Section 2.3. Conditional Distributions and Expectations

Note. We now consider conditional distributions in which a random variable is assumed to assume a specific value (in the support of that random variable) and then the distribution of a second random variable is defined by taking into consideration of the value of the first ransom variable. This generalizes the conditional concept introduced in 1.4. Conditional Probability and Independence.

Note 2.3.A/Definition. Let X_{1} and X_{2} be discrete random variables with joint probability mass function $p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ and support \mathcal{S}. Let $p_{X_{1}}\left(x_{1}\right)$ and $p_{X_{2}}\left(x_{2}\right)$ be the marginal probability mass functions of X_{1} and X_{2} as defined in Section 2.1. For x_{1} in the support $\mathcal{S}_{X_{1}}$ of $p_{X_{1}}$, we have by the definition of conditional probability (Definition 1.4.1) that

$$
P\left(X_{1}=x_{2} \mid X_{1}=x_{1}\right)=\frac{P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}{P\left(X_{1}=x_{1}\right)}=\frac{p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)}
$$

for all x_{2} in the support $\mathcal{S}_{X_{2}}$ of X_{2}. Denote this function as

$$
p_{X_{1} \mid X_{2}}\left(x_{2} \mid x_{1}\right)=\frac{p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)} \text { for } x_{2} \in \mathcal{S}_{X_{2}} .
$$

Notice that $p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \geq 0$ for all $x_{2} \in X_{2}$ and

$$
\begin{gathered}
\sum_{x_{2} \in X_{2}} p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\sum_{x_{2} \in X_{2}} \frac{p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)}=\frac{1}{p_{X_{1}}\left(x_{1}\right)} \sum_{x_{2} \in X_{2}} p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \\
=\frac{1}{p_{X_{1}}\left(x_{1}\right)} p_{X_{1}}\left(x_{2}\right)=1
\end{gathered}
$$

so $p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)$ is in fact a probability mass function called the conditional probability mass function of X_{2} given $X_{1}=x_{1}$. We similarly define for $x_{2} \in \mathcal{S}_{X_{2}}$

$$
p_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{p_{X_{2}}\left(x_{2}\right)} \text { for all } x_{1} \in \mathcal{S}_{X_{1}} .
$$

We may denote these functions as

$$
p_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=p_{1 \mid 2}\left(x_{1} \mid x_{2}\right) \text { and } p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=p_{2 \mid 1}\left(x_{2}, x_{1}\right) .
$$

Note/Definition. Let X_{1} and X_{2} be continuous random variables with joint probability density function $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ and support \mathcal{S}. Let $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$ be the marginal probability density functions as defined in Section 2.1. Motivated by the discrete case above, for $x_{\in} X_{1}$ with $x_{X_{1}}\left(x_{1}\right)>0$ define

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)} .
$$

We have $f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)$ nonnegative and

$$
\begin{gathered}
\int_{-\infty}^{\infty} f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\int_{-\infty}^{\infty} \frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)} d x_{2}=\frac{1}{f_{X_{1}}\left(x_{1}\right)} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} \\
=\frac{1}{f_{X_{1}}\left(x_{1}\right)} f_{X_{1}}\left(x_{1}\right)=1
\end{gathered}
$$

so $f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{2}\right)$ is in fact a probability density function called the conditional probability density function of X_{2} given $X_{1}=x_{1}$. Similarly, for $x_{2} \in X_{2}$ with $f\left(x_{2}\right)>0$ we have

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=f_{1 \mid 2}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)} .
$$

Note. The conditional probability that $a<X_{2}<b$ given $X_{1}=x_{1}$ is computed as

$$
P\left(a<X_{2}<b \mid X_{1}=x_{1}\right)=P\left(a<X_{2}<b \mid x_{1}\right)=\int_{a}^{b} f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) d x_{2}
$$

Definition. If $u\left(X_{2}\right)$ is a function of random variable X_{2} then the conditional expectation of $u\left(X_{2}\right)$ given $X_{1}=x_{1}$ (if it exists) is

$$
E\left[u\left(X_{2}\right) \mid X_{1}=x_{1}\right]=E\left[u\left(X_{2}\right) \mid x_{1}\right]=\int_{-\infty}^{\infty} u\left(x_{2}\right) f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) d x_{2}
$$

If it exists then $E\left[X_{2} \mid x_{1}\right]$ is the conditional mean of the conditional distribution of X_{2} given $X_{1}=x_{1}$. It it exists then $E\left[\left(x_{2}-E\left[X_{2} \mid x_{1}\right]\right)^{2} \mid x_{1}\right]=\operatorname{Var}\left(X_{2} \mid x_{1}\right)$ is the conditional variance of the conditional distribution of X_{2} given $X_{1}=x_{1}$. We can similarly define these quantities for X_{1} given $X_{2}=x_{2}$.

