Section 2.5. The Correlation Coefficient

Note. We now introduce a parameter ρ of the joint distribution of (X, Y) which quantifies the dependence between X and Y (so that $\rho=0$ when X and Y are independent). We assume the existence of all expectations under discussion.

Definition 2.5.1. Let (X, Y) have a joint distribution. Denote the means of X and Y respectively by μ_{1} and μ_{2} and their respective variances by σ_{1}^{2} and σ_{2}^{2}. The covariance of (X, Y) is

$$
\operatorname{cov}(X, Y)=E\left[\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)\right] .
$$

Note 2.5.A. Since the expectation operator is linear by Theorem 2.1.1, then

$$
\begin{gathered}
\operatorname{cov}(X, Y)=E\left[X Y-\mu_{2} X-\mu_{1} Y+\mu_{1} \mu_{2}\right]=E[X Y]-\mu_{2} E[X]-\mu_{1} E[Y]+\mu_{1} \mu_{2} \\
=E[X Y]-\mu_{1} \mu_{2}-\mu_{1} \mu_{2}+\mu_{1} \mu_{2}=E[X Y]-\mu_{1} \mu_{2}
\end{gathered}
$$

Definition 2.5.2. If each of σ_{1} and σ_{2} is positive then the correlation coefficient between X and Y is

$$
\rho=\frac{E\left[\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)\right]}{\sigma_{1} \sigma_{2}}=\frac{\operatorname{cov}(X, Y)}{\sigma_{1} \sigma_{2}} .
$$

Note 2.5.B. We can relate these parameters as

$$
\begin{aligned}
E[X Y] & =\mu_{1} \mu_{2}+\operatorname{cov}(X, Y) \text { by Note 2.5.A } \\
& =\mu_{1} \mu_{2}+\rho \sigma_{1} \sigma_{2} \text { by Definition 2.5.2 }
\end{aligned}
$$

Example 2.5.2. Let X and Y have joint probability density function

$$
f(x, y)=\left\{\begin{array}{cl}
x+y & \text { for } 0<x<1,0<1<y \\
0 & \text { elsewhere }
\end{array}\right.
$$

We have

$$
\begin{gathered}
\mu_{1}=E[X]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y=\int_{0}^{1} \int_{0}^{1} x(x+y) d x d y \\
=\left.\int_{0}^{1}\left(\frac{1}{3} x^{3}+\frac{1}{2} x^{2} y\right)\right|_{x=0} ^{x=1} d y=\int_{0}^{1}\left(\frac{1}{3}+\frac{1}{2} y\right) d y \\
=\left.\left(\frac{1}{3} y+\frac{1}{4} y^{2}\right)\right|_{0} ^{1}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}
\end{gathered}
$$

similarly, $\mu_{2}=E[Y]=7 / 12$,

$$
\begin{aligned}
\sigma_{1}^{2} & =E\left[X^{2}\right]-\mu_{1}^{2} \text { by Note 1.9.A } \\
& =\int_{0}^{1} \int_{0}^{1} x^{2}(x+y) d x d y-\left(\frac{7}{12}\right)^{2}=\int_{0}^{1} \int_{0}^{1}\left(x^{3}+x^{2} y\right) d x d y-\left(\frac{7}{12}\right)^{2} \\
& =\left.\int_{0}^{1}\left(\frac{1}{4} x^{4}+\frac{1}{3} x^{3} y\right)\right|_{x=0} ^{x=1} d x-\left(\frac{7}{12}\right)^{2}=\int_{0}^{1}\left(\frac{1}{4}+\frac{1}{3} y\right) d y-\left(\frac{7}{12}\right)^{2} \\
& =\left.\left(\frac{1}{4} y+\frac{1}{6} y^{2}\right)\right|_{x=0} ^{x=1}-\left(\frac{7}{12}\right)^{2}=\frac{5}{12}-\frac{49}{144}=\frac{11}{144},
\end{aligned}
$$

