the Binomial Theorem.
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Example 2.2.2. Consider an experiment where a point (X1, X2) is chosen at

random from the unit square S = {(x1, x2) | 0 < x1 < 1, 0 < x2 < 1} according to

the uniform probability density function

fX1,X2
(x1, x2) =

 1 if 0 < x1 < 1, 0 < x2 < 1

0 elsewhere.

With Z = X1 + X2 we have the cumulative distribution function of Z of (see the

figures below)

FZ(z) = P (X1 + X2 ≤ z) =



0 for z < 0∫ z

0

∫ x2=z−x1

x2=0 dx2 dx1 for 1 ≤ z < 2

1−
∫ 1

z−1

∫ x2=1
x2=z−x1

dx2 dx1 for 1 ≤ z < 2

1 for 2 ≤ z

=



0 for z < 0

z2/2 for 0 ≤ z < 1

1− (2− z)2/2 for 1 ≤ z < 2

1 for 2 ≤ z.



2.2. Transformations: Bivariate Random Variables 4

Since F ′
Z exists for all z, the probability density function for Z is

fZ(z) =


z for 0 ≤ z < 1

2− z for 1 ≤ z < 2

0 elsewhere.

Note. In using the probability density function fX1,X2
to calculate probabilities of

events such as {(x1, x)2 | (x1, x2) ∈ A} for A ⊂ S, we need to explore substitution in

double integrals. Just as there is a “du” term when we change variables in integrals

of a single variable function, there is a corresponding term in double integrals.

The following discussion is based on my Calculus 3 (MATH 2110) notes on 15.8.

Substitution in Multiple Integrals. Suppose G is a region in the uv-plane that is

transformed onto a region R in the xy-plane that is transformed onto a region R

in the xy-plane by the equations x = g(u, v) and y = h(u, v). For function f(x, y)

defined on R, we can interpret f as a function of u and v as f(g(u, v), h(u, v)) on

G. So we want to relate the double integrals∫∫
R

f(x, y) dxdy and

∫∫
G

f(g(u, v), h(u, v)) du dv.

But the second integral does not contain the “du” term in it entirety. We see in

Calculus 3 that∫∫
R

f(x, y) dx dy =

∫∫
G

f(g(u, v), h(u, v))|J(u, v)| du dv

(the term “|J(u, v)|” represents the absolute value of J(u, v)) where J(u, v) is the

Jacobian defined as

J(u, v) =
∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣ ∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣∣ =
∂u

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
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For this to hold, we need g, h, and f to have continuous partial derivatives and

J(u, v) to be 0 only at isolated points. I we relate rectangular coordinates (x, y) to

polar coordinates (u, v) = (r, θ) as x = r cos θ and y = r sin θ then we have

J(u, v) = J(r, θ) =

∣∣∣∣∣∣
∂[r cos θ]

∂r
∂[r cos θ]

∂θ

∂[r sin θ]
∂r

∂[r sin θ]
∂θ

∣∣∣∣∣∣ = (cos θ)(r cos θ)− (−r sin θ)(sin θ) = r

and so ∫∫
R

f(x, y) dx dy =

∫∫
G

f(r cos θ, r sin θ)r dr dθ

where G is a representation of R in polar coordinates. Notice that this is consistent

with the double integral of a function in polar coordinates, as seen in Calculus 3

(see 15.4. Double Integrals in Polar Form).

Note. Let (X1, X2) have continuous joint probability density function fX1,X2
(x1, x2)

and support S. Let (Y1, Y2) = T (X1, X2) = (u1(X1, X2), u2(X1, X2)) where T is a

one-to-one transformation with continuous partial derivatives of components. Since

T is one-to-one, the inverse T−1 exists, say T−1(y1, y2) = (w1(y1, y2), w2(y1, y2)) =

(x1, x2). Then the Jacobian of T is

J =

∣∣∣∣∣∣ ∂x1/∂y1 ∂x1/∂y2

∂x2/∂y1 ∂x2/∂y2

∣∣∣∣∣∣ =
∂x1

∂y1

∂x2

∂y2
− ∂x1

∂y2

∂x2

∂y1
.

