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Section 2.6. Extension to Several Random Variables

Note. We extend the ideas from this chapter concerning two random variables to

more than two (though a finite number) of random variables.

Definition 2.6.1. Consider a random experiment with the sample space C. Let

the random variable Xi assign to each element c ∈ C one and only one real number

Xi(c) = xi for i = 1, 2, . . . , n. Then (X1, X2, . . . , Xn) is an n-dimensional random

vector. The space (or range) of this random vector is the set of ordered n-tuples

D = {(x1, x2, . . . , xn) | x1 = X1(c), x2 = X2(c), . . . , xn = Xn(c) and x ∈ C}.

Note/Definition. As in the case of a vector with two entries, we denote the trans-

pose of of row vector (X1, X2, . . . , Xn) as the column vector X = (X1, X2, . . . , Xn)
′ =

(X1, X2, . . . , Xn)
T and we let x = (x1, x2, . . . , xn)

′ = (x1, x2, . . . , xn)
T . As with two

random variables, the joint cumulative density function is

FX(x) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).

In the discrete case we have

FX(x) =
∑

X1≤x1

∑
X2≤x2

· · ·
∑

Xn≤xn

p(w1, w2, . . . , wn)

and in the continuous case

FX(x) =

∫ x1

−∞

∫ x2

−∞
· · ·

∫ xn

−∞
f(w1, w2, . . . , wn) dwn · · · dw2 dw1
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where p is the probability mass function and f is the probability density functions.

In the continuous case we have by Proposition IV.2.1 of my Complex Analysis notes

on IV.2. Power Series Representations of Analytic Functions (which requires the

integrand to have first partial derivatives)
∂n

∂x1 ∂x2 · · · ∂xn
[FX(x)] = f(x) “except

possibly on points that have probability zero” (that is, almost everywhere).

Definition. For a discrete random vector, the support is all points in space D that

have positive mass (i.e., positive probability). For a continuous random vector,

the support is all points in D that can be embedded in an open set of positive

probability. The support of a random vector is denoted S.

Example 2.6.1. Let

f(x, y, z) =

 e−(x+y+z) for 0 < x, y, z < ∞

0 elsewhere

be the probability density function of the random variables X, Y , and Z. Then

the cumulative distribution function is

F (x, y, z) = P (Z ≤ x, Y ≤ y, Z ≤ z) =

∫ x

−∞

∫ y

−∞

∫ z

−∞
f(u, v, w) du dv dw

=

∫ x

0

∫ y

0

∫ z

0
e−(u+v+w) du dv dw = (1− e−x)(1− e−y)(1− e−z) for 0 ≤ x, y, z < ∞.

Notice
∂3

∂x ∂y ∂z
[F (z, y, z)] = f(z, y, z), as expected.

http://faculty.etsu.edu/gardnerr/5510/notes/IV-2.pdf
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Definition. Let (X1, X2, . . . , Xn) be a random variable and let Y = u(X1, X2, . . . , Xn)

for some measurable function u. If∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ ∞

−∞
|u(x1, x2, . . . , xn)|f(x1, x2, . . . , xn) dx1 dx2 · · · dxn < ∞

for continuous random variables then the expected value of Y is

E[Y ] =

∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ ∞

−∞
|u(x1, x2, . . . , xn)|f(x1, x2, . . . , xn) dx1 dx2 · · · dxn.

If ∑
x1

∑
x2

· · ·
∑
xn

|u(x1, x2, . . . , xn)|p(x1, x2, . . . , xn) < ∞

is finite for discrete random variables then the expected value of Y is

E[Y ] =
∑
x1

∑
x2

· · ·
∑
xn

y(x1, x2, . . . , xn)f(x1, x2, . . . , xn).

Note. As in the case of two random variables, the expectation operator is linear

here as well.

Definition. For continuous random variables X1, X2, . . . , Xn with joint probability

density function f(x1, x2, . . . , xn), the marginal probability density function of Xi is

fi(xi) =

∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, . . . , xn) dx1 dx2 · · · dxn.

The marginal probability mass function of Xi is similarly defined for discrete ran-

dom variables.
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Note. With several random variables we can also define the marginal probability

density function of some subset of the random variables by integrating out the

other random variables.

Definition. For random variables X1, X2, . . . , Xn with joint probability density

function f(x1, x2, . . . , xn), with fi(xi) > 0 we have the joint conditional probability

density function of X1, X2, . . . , Xi−1, Xi+1, . . . , Xn given Xi = xi is

f1,2,...,i−1,i+1,...,n|i(x1, x2, . . . , xi−1, xi+1, . . . , xn | xi) =
f(x1, x2, . . . , xn)

fi(xi)
.

