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Section 2.4. Independent Random Variables

Note. Recall from Definition 1.4.2 that two events A and B from a sample space

are independent if P (A∩B) = P (A)P (B); this implies that P (A | B) = P (A) and

P (B | A) = P (B). In this section, we use the conditional probability functions

developed in the previous section to define independent random variables. Several

theorems are proved showing how computations can be simplified when two ran-

dom variables are independent, and how to recognize if two random variables are

independent.

Note 2.4.1. With X1 and X2 as random variables with joint probability density

function f(x1, x2) and marginal probability density functions f1(x1) and f2(x), we

have the conditional probability density functions

fX1|X2
(x1 | x2) = f1|2(x1 | x2) = f(x1, x2)/f2(x2),

fX2|X1
(x2 | x1) = f2|1(x2 | x1) = f(x1, x2)/f1(x1).

If f2|1(x2 | x1) does not depend on x1, then

f2(x2) =

∫ ∞

−∞
f2|1(x2 | x1)fx(x1) dx1 = f2|1(x2 | x1)

∫ ∞

−∞
f1(x1) dx1 = f2|1(x2 | x1).

So if f2|1(x2 | x1) does not depend on x1 then

f2(x2) = f2|1(x2 | x1) and so f(x1, x2) = f(x1)f(x2).

We have similar results for discrete random variables. This motivates the following

definition.
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Definition 2.4.1. Let the continuous random variables X1 and X2 have the joint

probability density function f(x1, x2) and the marginal probability density func-

tions f1(x1) and f2(x2). Random variables X1 and X2 are independent if and only if

f(x1, x2) ≡ f1(x1)f(x2). Random variables that are not independent are dependent.

We have similar definitions for discrete random variables.

Note. Hogg, McKean, and Craig comment on page 118 about the expression

“f(x1, x2) ≡ f1(x1)f2(x2). The claim that there may be points (x1, x2) ∈ S1 × S2

which violate this equality, but that with A representing the set of all such points

we have P (A) = 0. In measure theory, we would say that f(x1, x2) = f1(x1)f2(x2)

almost everywhere (see my online notes for Real Analysis 1 [MATH 5210] on 2.5.

Countable Additivity, Continuity, and the Borel-Cantelli Lemma).

Example 2.4.2 Let the joint probability density function of X1 and X2 be

f(x1, x2) =

 x1 + x2 for 0 < x1 < 1, 0 < x2 < 1

0 elsewhere.

The marginal probability density functions are

f1(x1) =

∫ ∞

−∞
f(x1, x2) dx2 =

∫ 1

0
(x1 + x2) dx2

=

(
x1x2 +

1

2
(x2)

2
)∣∣∣∣x2=1

x2=0
=

 x1 + 1/2 for 0 < x1 < 1

0 elsewhere,

and

f2(x2) =

∫ ∞

−∞
f(x1, x2) dx1 =

∫ 1

0
(x1 + x2) dx1

http://faculty.etsu.edu/gardnerr/5210/notes/2-5.pdf
http://faculty.etsu.edu/gardnerr/5210/notes/2-5.pdf
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=

(
1

2
(x1)

2 + x1x2

)∣∣∣∣x1=1

x1=0
=

 1/2 + x2 for 0 < x2 < 1

0 elsewhere.

Now

f1(x1)f2(x2) = (x1+1/2)(x2+1/2) = x1x2+x2/2+x2/2+1/4 6≡ x+1+x2 = f(x1, x2)

so that X1 and X2 are not independent; X1 and X2 are dependent.

Note. The following theorem classifies two independent random variables in direct

terms of the joint probability density function.

Theorem 2.4.1. Let the random variables X1 and X2 have supports S1 and S2,

respectively, and have the joint probability density function f(x1, x2). Then X1

and X2 are independent if and only if f(x1, x2) can be written as a product of a

nonnegative function of x1 and a nonnegative function of x2. That is, f(x1, x2) ≡

g(x1)h(x2) for some g(x1) > 0 for x1 ∈ S1 and 0 elsewhere, and some h(x2) > 0 for

x2 ∈ S2 and 0 elsewhere.

Note. We see in the proof of Theorem 2.4.1 that some additional hypotheses on g

and h are necessary. Namely, g and h must be measurable and integrable (that is,∫∞
−∞ g(x1) dx1 < ∞ and

∫∞
−∞ h(x2) dx2 < ∞).
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Example 2.4.3. There is a subtle requirement on the support of f(x1, x2) implied

in Theorem 2.4.1. Since g(x1) > 0 if and only if x1 ∈ S1 and h(x2) > 0 if and

only if x2 ∈ S2, then g(x1)h(x2) > 0 if and only if (x1, x2) ∈ S1 × S2. That is, for

X1 and X2 to be independent we need the support of f(x1, x2) to be a “product

space”) (. . . almost everywhere). For example, the probability density function

f(x1, x2) = 8x1x2 for 0 < x1 < x2 < 1, 0 elsewhere, appears to imply that X1

and X2 are independent by Theorem 2.4.1 (with g(x1) = 8x1 and h(x2) = x2,

say). However we cannot find g(x1) and h(x2) with appropriate supports such that

f(x1, x2) ≡ g(x1)h(x2). So for f(x1, x2) = 8x1x2 with support 0 < x1 < x2 < 1, the

random variables X1 and X2 are dependent.

Note. The next result allows us to discuss independence of random variables in

terms of cumulative distribution functions.

Theorem 2.4.2. Let (X1, X2) be a random vector with joint cumulative distribu-

tion function F (x1, x2) and let X1 and X2 have the marginal cumulative distribution

functions F1(x1) and F2(x2), respectively. Then X1 and X2 are independent if and

only if F (x1, x2) = F1(x1)F2(x2) for all (x1, x2) ∈ R2.

Note. The next theorem allows us to calculate probabilities over “rectangles” for

independent random variables.
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Theorem 2.4.3. The random variables X1 and X2 are independent random vari-

ables if and only if

P (a < X1 ≤ b, c < X2 ≤ d) = P (a < X1 ≤ b)P (c < X2 ≤ d)

for every a < b and c < d, where a, b, c, d are constants.

Note. In Example 2.4.4 (page 122) it is observed that for the probability density

function of Example 2.4.2, in which X1 and X2 are dependent, the corresponding

cumulative distribution functions violate Theorem 2.4.3. So this gives a specific

example showing that independence is necessary for the probability equation in

Theorem 2.4.3 to hold.

Note. The previous theorem and the next two theorems show how certain com-

putations are simplified for independent variables.

Theorem 2.4.4. Suppose X1 and X2 are independent and that E[u(X1)] and

E[v(X2)] exists. Then

E[u(X1)v(X2)] = E[u(X1)]E[v(X2)].

Theorem 2.4.5. Suppose the joint moment generating function M(t1, t2) exists

for the random variables X1 and X2. Then X1 and X2 are independent if and only

if M(t1, t2) = M(t1, 0)M(0, t2); that is, the joint moment generating function is

identically equal to the product of the marginal moment generating functions.

Example. Exercise 2.4.6(a).
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