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Section 2.5. The Correlation Coefficient

Note. We now introduce a parameter ρ of the joint distribution of (X, Y ) which

quantifies the dependence between X and Y (so that ρ = 0 when X and Y are

independent). We assume the existence of all expectations under discussion.

Definition 2.5.1. Let (X, Y ) have a joint distribution. Denote the means of X

and Y respectively by µ1 and µ2 and their respective variances by σ2
1 and σ2

2. The

covariance of (X, Y ) is

cov(X, Y ) = E[(X − µ1)(Y − µ2)].

Note 2.5.A. Since the expectation operator is linear by Theorem 2.1.1, then

cov(X, Y ) = E[XY − µ2X − µ1Y + µ1µ2] = E[XY ]− µ2E[X]− µ1E[Y ] + µ1µ2

= E[XY ]− µ1µ2 − µ1µ2 + µ1µ2 = E[XY ]− µ1µ2.

Definition 2.5.2. If each of σ1 and σ2 is positive then the correlation coefficient

between X and Y is

ρ =
E[(X − µ1)(Y − µ2)]

σ1σ2
=

cov(X, Y )

σ1σ2
.

Note 2.5.B. We can relate these parameters as

E[XY ] = µ1µ2 + cov(X, Y ) by Note 2.5.A

= µ1µ2 + ρσ1σ2 by Definition 2.5.2.
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Example 2.5.2. Let X and Y have joint probability density function

f(x, y) =

 x + y for 0 < x < 1, 0 < 1 < y

0 elsewhere.

We have

µ1 = E[X] =

∫ ∞

−∞

∫ ∞

−∞
xf(x, y) dx dy =

∫ 1

0

∫ 1

0
x(x + y) dx dy

=

∫ 1

0

(
1

3
x3 +

1

2
x2y

)∣∣∣∣x=1

x=0
dy =

∫ 1

0

(
1

3
+

1

2
y

)
dy

=

(
1

3
y +

1

4
y2

)∣∣∣∣1
0

=
1

3
+

1

4
=

7

12
,

similarly, µ2 = E[Y ] = 7/12,

σ2
1 = E[X2]− µ2

1 by Note 1.9.A

=

∫ 1

0

∫ 1

0
x2(x + y) dx dy −

(
7

12

)2

=

∫ 1

0

∫ 1

0
(x3 + x2y) dx dy −

(
7

12

)2

=

∫ 1

0

(
1

4
x4 +

1

3
x3y

)∣∣∣∣x=1

x=0
dx−

(
7

12

)2

=

∫ 1

0

(
1

4
+

1

3
y

)
dy −

(
7

12

)2

=

(
1

4
y +

1

6
y2

)∣∣∣∣x=1

x=0
−

(
7

12

)2

=
5

12
− 49

144
=

11

144
,

similarly σ2
2 = E[Y 2]− µ2

2 = 11/144, and

cov(XY ) = E[XY ]− µ1µ2 by Note 2.5.A

=

∫ ∞

−∞

∫ ∞

−∞
xyf(x, y) dx dy − µ1µ2 =

∫ 1

0

∫ 1

0
xy(x + y) dx dy − µ1µ2

=

∫ 1

0

(
1

3
x3y +

1

2
x2y2

)∣∣∣∣x=1

x=0
dy − µ1µ2 =

∫ 1

0

(
1

3
y +

1

2
y2

)
dy − µ1µ2

=

(
1

6
y2 +

1

6
y3

)∣∣∣∣1
0
− µ1µ2 =

1

3
−−

(
7

12

) (
7

12

)
=

48− 49

144
=
−1

144
.
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So by Definition 2.5.2,

ρ =
cov(XY )

σ1σ2
=

−1/144√
11/144

√
11/144

=
−1

11
.

Theorem 2.5.1. For all jointly distributed random variables (X, Y ) whose cor-

relation coefficient ρ exists (so that σ1 > 0 and σ2 > 0 by the definition of ρ), we

have −1 ≤ ρ ≤ 1.

Theorem 2.5.2. If X and Y are independent random variables then cov(X, Y ) = 0

and hence ρ = 0.

Example 2.5.3. The converse of Theorem 2.5.2 does not in general hold. That is,

we may have ρ = 0 where X and Y are dependent. Suppose X and Y have a joint

probability mass distribution such that the four points (−1, 0), (0,−1), (1, 0), and

(0, 1) have probability 1/4 (and the probability is 0 for the other possible values

of (x, y)). Then both X and Y have range {−1, 0, 1} with respective marginal

probabilities 1/4, 1/2, and 1/4. So µ1 = µ2 = 0 and E[XY ] = (1/4)(−1)(0) +

(1/4)(0)(−1) + (1/4)(1)(0) + (1/4)(0)(1) = 0. So by Note 2.5.B cov(X, Y ) =

E[XY ] − µ1µ2 = 0 (notice σ2
1 = σ2

2 = 1/2 6= 0). However P (X = 0, Y = 0) = 0

while P (X = 0)P (Y = 0) = (1/2)(1/2) = 1/4. So P (X = 0, Y = 0) 6= P (X =

0)P (Y = 0) and hence X and Y are dependent but ρ = cov(X, Y )/(σ1σ2) = 0.
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Note. In Exercise 2.5.7 it is to be shown that if ρ = 1 then Y = (σ2/σ1)X −