similarly $\sigma_{2}^{2}=E\left[Y^{2}\right]-\mu_{2}^{2}=11 / 144$, and

$$
\begin{aligned}
\operatorname{cov}(X Y) & =E[X Y]-\mu_{1} \mu_{2} \text { by Note 2.5.A } \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y-\mu_{1} \mu_{2}=\int_{0}^{1} \int_{0}^{1} x y(x+y) d x d y-\mu_{1} \mu_{2} \\
& =\left.\int_{0}^{1}\left(\frac{1}{3} x^{3} y+\frac{1}{2} x^{2} y^{2}\right)\right|_{x=0} ^{x=1} d y-\mu_{1} \mu_{2}=\int_{0}^{1}\left(\frac{1}{3} y+\frac{1}{2} y^{2}\right) d y-\mu_{1} \mu_{2} \\
& =\left.\left(\frac{1}{6} y^{2}+\frac{1}{6} y^{3}\right)\right|_{0} ^{1}-\mu_{1} \mu_{2}=\frac{1}{3}--\left(\frac{7}{12}\right)\left(\frac{7}{12}\right)=\frac{48-49}{144}=\frac{-1}{144}
\end{aligned}
$$

So by Definition 2.5.2,

$$
\rho=\frac{\operatorname{cov}(X Y)}{\sigma_{1} \sigma_{2}}=\frac{-1 / 144}{\sqrt{11 / 144} \sqrt{11 / 144}}=\frac{-1}{11} .
$$

Theorem 2.5.1. For all jointly distributed random variables (X, Y) whose correlation coefficient ρ exists (so that $\sigma_{1}>0$ and $\sigma_{2}>0$ by the definition of ρ), we have $-1 \leq \rho \leq 1$.

Theorem 2.5.2. If X and Y are independent random variables then $\operatorname{cov}(X, Y)=0$ and hence $\rho=0$.

Example 2.5.3. The converse of Theorem 2.5.2 does not in general hold. That is, we may have $\rho=0$ where X and Y are dependent. Suppose X and Y have a joint probability mass distribution such that the four points $(-1,0),(0,-1),(1,0)$, and $(0,1)$ have probability $1 / 4$ (and the probability is 0 for the other possible values of $(x, y))$. Then both X and Y have range $\{-1,0,1\}$ with respective marginal probabilities $1 / 4,1 / 2$, and $1 / 4$. So $\mu_{1}=\mu_{2}=0$ and $E[X Y]=(1 / 4)(-1)(0)+$ $(1 / 4)(0)(-1)+(1 / 4)(1)(0)+(1 / 4)(0)(1)=0$. So by Note 2.5.B $\operatorname{cov}(X, Y)=$ $E[X Y]-\mu_{1} \mu_{2}=0\left(\right.$ notice $\left.\sigma_{1}^{2}=\sigma_{2}^{2}=1 / 2 \neq 0\right)$. However $P(X=0, Y=0)=0$ while $P(X=0) P(Y=0)=(1 / 2)(1 / 2)=1 / 4$. So $P(X=0, Y=0) \neq P(X=$ 0) $P(Y=0)$ and hence X and Y are dependent but $\rho=\operatorname{cov}(X, Y) /\left(\sigma_{1} \sigma_{2}\right)=0$.

Note. In Exercise 2.5.7 it is to be shown that if $\rho=1$ then $Y=\left(\sigma_{2} / \sigma_{1}\right) X-$ $\left(\sigma_{2} / \sigma_{1}\right) \mu_{1}+\mu_{2}$ with probability 1 and if $\rho=-1$ then $Y=-\left(\sigma_{2} / \sigma_{1}\right) X+\left(\sigma_{2} / \sigma_{1}\right) \mu_{1}+$ μ_{2} with probability 1. So if the correlation coefficient is ± 1 then Y is a "linear function" (that is, a function of the form $m X+b$) of Y; the slope is positive if $\rho=1$ and negative if $\rho=-1$. More generally, Hogg, McKean, and Craig comment "we can look upon ρ as a measure of the intensity of the concentration of the of the probability for X and Y about" a line (page 128). This is spelled out more formally in the next theorem.

Theorem 2.5.3. Suppose (X, Y) have a joint distribution with the variances of X and Y finite and positive. Denote the means and variances of X and Y by μ_{1}, μ_{2} and $\sigma_{1}^{2}, \sigma_{2}^{2}$, respectively, and let ρ be the correlation coefficient between X and Y. If $E[Y \mid X]$ is linear in X then

$$
E[Y \mid X] \mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(X-\mu_{1}\right) \text { and } E[\operatorname{Var}(Y \mid X)]=\sigma_{2}^{2}\left(1-\rho^{2}\right)
$$

Example 2.5.5. We now consider an example that illustrates how the correlation coefficient ρ reflects how the values of X and Y are concentrated along a line. Consider the joint probability density function

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{1}{4 a h} & \text { for }-1+b x<y<a+b x,-h<x<h \\
0 & \text { elsewhere }
\end{array}\right.
$$

The support of f is as given in Figure 2.5.1.