Example 2.3.1. Let X_{1} and X_{2} be continuous random variables with joint probability density function

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}2 & \text { for } 0<x_{1}<x_{2}<1 \\ 0 & \text { elsewhere }\end{cases}
$$

The support of $f\left(x_{1}, x_{2}\right)$ is:

The marginal probability density functions are

$$
\begin{gathered}
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2}=\int_{x_{2}=x_{1}}^{x_{2}=1} d d x_{2}=2\left(1-x_{1}\right) \text { for } 0<x_{1}<1, \\
f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1}=\int_{x_{1}=0}^{x_{1}=x_{2}} 2 d x_{1}=2 x_{2} \text { for } 0<x_{2}<1
\end{gathered}
$$

and each is 0 elsewhere. The conditional probability density function of X_{1} given $X_{2}=x_{2}$ for $0<x_{2}<1$ is

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}=\frac{2}{2 x_{2}}=\frac{1}{x_{2}} .
$$

The conditional mean of X_{1} given $X_{2}=x_{2}$ is

$$
\begin{gathered}
E\left[X_{1} \mid x_{2}\right]=\int_{-\infty}^{\infty} x_{1} f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) d x_{1}=\int_{0}^{x_{2}} x_{1} \frac{1}{x_{2}} d x_{1} \\
=\frac{1}{x_{2}}\left(\frac{1}{2}\left(x_{2}\right)^{2}-\frac{1}{2}(0)^{2}\right)=\frac{x_{2}}{2} \text { for } 0<x_{2}<1,
\end{gathered}
$$

so the conditional variance of X_{1} given X_{2} is

$$
\begin{gathered}
\operatorname{Var}\left(X_{1} \mid x_{2}\right)=E\left[\left(X_{1}-E\left[X_{1} \mid x_{1}\right]\right)^{2}\right]=\int_{-\infty}^{\infty}\left(x_{1}-\frac{x_{2}}{2}\right)^{2} f_{X_{1}, X_{2}}\left(x_{1} \mid x_{2}\right) d x_{1} \\
=\int_{0}^{x_{1}}\left(x_{1}-\frac{x_{2}}{2}\right)^{2}\left(\frac{1}{x_{2}}\right) d x_{1}=\int_{0}^{x_{2}} \frac{x_{1}^{2}-x_{1} x_{2}+x_{2}^{2} / 4}{x_{2}} d x_{1} \\
=\frac{1}{x_{2}}\left(\frac{1}{3} x_{2}^{3}-\frac{1}{2} x_{2}^{3}+\frac{1}{4} x_{2}^{3}\right)=\frac{x_{2}^{2}}{12} \text { for } 0<x_{2}<1 .
\end{gathered}
$$

Also,

$$
\begin{gathered}
P\left(\left.0<X_{1}<\frac{1}{2} \right\rvert\, X_{2}=\frac{3}{4}\right)=\int_{0}^{1 / 2} f_{X_{1}, X_{2}}\left(x_{1} \left\lvert\, \frac{3}{4}\right.\right) d x_{1} \\
=\int_{0}^{1 / 2} \frac{1}{3 / 4} d x_{1}=\frac{4}{3}\left(\frac{1}{2}-0\right)=\frac{2}{3} .
\end{gathered}
$$

(We can use the marginal distribution $f_{X_{1}}\left(x_{1}\right)$ to find that $P\left(0<X_{1}<1 / 2\right)=3 / 4$, so the value of X_{2} affects probabilities of the value of X_{1}.)

Note. In the previous example, we have $P\left(X_{2}=3 / 4\right)=0$ since X_{2} is a continuous, so in computing $P\left(0<X_{1}<1 / 2 \mid X_{2}=3 / 4\right)$ we have conditioned on a probability 0 event, and yet the conditional probability is still defined!

Theorem 2.3.1. Let $\left(X_{1}, X_{2}\right)$ be a random vector such that the variance of X_{2} is finite. Then
(a) $E\left[E\left[X_{2} \mid X_{1}\right]\right]=E\left[X_{2}\right]$, and
(b) $\operatorname{Var}\left(\left[E\left[X_{2} \mid X_{1}\right]\right) \leq \operatorname{Var}\left(X_{2}\right)\right.$.

Note. The book comments (see page 115) that, since the mean of both X_{2} and $E\left[X_{2} \mid X_{1}\right]$ is μ_{2}, if we wish to approximate μ_{2} then because $\operatorname{Var}\left(X_{2}\right) \geq \operatorname{Var}\left(E\left[X_{2} \mid\right.\right.$ $\left.\left.X_{1}\right]\right)$ then we can put more "reliance" on estimates of $E\left[X_{1} \mid X_{2}\right]$ to guess the unknown μ_{2}.