(σ2/σ1)µ1+µ2 with probability 1 and if ρ = −1 then Y = −(σ2/σ1)X +(σ2/σ1)µ1+

µ2 with probability 1. So if the correlation coefficient is ±1 then Y is a “linear

function” (that is, a function of the form mX + b) of Y ; the slope is positive if

ρ = 1 and negative if ρ = −1. More generally, Hogg, McKean, and Craig comment

“we can look upon ρ as a measure of the intensity of the concentration of the of

the probability for X and Y about” a line (page 128). This is spelled out more

formally in the next theorem.

Theorem 2.5.3. Suppose (X, Y ) have a joint distribution with the variances of

X and Y finite and positive. Denote the means and variances of X and Y by µ1,

µ2 and σ2
1, σ2

2, respectively, and let ρ be the correlation coefficient between X and

Y . If E[Y | X] is linear in X then

E[Y | X]µ2 + ρ
σ2

σ1
(X − µ1) and E[Var(Y | X)] = σ2

2(1− ρ2).

Example 2.5.5. We now consider an example that illustrates how the correlation

coefficient ρ reflects how the values of X and Y are concentrated along a line.

Consider the joint probability density function

f(x, y) =

 1
4ah for − 1 + bx < y < a + bx, −h < x < h

0 elsewhere.

The support of f is as given in Figure 2.5.1.



2.5. The Correlation Coefficient 5

Figure 2.5.1 from page 130.

For the sake of illustration, we assume the slope satisfies b ≥ 0. The marginal

probability density function of X is

f1(x) =


∫ a+bx

−a+bx
1

4ah dy for − h < x < h

0 elsewhere
=

 1
2h for − h < x < h

0 elsewhere

so that f1 is a uniform distribution (as is f). As shown in the proof of Theorem

2.5.3,

E[Y | X] =
1

f1(x)

∫ ∞

−∞
yf(x, y) dy =

1

1/(2h)

∫ a+bx

−a+bx

y
1

4ah
dy =

1

2a

(
1

2
y2

)∣∣∣∣y=a+bx

y=−a+bx

=
1

4a
((a + bx)2 − (−a + bx)2) =

1

4a
(a2 + 2abx + b2x2 − a2 + 2abx− b2x2) = bx.

For var(Y | x) we use the conditional mean of Y given x of E[Y | x] = bx and have

var(Y | x) =

∫ ∞

−∞
(y − bx)2f2|1(y | x), dy =

∫ y=a+bx

y=−a+bx

(y − bx)2f(x, y)

f1(x)
dy

=

∫ y=a+bx

y=−a+bx

(y − bx)21/(4ah)

1/(2h)
dy =

1

2a

1

3
(y − bx)3

∣∣∣∣y=a+bx

y=−a+bx

=
1

6a
(a3 − (−a)3) =

a2

3
.

Since E[Y | x] = bx then E[Y | X] is a linear function of X and so Theorem 2.5.3

holds from which we see that E[Y | X] = µ1 + ρσ2

σ1
(X − µ1) = bX and hence µ1 =
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µ2 = 0 and b = ρσ2/σ1. Also by Theorem 2.5.3, E[var(Y | X)] = σ2
2(1−ρ2) = a2/3.

Next,

σ2
1 =

∫ ∞

−∞
(x−µ1)

2f1(x) dx =

∫ h

−h

x2 1

2h
dx =

1

2h

(
1

3
x3

)∣∣∣∣h
−h

=
1

6h
(h3−(−h)3) =

h2

3
.

We solve the three equations

(1) b = ρ
σ2

σ1
, (2)

a2

3
= σ2

2(1− ρ2), (3) σ2
1 =

h2

2

for ρ in terms of a, b, h then we get from (1) that σ2 = bσ1/ρ and so from (2) that

a2

3
=

(
bσ1

ρ

)2

(1− ρ2) = b2σ2
1

(
1

ρ2 − 1

)
=

b2h2

3

(
1

ρ2 − 1

)
from (3). So

a2

b2h2 =
1

ρ2 − 1 or
a2

b2h2 + 1 =
a2 +2 h2

b2h2 =
1

ρ2 or ρ2 =
b2h2

a2 + b2h2 and

ρ =
bh√

a2 + b2h2
(we have b ≥ 0 and h > 0 and, since b = ρσ2/σ1, ρ ≥ 0). From the

equation ρ =
bh√

a2 + b2h2
and Figure 2.5.1 we have

1. As a gets smaller (respectively, larger), the straight-line effect is more (respec-

tively, less) intense and ρ is closer to 1 (respectively, closer to 0).

2. As h gets larger (respectively, smaller), the straight-line effect is more (respec-

tively, less) intense and ρ is closer to 1 (respectively, closer to 0).