Figure 2.5.1 from page 130.
For the sake of illustration, we assume the slope satisfies $b \geq 0$. The marginal probability density function of X is

$$
f_{1}(x)=\left\{\begin{array}{cl}
\int_{-a+b x}^{a+b x} \frac{1}{4 a h} d y & \text { for }-h<x<h \\
0 & \text { elsewhere }
\end{array}=\left\{\begin{array}{cl}
\frac{1}{2 h} & \text { for }-h<x<h \\
0 & \text { elsewhere }
\end{array}\right.\right.
$$

so that f_{1} is a uniform distribution (as is f). As shown in the proof of Theorem 2.5.3,

$$
\begin{aligned}
& E[Y \mid X]=\frac{1}{f_{1}(x)} \int_{-\infty}^{\infty} y f(x, y) d y=\frac{1}{1 /(2 h)} \int_{-a+b x}^{a+b x} y \frac{1}{4 a h} d y=\left.\frac{1}{2 a}\left(\frac{1}{2} y^{2}\right)\right|_{y=-a+b x} ^{y=a+b x} \\
& =\frac{1}{4 a}\left((a+b x)^{2}-(-a+b x)^{2}\right)=\frac{1}{4 a}\left(a^{2}+2 a b x+b^{2} x^{2}-a^{2}+2 a b x-b^{2} x^{2}\right)=b x
\end{aligned}
$$

For $\operatorname{var}(Y \mid x)$ we use the conditional mean of Y given x of $E[Y \mid x]=b x$ and have

$$
\begin{gathered}
\operatorname{var}(Y \mid x)=\int_{-\infty}^{\infty}(y-b x)^{2} f_{2 \mid 1}(y \mid x), d y=\int_{y=-a+b x}^{y=a+b x}(y-b x)^{2} \frac{f(x, y)}{f_{1}(x)} d y \\
=\int_{y=-a+b x}^{y=a+b x}(y-b x)^{2} \frac{1 /(4 a h)}{1 /(2 h)} d y=\left.\frac{1}{2 a} \frac{1}{3}(y-b x)^{3}\right|_{y=-a+b x} ^{y=a+b x}=\frac{1}{6 a}\left(a^{3}-(-a)^{3}\right)=\frac{a^{2}}{3} .
\end{gathered}
$$

Since $E[Y \mid x]=b x$ then $E[Y \mid X]$ is a linear function of X and so Theorem 2.5.3 holds from which we see that $E[Y \mid X]=\mu_{1}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(X-\mu_{1}\right)=b X$ and hence $\mu_{1}=$
$\mu_{2}=0$ and $b=\rho \sigma_{2} / \sigma_{1}$. Also by Theorem 2.5.3, $E[\operatorname{var}(Y \mid X)]=\sigma_{2}^{2}\left(1-\rho^{2}\right)=a^{2} / 3$. Next,
$\sigma_{1}^{2}=\int_{-\infty}^{\infty}\left(x-\mu_{1}\right)^{2} f_{1}(x) d x=\int_{-h}^{h} x^{2} \frac{1}{2 h} d x=\left.\frac{1}{2 h}\left(\frac{1}{3} x^{3}\right)\right|_{-h} ^{h}=\frac{1}{6 h}\left(h^{3}-(-h)^{3}\right)=\frac{h^{2}}{3}$.
We solve the three equations

$$
\text { (1) } b=\rho \frac{\sigma_{2}}{\sigma_{1}}, \quad \text { (2) } \frac{a^{2}}{3}=\sigma_{2}^{2}\left(1-\rho^{2}\right), \quad \text { (3) } \sigma_{1}^{2}=\frac{h^{2}}{2}
$$

for ρ in terms of a, b, h then we get from (1) that $\sigma_{2}=b \sigma_{1} / \rho$ and so from (2) that