Note 2.6.A. We can similarly define a joint conditional probability density func-

tion given the values of several of the variables by dividing the joint probability

density function f(x1, x2, . . . , xn) by the marginal probability density function of

the particular given group of variables. For example, if f(x1, x2, . . . , xn) is the

joint probability density function for X1, X2, X3, X4 then the marginal probability

density function of X1, X2 is

f3,4(x3, x4) =

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x3, x4) dx1 dx2

and the joint conditional probability density function of X1, X2 given X3 = x3 and

X4 = x4 is

f1,2|3,4(x1, x2) =
f(x1, x2, x3, x4)

f3,4(x3, x4)
.
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Definition. Let X1, X2, . . . , Xn be continuous random variables and let u(x1, x2, . . . ,

xi−1, xi+1, . . . xi) be a measurable function. The conditional expectation of u(x1, x2,

. . . , xi−1, xi+1, . . . , xn) given Xi = xi is

E[u(X1, X2, . . . , Xi−1, Xi+1, . . . , Xn) | xi]

=

∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ ∞

−∞
u(x1, x2, . . . , xi−1, xi+1, . . . , xn)×

f1,2,...,i−1,i+1,...,n(x1, x2, . . . , xi−1, xi+1, . . . , xn) dx1 dx2 · · · dxi−1 dxi+1 · · · dxn,

provided f(xi) > 0 and the integral converges absolutely (i.e., the integral is

absolutely integrable). We can similarly define the conditional expectation of

u(x1, x2, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn) given Xi = xi and Xj = xj (and

we can also define related conditional expectations given values of several Xi’s).

These ideas can be similarly defined for discrete random variables by replacing the

integrals with sums and the probability density functions replaced with probability

mass functions.

Definition. Let the continuous random variables X1, X2, . . . , Xn have the joint

probability density function f(x1, x2, . . . , xn) and the marginal probability density

functions f1(x1), f2(x2), . . . , xn(xn). The random variables are mutually indepen-

dent if f(x1, x2, . . . , xn) ≡ f1(x1)f2(x2) · · · fn(xn). In the discrete case, the random

variables are mutually independent if p(x1, x2, . . . , xn) ≡ p1(x1)p2(x2) · · · pn(xn).

Note 2.6.B. In Theorem 2.4.4, we saw that for two independent random variables,

the expectation of the product is the product of expectations, E[u(X1)v(X2)] =
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E[u(x1)]E[v(X2)]. Similarly, if random variables X1, X2, . . . , Xn are mutually in-

dependent and if E[ui(Xi)] exists for i = 1, 2, . . . , n then

E[u1(X1)u2(X2) · · ·un(Xn)] = E[u1(X1)]E[u2(X2)] · · ·E[un(Xn)]

or

E

[
n∏

i=1

ui(Xi)

]
=

n∏
i=1

E[ui(Xi)].

Definition. Let X1, X2, . . . , Xn be random variables and suppose that E[exp(t1X1+

t2X2 + · · · tnXn)] exists for −hi < ti < hi for some positive hi where i = 1, 2, . . . , n.

Then this expectation is the moment generating function of the joint distribution

of the random variables and is denoted:

M(t1, t2, . . . , tn) = E[exp(t1X1 + t2X2 + · · ·+ tnXn)] or MX(t) = E[exp(t′X)].

Note 2.6.C. As in the case of a moment generating function for the distribution

of a single random variable (see Theorem 1.9.2), the moment generating func-

tion of the joint distribution of X1, X2, . . . , Xn uniquely determines the distribu-

tion of the random vector (X1, X2, . . . , Xn). Also, a moment generating function

of the marginal distributions of Xi is M(0, . . . , 0, ti, 0, . . . , 0) for i = 1, 2, . . . , n,

the moment generating function of the marginal distribution of Xi and Xj is

M(0, . . . , 0, ti, 0, . . . , 0, tj, 0, . . . , 0) and so forth, similar to the case of two random

variables (see Note 2.1.D). In addition, we can generalize Theorem 2.4.5 (which

states that the independence of two random variables X1 and X2 are independent

if and only if the joint moment generating function M(t1, t2) is identically equal
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to the product of the marginal moment generating functions M(t1, 0)M(0, t2)) us-

ing mathematical induction to show this equivalence between independence and

expressing the joint moment generating function as the product of the marginal

moment generating functions holds for any finite number of random variables. So

if X1, X2, . . . , Xn are independent if and only if

M(t1, t2, . . . , tn) =
n∏

i=1

M(0, 0, . . . , 0, ti, 0, . . . , 0).