3. As b gets larger (respectively, smaller), the straight-line effect is more (respec-

tively, less) intense and ρ is closer to 1 (respectively, closer to 0).

Note 2.5.C. In Section 2.1 we saw that the moment generating function

MX,Y (t1, t2) = E[et′X] = E[et1X+t2Y ] =

∫ ∞

−∞

∫ ∞

−∞
et1x+t2yf(x, y) dy dx
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so by Proposition IV.2.1 of my Complex Analysis notes on IV.2. Power Series

Representations of Analytic Functions (which requires the integrand to have first

partial derivatives)

∂k+mM(t1, t2)

∂tk1 ∂tm2
=

∂k+m

∂tk1 ∂tm2

[∫ ∞

−∞

∫ ∞

−∞
et1x+t2yf(x, y) dy dx

]

=

∫ ∞

−∞

∫ ∞

−∞

∂k+m

∂tk1 ∂tm2

[
et1x+t2yf(x, y)

]
dy dx =

∫ ∞

−∞

∫ ∞

−∞
xkymet1x+t2yf(x, y) dy dx.

With t0 = t2 = 0 we have

∂k+mM(t1, t2)

∂tk1 ∂tm2

∣∣∣∣
t1=t2=0

=

∫ ∞

−∞
xkymf(x, y) dy dx = E[XkY m].

This allows us to calculate several parameters using the moment generating func-

tion:

µ1 =

∫ ∞

−∞

∫ ∞

−∞
xf(x, y) dy dx =

∂M(0, 0)

∂t1

µ2 =

∫ ∞

−∞
yf(x, y) dx dy =

∂M(0, 0)

∂t2
σ2

1 = E[X2]− µ2
1 by Note 1.9.A

=

∫ ∞

−∞

∫ ∞

∞

x2f(x, y) dx dy − µ2
1 =

∂M(0, 0)

∂t21
= µ2

1

σ2
2 = E[Y 2]− µ2

2 =

∫ ∞

−∞

∫ ∞

−∞
y2f(x, y) dx dy − µ2

2 =
∂M(0, 0)

∂t22
− µ2

2

cov(X, Y ) = E[(X − µ1)(T − µ2)] = E[XY ]− µ1µ2 by Note 2.5.A

=

∫ ∞

−∞

∫ ∞

−∞
xyf(x, y) dx dy − µ1µ2 =

∂2M(0, 0)

∂t1 ∂t2
− µ1µ2.

Since the correlation coefficient is ρ =
cov(X, Y )

σ1σ2
then we can also calculate ρ using

the joint moment generating function.

http://faculty.etsu.edu/gardnerr/5510/notes/IV-2.pdf
http://faculty.etsu.edu/gardnerr/5510/notes/IV-2.pdf
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Example 2.5.6. Consider the joint probability density function

f(x, y) =

 e−y for 0 < x < y < ∞

0 elsewhere,

which was explored in the class notes in Example 2.1.10 and it was shown that

M(t1, t2) =
1

(1− t2)(t− t1 − t2)
=

1

1− t1 − 2t2 + t1t2 + t22

for t1 + 2t2 − 1 < 0 and t2 < 1. So we have

µ1 =
∂M(0, 0)

∂t1
=

1

(1− t2)(1− t1 − t2)2

∣∣∣∣
t1=t2=0

= 1

µ2 =
∂M(0, 0)

∂t2
=

−(−2 + t1 + 2t2)

(1− t1 − 2t2 + t1t2 + t22)
2

∣∣∣∣
t1=t2=0

= 2

σ2
1 =

∂2M(0, 0)

∂t21
− µ2

1 =
2

(1− t2)(1− t1 − t2)3

∣∣∣∣
t1=t2=0

− µ2
1 = 2− 12 = 1

σ2
2 =

∂2M(0, 0)

∂t22
=

{
[−2](1− t1 − 2t2 + t1t2 + t22)

2

−(2− t1 − 2t2)[2(1− t1 − 2t2 + t1t2 + t22)
2[−2 + t1 + 2t2]

}
÷(1− t1 − 2t2 + t1t2 + t22)

2
∣∣
t1=t2=0 − µ2

2 =
−2 + 8

1
− 22 = 2,

cov(X, Y ) =
∂2M(0, 0)

∂t1∂t2
− µ1µ2 =

∂

∂t1

[
2− t1 − 2t2

(1− t1 − 2t2 + t1t2 + t22)
2

]∣∣∣∣
t1=t2=0

=
{
[−1](1− t1 − 2t2 + t1t2 + t22)

2

−(2− t1 − 2t2)[2(1− t1 − 2t2 + t1t2 + t22)[−1 + t2]]
}

÷(1− t1 − 2t2 + t1t2 + t22)
4
∣∣
t1=t2=0

=
(−1)− (2)(−2)

1
− (1)(2) = 3− 2 = 1.

(The computation of these values is Exercise 2.5.5.) So

ρ =
cov(X, Y )

σ1σ2
=

1

1
√

2
=

1√
2
.
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