$$
\frac{a^{2}}{3}=\left(\frac{b \sigma_{1}}{\rho}\right)^{2}\left(1-\rho^{2}\right)=b^{2} \sigma_{1}^{2}\left(\frac{1}{\rho^{2}}-1\right)=\frac{b^{2} h^{2}}{3}\left(\frac{1}{\rho^{2}}-1\right)
$$

from (3). So $\frac{a^{2}}{b^{2} h^{2}}=\frac{1}{\rho^{2}}-1$ or $\frac{a^{2}}{b^{2} h^{2}}+1=\frac{a^{2}+{ }^{2} h^{2}}{b^{2} h^{2}}=\frac{1}{\rho^{2}}$ or $\rho^{2}=\frac{b^{2} h^{2}}{a^{2}+b^{2} h^{2}}$ and $\rho=\frac{b h}{\sqrt{a^{2}+b^{2} h^{2}}}$ (we have $b \geq 0$ and $h>0$ and, since $b=\rho \sigma_{2} / \sigma_{1}, \rho \geq 0$). From the equation $\rho=\frac{b h}{\sqrt{a^{2}+b^{2} h^{2}}}$ and Figure 2.5.1 we have

1. As a gets smaller (respectively, larger), the straight-line effect is more (respectively, less) intense and ρ is closer to 1 (respectively, closer to 0).
2. As h gets larger (respectively, smaller), the straight-line effect is more (respectively, less) intense and ρ is closer to 1 (respectively, closer to 0).
3. As b gets larger (respectively, smaller), the straight-line effect is more (respectively, less) intense and ρ is closer to 1 (respectively, closer to 0).

Note 2.5.C. In Section 2.1 we saw that the moment generating function

$$
M_{X, Y}\left(t_{1}, t_{2}\right)=E\left[e^{\mathbf{t}^{\prime} \mathbf{X}}\right]=E\left[e^{t_{1} X+t_{2} Y}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t_{1} x+t_{2} y} f(x, y) d y d x
$$

so by Proposition IV.2.1 of my Complex Analysis notes on IV.2. Power Series Representations of Analytic Functions (which requires the integrand to have first partial derivatives)

$$
\begin{array}{r}
\frac{\partial^{k+m} M\left(t_{1}, t_{2}\right)}{\partial t_{1}^{k} \partial t_{2}^{m}}=\frac{\partial^{k+m}}{\partial t_{1}^{k} \partial t_{2}^{m}}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t_{1} x+t_{2} y} f(x, y) d y d x\right] \\
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial^{k+m}}{\partial t_{1}^{k} \partial t_{2}^{m}}\left[e^{t_{1} x+t_{2} y} f(x, y)\right] d y d x=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{k} y^{m} e^{t_{1} x+t_{2} y} f(x, y) d y d x .
\end{array}
$$

With $t_{0}=t_{2}=0$ we have

$$
\left.\frac{\partial^{k+m} M\left(t_{1}, t_{2}\right)}{\partial t_{1}^{k} \partial t_{2}^{m}}\right|_{t_{1}=t_{2}=0}=\int_{-\infty}^{\infty} x^{k} y^{m} f(x, y) d y d x=E\left[X^{k} Y^{m}\right]
$$

This allows us to calculate several parameters using the moment generating function:

$$
\begin{aligned}
\mu_{1} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d y d x=\frac{\partial M(0,0)}{\partial t_{1}} \\
\mu_{2} & =\int_{-\infty}^{\infty} y f(x, y) d x d y=\frac{\partial M(0,0)}{\partial t_{2}} \\
\sigma_{1}^{2} & =E\left[X^{2}\right]-\mu_{1}^{2} \text { by Note 1.9.A } \\
& =\int_{-\infty}^{\infty} \int_{\infty}^{\infty} x^{2} f(x, y) d x d y-\mu_{1}^{2}=\frac{\partial M(0,0)}{\partial t_{1}^{2}}=\mu_{1}^{2} \\
\sigma_{2}^{2} & =E\left[Y^{2}\right]-\mu_{2}^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y^{2} f(x, y) d x d y-\mu_{2}^{2}=\frac{\partial M(0,0)}{\partial t_{2}^{2}}-\mu_{2}^{2} \\
\operatorname{cov}(X, Y) & =E\left[\left(X-\mu_{1}\right)\left(T-\mu_{2}\right)\right]=E[X Y]-\mu_{1} \mu_{2} \text { by Note 2.5.A } \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y-\mu_{1} \mu_{2}=\frac{\partial^{2} M(0,0)}{\partial t_{1} \partial t_{2}}-\mu_{1} \mu_{2} .
\end{aligned}
$$

Since the correlation coefficient is $\rho=\frac{\operatorname{cov}(X, Y)}{\sigma_{1} \sigma_{2}}$ then we can also calculate ρ using the joint moment generating function.