Note. We can find the moment generating function of a linear combination of

random variables, as given in the following theorem.

Theorem 2.6.1. Suppose X1, X2, . . . , Xn are n mutually independent random

variables. Suppose the Moment generating function for xi is Mi(t) for −j1 < t < hi

where hi > 0, for i = 1, 2, . . . , n. Let T =
∑n

i=1 kiXi where k1, k2, . . . , kn are

constants. Then T has the moment generating function given by

MT (i) =
n∏

i=1

Mi(kit) for − min
1≤i≤n

{hi} ≤ t ≤ min
1≤i≤n

{hi}.

Exercise 2.6.2. Let X1, X2, X3 be random variables with joint probability density

function f(x1, x2, x3) = exp(−(x1 + x2 + x3)) for 9 < x1 < ∞, 0 < x2 < ∞, 0 <

x3 < ∞, and 0 elsewhere. (a) Compute P (X1 < X2 < X3) and P (X1 = X2 < X3).

Solution. For X1 < X2 < X3, we consider the following sets in the coordinate

planes and R3:
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We have

P (X1 < X2 < X3) =

∫ ∞

−∞

∫ x3

−∞

∫ x2

−∞
f(x1, x2, x3)dx1 dx2 dx3

=

∫ ∞

0

∫ x3

0

∫ x2

0
e−(x1+x2+x3) dx1 dx2 dx3 =

∫ ∞

0

∫ x3

0
−e−(x1+x2+x3)

∣∣∣∣x1=x2

x1=0
dx2 dx3

=

∫ ∞

0

∫ x3

0
−e−(2x2+x3) + e−(x2+x3) dx2 dx3 =

∫ ∞

0

1

2
e−(2x2+x3) − e−(x2+x3)

∣∣∣∣x2=x3

x2=0
dx3

=

∫ ∞

0

1

2
e−3x3 − e−2x3 − 1

2
e−x3 + e−x3 dx3 =

∫ ∞

0

1

2
e−3x3 − e−2x3 +

1

2
e−x3 dx3

=

(
−1

6
e−3x3 +

1

2
e−2x3 − 1

2
e−x3

)∣∣∣∣x3=∞

x3=0
= 0−

(
−1

6
+

1

2
− 1

2

)
=

1

6
.

For X1 = X2 < X3, we consider the following set in R3:

So we similarly have

P (X1 = X2 < X3) =

∫ ∞

−∞

∫ x3

−∞

∫ x2

x2

f(x1, x2, x3) dx1 dx2 dx3
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=

∫ ∞

0

∫ x3

0

∫ x2

x2

e−(x1+x2+x3) dx1 dx2 dx3 =

∫ ∞

0

∫ x3

0
0 dx2 dx3 = 0.

(b) Determine the joint moment generating function of X1, X2, and X3. Are

these random variables independent?

Solution. The moment generating function of the joint distribution of X1, X2, X3

is by definition

M(t1, t2, t3) = E[exp(t1X1 + t2X2 + t2X3)]

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
et1x1+t2x2+t3x3e−(x1+x2+x3) dx1 dx2 dx3

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
e(t1−1)x1+(t2−1)x2+(t3−1)x3 dx1 dx2 dx3

=

∫ ∞

0

∫ ∞

0

1

t1 − 1
e(t1−1)x1+(t2−1)x2+(t3−1)x3

∣∣∣∣x1=∞

x1=0
dx2 dx3 if t1 6= 1

=

∫ ∞

0

∫ ∞

0

1

1− t1
e(t2−1)x2+(t3−1)x3 dx2 dx3 if t1 < 1

=

∫ ∞

0

1

(1− t1)(t2 − 1)
e(t2−1)x2+(t3−1)x3

∣∣∣∣x2=∞

x2=0
dx3 if t2 6= 1

=

∫ ∞

0

1

(t1 − 1)(t2 − 1)
e(t3−1)x3 dx3 if t2 < 1

=
1

(1− t1)(1− t2)(t3 − 1)
e(t3−1)x3

∣∣∣∣x3=∞

x3=0
if t3 6= 1

=
1

(1− t1)(1− t2)(1− t3)
if t3 < 1

and notice that this holds (and is positive) for t1 < 1, t2 < 1, and t3 < 1 (so that

we can take h1 = h2 = h3 = 1).