Let B be any (“nice”) subset of T and let A = T−1(B). Then, since T is one-to-one,

P ((X1, X2) ∈ A) = P (T (X1, X2) ∈ T (A)) = P ((Y1, Y2) ∈ B). So

P ((X1, X2) ∈ A) =

∫∫
A

fX1,X2
(x1, x2) dx1 dx2

=

∫∫
T (A)

fX1,X2
(x1, x2)(T

−1(y1, y2))|J | dy1 dy2

http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s4.pdf
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=

∫∫
B

fX1,X2
(w1(y1, y2), w2(y1, y2))|J | dy1 dy2.

Since we can take B = T , then the integrand here must be the probability density

function of (Y1, Y2):

fY1,Y2
(y1, y2) =

 fX1,X2
(w1(y1, y2), w2(y1, y2))|J | for (y1, y2) ∈ T

0 elsewhere.

Example 2.2.5. Let continuous random vector (X1, X2) have the joint probability

density function

fX1,X2
(x1, x2) =

 10x1x
2
2 for 0 < x1 < x2 < 1

0 elsewhere.

Let Y1 = X1/X2 and Y2 = X2. So y1 = u1(x1, x2) = x1/x2 and y2 = u2(x1, x2) =

x2. Notice that the transformation mapping (x1, x2) 7→ (y1, y2) is one-to-one and

the inverse transformation has components x1 = w1(y1, y2) = y1y2 and x + 2 =

w2(y1, y2) = y2. So the Jacobian is

J =

∣∣∣∣∣∣ ∂x1/∂y1 ∂x1/∂y2

∂x2/∂y1 ∂x2/∂y2

∣∣∣∣∣∣ =

∣∣∣∣∣∣ y2 y1

0 1

∣∣∣∣∣∣ = y2.

The support S of (x1, x2) is 0 < x1 < x2 < 1 and this corresponds to the support

T of (Y1, Y2) of 0 < y1y2 < y2 < 1, or 0 < y1 < 1 and 0 < y2 < 1. So the joint

probability density function of (Y1, Y2) is

fY1,Y2
(y1, y2) = fX1,X2

(w1(y1, y2), w2(y1, y2))|J | for (y1, y2) ∈ T

= 10(y1y2)(y2)
2|y2| = 10y1y

4
2 for (y1, y2) ∈ T .
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Note. We can also use moment generating functions to find distributions. We

illustrate this technique by finding a moment generating function and then rec-

ognizing it as the moment generating function of some known distribution—this

works because the moment generating function uniquely determines the cumula-

tive distribution function (see Theorem 1.9.2, the note in these class notes following

Definition 2.1.2, and the comment on page 96 following Definition 2.1.2).

Example 2.2.7. Let continuous random vector (X1, X2) have joint probability

density function

fX1,X2
(x1, x2) =

 1
4 exp

(
−x1+x2

2

)
for 0 < x1 < ∞, 0 < x2 < ∞

0 elsewhere.

Define Y = 1
2(X1 −X2). The moment generating function of Y is

E[etY ] =

∫ ∞

−∞

∫ ∞

−∞
g(x1, x2)fX1,X2

(x1, x2) dx1 dx2

=

∫ ∞

0

∫ ∞

0
et(x1−x2)/21

4
e−(x1+x2)/2 dx1 dx2

=

∫ ∞

0

1

2
e−x1(1−t)/2 dx1

∫ ∞

0

1

2
e−x2(1+t)/2 dx2

=

(
1

2

−2

1− t
e−x1(1−t)/2

)∣∣∣∣∞
0

(
1

2

−2

1 + t
e−x2(t−1)/2

)∣∣∣∣∞
0

=
1

1− t

1

1 + t
=

1

1− t2

if 1− t > 0 and 1 + t > 0, or if −1 < t < 1. But by Exercise 1.9.20, we have that

1/(1 − t2) is the moment generating function of the probability density function

f(x) = 1
2e
−|x|, −∞ < x < ∞ (called the Laplace distribution). So the probability

density function of Y is also fY (y) = 1
2e
−|y|, −∞ < y < ∞.
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