Example 2.5.6. Consider the joint probability density function

$$
f(x, y)=\left\{\begin{array}{cl}
e^{-y} & \text { for } 0<x<y<\infty \\
0 & \text { elsewhere }
\end{array}\right.
$$

which was explored in the class notes in Example 2.1.10 and it was shown that

$$
M\left(t_{1}, t_{2}\right)=\frac{1}{\left(1-t_{2}\right)\left(t-t_{1}-t_{2}\right)}=\frac{1}{1-t_{1}-2 t_{2}+t_{1} t_{2}+t_{2}^{2}}
$$

for $t_{1}+2 t_{2}-1<0$ and $t_{2}<1$. So we have

$$
\begin{aligned}
\mu_{1}= & \frac{\partial M(0,0)}{\partial t_{1}}=\left.\frac{1}{\left(1-t_{2}\right)\left(1-t_{1}-t_{2}\right)^{2}}\right|_{t_{1}=t_{2}=0}=1 \\
\mu_{2}= & \frac{\partial M(0,0)}{\partial t_{2}}=\left.\frac{-\left(-2+t_{1}+2 t_{2}\right)}{\left(1-t_{1}-2 t_{2}+t_{1} t_{2}+t_{2}^{2}\right)^{2}}\right|_{t_{1}=t_{2}=0}=2 \\
\sigma_{1}^{2}= & \frac{\partial^{2} M(0,0)}{\partial t_{1}^{2}}-\mu_{1}^{2}=\left.\frac{2}{\left(1-t_{2}\right)\left(1-t_{1}-t_{2}\right)^{3}}\right|_{t_{1}=t_{2}=0}-\mu_{1}^{2}=2-1^{2}=1 \\
\sigma_{2}^{2}= & \frac{\partial^{2} M(0,0)}{\partial t_{2}^{2}}=\left\{[-2]\left(1-t_{1}-2 t_{2}+t_{1} t_{2}+t_{2}^{2}\right)^{2}\right. \\
& -\left(2-t_{1}-2 t_{2}\right)\left[2\left(1-t_{1}-2 t_{2}+t_{1} t_{2}+t_{2}^{2}\right)^{2}\left[-2+t_{1}+2 t_{2}\right]\right\} \\
& \div\left.\left(1-t_{1}-2 t_{2}+t_{1} t_{2}+t_{2}^{2}\right)^{2}\right|_{t_{1}=t_{2}=0}-\mu_{2}^{2}=\frac{-2+8}{1}-2^{2}=2, \\
\operatorname{cov}(X, Y)= & \frac{\partial^{2} M(0,0)}{\partial t_{1} \partial t_{2}}-\mu_{1} \mu_{2}=\left.\frac{\partial}{\partial t_{1}}\left[\frac{2-t_{1}-2 t_{2}}{\left(1-t_{1}-2 t_{2}+t_{1} t_{2}+t_{2}^{2}\right)^{2}}\right]\right|_{t_{1}=t_{2}=0} \\
= & \left\{[-1]\left(1-t_{1}-2 t_{2}+t_{1} t_{2}+t_{2}^{2}\right)^{2}\right. \\
& \left.-\left(2-t_{1}-2 t_{2}\right)\left[2\left(1-t_{1}-2 t_{2}+t_{1} t_{2}+t_{2}^{2}\right)\left[-1+t_{2}\right]\right]\right\} \\
& \div\left.\left(1-t_{1}-2 t_{2}+t_{1} t_{2}+t_{2}^{2}\right)^{4}\right|_{t_{1}=t_{2}=0} \\
= & \frac{(-1)-(2)(-2)}{1}-(1)(2)=3-2=1 .
\end{aligned}
$$

(The computation of these values is Exercise 2.5.5.) So

$$
\rho=\frac{\operatorname{cov}(X, Y)}{\sigma_{1} \sigma_{2}}=\frac{1}{1 \sqrt{2}}=\frac{1}{\sqrt{2}} .
$$

