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Section 2.3. Conditional Distributions and Expectations

Note. We now consider conditional distributions in which a random variable is

assumed to assume a specific value (in the support of that random variable) and

then the distribution of a second random variable is defined by taking into consid-

eration of the value of the first ransom variable. This generalizes the conditional

concept introduced in 1.4. Conditional Probability and Independence.

Note 2.3.A/Definition. Let X1 and X2 be discrete random variables with joint

probability mass function pX1,X2
(x1, x2) and support S. Let pX1

(x1) and pX2
(x2) be

the marginal probability mass functions of X1 and X2 as defined in Section 2.1. For

x1 in the support SX1
of pX1

, we have by the definition of conditional probability

(Definition 1.4.1) that

P (X1 = x2 | X1 = x1) =
P (X1 = x1, X2 = x2)

P (X1 = x1)
=

pX1,X2
(x1, x2)

pX1
(x1)

for all x2 in the support SX2
of X2. Denote this function as

pX1|X2
(x2 | x1) =

pX1,X2
(x1, x2)

pX1
(x1)

for x2 ∈ SX2
.

Notice that pX2|X1
(x2 | x1) ≥ 0 for all x2 ∈ X2 and∑

x2∈X2

pX2|X1
(x2 | x1) =

∑
x2∈X2

pX1,X2
(x1, x2)

pX1
(x1)

=
1

pX1
(x1)

∑
x2∈X2

pX1,X2
(x1, x2)

=
1

pX1
(x1)

pX1
(x2) = 1,

so pX2|X1
(x2 | x1) is in fact a probability mass function called the conditional prob-

ability mass function of X2 given X1 = x1. We similarly define for x2 ∈ SX2

pX1|X2
(x1 | x2) =

pX1,X2
(x1, x2)

pX2
(x2)

for all x1 ∈ SX1
.
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We may denote these functions as

pX1|X2
(x1 | x2) = p1|2(x1 | x2) and pX2|X1

(x2 | x1) = p2|1(x2, x1).

Note/Definition. Let X1 and X2 be continuous random variables with joint

probability density function fX1,X2
(x1, x2) and support S. Let fX1

(x1) and fX2
(x2)

be the marginal probability density functions as defined in Section 2.1. Motivated

by the discrete case above, for x∈X1 with xX1
(x1) > 0 define

fX2|X1
(x2 | x1) = f2|1(x2 | x1) =

fX1,X2
(x1, x2)

fX1
(x1)

.

We have fX2|X1
(x2 | x1) nonnegative and∫ ∞

−∞
fX2|X1

(x2 | x1) =

∫ ∞

−∞

fX1,X2
(x1, x2)

fX1
(x1)

dx2 =
1

fX1
(x1)

∫ ∞

−∞
fX1,X2

(x1, x2) dx2

=
1

fX1
(x1)

fX1
(x1) = 1,

so fX2|X1
(x2 | x2) is in fact a probability density function called the conditional

probability density function of X2 given X1 = x1. Similarly, for x2 ∈ X2 with

f(x2) > 0 we have

fX1|X2
(x1 | x2) = f1|2(x1 | x2) =

fX1,X2
(x1, x2)

fX2
(x2)

.

Note. The conditional probability that a < X2 < b given X1 = x1 is computed as

P (a < X2 < b | X1 = x1) = P (a < X2 < b | x1) =

∫ b

a

fX2|X1
(x2 | x1) dx2.



2.3. Conditional Distributions and Expectations 3

Definition. If u(X2) is a function of random variable X2 then the conditional

expectation of u(X2) given X1 = x1 (if it exists) is

E[u(X2) | X1 = x1] = E[u(X2) | x1] =

∫ ∞

−∞
u(x2)fX2|X1

(x2 | x1) dx2.

If it exists then E[X2 | x1] is the conditional mean of the conditional distribution

of X2 given X1 = x1. It it exists then E[(x2 − E[X2 | x1])
2 | x1] = Var(X2 | x1) is

the conditional variance of the conditional distribution of X2 given X1 = x1. We

can similarly define these quantities for X1 given X2 = x2.

Example 2.3.1. Let X1 and X2 be continuous random variables with joint prob-

ability density function

f(x1, x2) =

 2 for 0 < x1 < x2 < 1

0 elsewhere.

The support of f(x1, x2) is:

The marginal probability density functions are

fX1
(x1) =

∫ ∞

−∞
f(x1, x2) dx2 =

∫ x2=1

x2=x1

d dx2 = 2(1− x1) for 0 < x1 < 1,

fX2
(x2) =

∫ ∞

−∞
f(x1, x2) dx1 =

∫ x1=x2

x1=0
2 dx1 = 2x2 for 0 < x2 < 1
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and each is 0 elsewhere. The conditional probability density function of X1 given

X2 = x2 for 0 < x2 < 1 is

fX1|X2
(x1 | x2) =

fX1,X2
(x1, x2)

fX2
(x2)

=
2

2x2
=

1

x2
.

The conditional mean of X1 given X2 = x2 is

E[X1 | x2] =

∫ ∞

−∞
x1fX1|X2

(x1 | x2) dx1 =

∫ x2

0
x1

1

x2
dx1

=
1

x2

(
1

2
(x2)

2 − 1

2
(0)2

)
=

x2

2
for 0 < x2 < 1,

so the conditional variance of X1 given X2 is

Var(X1 | x2) = E[(X1 − E[X1 | x1])
2] =

∫ ∞

−∞

(
x1 −

x2

2

)2
fX1,X2

(x1 | x2) dx1

=

∫ x1

0

(
x1 −

x2

2

)2
(

1

x2

)
dx1 =

∫ x2

0

x2
1 − x1x2 + x2

2/4

x2
dx1

=
1

x2

(
1

3
x3

2 −
1

2
x3

2 +
1

4
x3

2

)
=

x2
2

12
for 0 < x2 < 1.

Also,

P

(
0 < X1 <

1

2

∣∣∣∣ X2 =
3

4

)
=

∫ 1/2

0
fX1,X2

(
x1

∣∣∣∣ 3

4

)
dx1

=

∫ 1/2

0

1

3/4
dx1 =

4

3

(
1

2
− 0

)
=

2

3
.

(We can use the marginal distribution fX1
(x1) to find that P (0 < X1 < 1/2) = 3/4,

so the value of X2 affects probabilities of the value of X1.)

Note. In the previous example, we have P (X2 = 3/4) = 0 since X2 is a contin-

uous, so in computing P (0 < X1 < 1/2 | X2 = 3/4) we have conditioned on a

probability 0 event, and yet the conditional probability is still defined!
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Theorem 2.3.1. Let (X1, X2) be a random vector such that the variance of X2 is

finite. Then

(a) E[E[X2 | X1]] = E[X2], and

(b) Var([E[X2 | X1]) ≤ Var(X2).

Note. The book comments (see page 115) that, since the mean of both X2 and

E[X2 | X1] is µ2, if we wish to approximate µ2 then because Var(X2) ≥ Var(E[X2 |

X1]) then we can put more “reliance” on estimates of E[X1 | X2] to guess the

unknown µ2.
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