To check independence, we have the marginal probability density functions

f1(x1) =

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x3) dx2 dx3 =

∫ ∞

0

∫ ∞

0
e−(x1+x2+x3) dx2 dx3
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=

∫ ∞

0
−e−(x1+x2+x3)

∣∣∣∣x2=∞

x2=0
dx3 =

∫ ∞

0
0 + e−(x1+x3) dx3

= −e−(x1+x2)|x3=∞
x3=0 = 0 + e−x1 = e−x1

and similarly f2(x + 2) = e−x2, and f3(x3) = e−x3. Since

f(x1, x2, x3) = e−(x1+x2+x3) = x−x1e−x2e−x3 = f1(x1)f2(x2)f3(x3)

then be definition X1, X2, X3 are mutually independent.

Note. A finite collection of random variables X1, X2, . . . , Xn can be “pairwise

independent” (i.e., Xi and Xj are independent for any distinct i and j) but not

mutually independent. In Remark 2.6.1, the text gives an example which they

attribute to Sergei N. Bernstein (March 5, 1880–October 26, 1968). Let X1, X2, X3

have the joint probability mass function

p(x1, x2, x3) =

 1/4 if (x1, x2, x3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}

0 elsewhere.

For i 6= j, the joint probability mass function of Xi and Xj (obtained from p by

summing over Xk where i 6= k 6= j) is

pij(xi, xj) =

 1/4 if (xi, xj) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}

0 elsewhere,

whereas the marginal probability mass function of Xi (obtained from pij be sum-

ming over j) is

pi(xi) =

 1/2 if xi ∈ {0, 1}

0 elsewhere.
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Since for i 6= j, pij(xi, xj) ≡ pi(xi)pj(xj) (since 1/4 = (1/2)(1/2)) then Xi and Xj

are independent and so X1, X2, X3 are pairwise independent. However, p(x1, x2, x3) 6≡

p1(x1)p2(x2)p3(x3) since, for example, p(1, 1, 1) = 1/4 but p1(1)p2(1)p3(1) = 1/8.

So X1, X2, X3 are not mutually independent.

Note. By convention, the text will usually simply stated that random variables

are “independent” when they maean that the random variables are mutually inde-

pendent (so the term takes on a stronger meaning than pairwise independent).

Definition. If random variables X1, X2, . . . , Xn are mutually independent and

have each has the same probability density/mass distribution then the random

variables are independent and identically distributed (abbreviated idd).

Note. The proof of the next result (a corollary to Theorem 2.6.1) is to be given

in Exercise 2.6.8.

Corollary 2.6.1. Suppose X1, X2, . . . , Xn are independent and identically dis-

tributed random variables with common moment generating function M(t) for

−h < t < h, where h > 0. Let T =
∑n

i=1 Xi. Then T has the moment generating

function given by MT (t) = (M(t))n for −h < t < h.
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Note. The remainder of this section is declared optional by Hogg, McKean, Craig

(since it requires matrix algebra!). We want to extend the idea of covariance for

two random variables (defined in Section 2.5) to several random variables.

Definition. Let X1, X2, . . . , Xn be random variables and let X = (X1, X2, . . . , Xn)
′ =

(X1, X2, . . . , Xn)
T . We define the expectation of X as

E[X] = (E(X1), E(X2), . . . , E(Xn))
′ = (E(X1), E(X2), . . . , E(Xn))

T .

For a set of random variables {Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ m}, define the m × n

random matrix W = [Wij] and the expectation of random matrix W as the m× n

matrix E[W] = E(Xij)].

Theorem 2.6.2. Let V and W be m×n matrices of random variables, let A and

C be k×m matrices of constants, and let B be an n× ` matrix of constants. Then

E[AV +CW] = AE[V] +CE[W] and E[AWB] = AE[E]B; that is, E is a linear

operator on matrices of random variables.

Definition. Let X1, X2, . . . , Xn be random variables, let X = (X1, X2, . . . , Xn)
′ =

(X1, X2, . . . , Xn)
T , and suppose σ2

i = Var(i) < ∞ for i = 1, 2, . . . , n. The mean of

X is µ = E[X]. The variance-covariance matrix is

Cov(X) = E[(X− µ)(X− µ)′] = E[(X− µ)(X− µ)T ] = [σij],

where σii denotes σ2
i .
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Theorem 2.6.3. Let X = (X1, X2, . . . , Xn)
′ = (X1, X2, . . . , Xn)

T be an n-dimensional

random vector, such that σ2
i = σii = Var(Xi) < ∞. Let A be an m× n matrix of

constants. Then Cov(X) = E[XX′] = µµ′ and Cov(AX) = ACov(X)A′.

Definition. An n×n matrix A is positive semi-definite if for all (column) vectors

a ∈ Rn we have the scalar quantity a′Cov(X)a = aTCov(X)a ≥ 0.

Corollary 2.6.A. All variance-covariance matrices are positive semi-definite.
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