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Section 2.7. Transformations for

Several Random Variables

Note. We now extend the ideas of Section 2.2, “Transformations: Bivariate Ran-

dom Variables,” from two random variables to several random variables. As a

consequence, we have no new theorems or definitions in this section, we only have

some new computational techniques. This requires us to consider the change of

variables result for for integrals of several variables, which we now state.

Theorem 2.7.A. Consider an integral of the form∫
· · ·
∫∫

A

f(x1, x2, . . . , xn) dx1 dx2 · · · dxn

where A ⊂ S ⊂ Rn is a “nice” (i.e., measurable) set and f : Rn → Rn is an

integrable function on S. Let

y1 = u1(x1, x2, . . . , xm), y2 = u2(x1, x2, . . . , xn), . . . , yn = un(x1, x2, . . . , xn)

define a one to one transformation that maps S ⊂ Rn onto T ⊂ Rn. Let the

first partial derivatives of the inverse functions be continuous and let the n × n

determinant, called the Jacobian of the transformation,

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1/∂y1 ∂x1/∂y2 · · · ∂x1/∂yn

∂x2/∂y1 ∂x2/∂y2 · · · ∂x2/∂yn

...
... . . . ...

∂xn/∂y1 ∂xn/∂y2 · · · ∂xn/∂yn

∣∣∣∣∣∣∣∣∣∣∣∣
not be identically zero in T . Then∫

· · ·
∫∫

A

f(x1, x2, . . . , xn) dx1 dx2 · · · dxn
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=

∫
· · ·
∫∫

B

f(w1(y1, y2, . . . , yn), w2(y1, y2, . . . , yn),

. . . , wn(y1, y2, . . . , yn))|J | dy1 dy2 · · · dyn.

Note. For a more general statement of the above result, see Peter D. Lax’s “Change

of Variables in Multiple Integrals,” The American Mathematical Monthly, Vol. 106

#6 (June-July) 1999, 497–501.

Note 2.7.A. With the notation of Theorem 2.7.A we have, as in the case of

two random variables, that if the probability density function of X1, X2, . . . , Xn is

f(x1, x2, . . . , xn) then the probability density function of Y1, Y2, . . . , Yn is

g(y1, y2, . . . , yn) = f(w1(y1, y2, . . . , yn), w2(y1, y2, . . . , yn), . . . , wn(y1, y2, . . . , yn))|J |

for (y1, y2, . . . , yn) ∈ T and g is 0 elsewhere.

Example 2.7.1. Let random variables X1, X2, X3 have the joint probability den-

sity function

f(x1, x2, x3) =

 48x1x2x3 for 0 < x1 < x2 < x3 < 1

0 elsewhere.

If Y1 = X1/X2, Y2 = X2/X3, and Y2 = X3 (so that u1(x1, x2, x3) = x1/x2,

u2(x1, x2, x3) = x2/x3, and u3(x1, x2, x3) = x3) then the inverse transformation

is given by x1 = w1(y1, y2, y3) = y1y2y3, x2 = w2(y1, y2, y3) = y2y3, and x3 =
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u2(y1, y2, y3) = y3 (solve in order for X3, X2, and then X1). So the Jacobian is

J =

∣∣∣∣∣∣∣∣∣
∂x1/∂y1 ∂x1/∂y2 ∂x1/∂y3

∂x2/∂y1 ∂x2/∂y2 ∂x2/∂y3

∂x3/∂y1 ∂xn/∂y2 ∂x3/∂y3

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
y2y3 y1y3 y1y2

0 y3 y2

0 0 1

∣∣∣∣∣∣∣∣∣ = y2y
2
3.

The four inequalities defining the support of f , 0 < x1 < x2 < x3 < 1, correspond

to the inequalities 0 < y1y2y3 < y2y3 < y3 < 1 (notice that this implies that each yi

is positive) which yield 0 < y3 < 1, 0 < y2 < 1, and 0 < y1 < 1 so that the support

T of the joint probability density function g of Y1, Y2, Y3 is T = {(y1, y2, y3) | 0 <

yi < 1 for i = 1, 2, 3}. This implies

g(y1, y2, y3) = 48(y1y2y3)(y2y3)(y3)|y2y
2
3| = 48y1y

3
2y

5
3

where 0 < yi < 1 for i = 1, 2, 3 and 0 elsewhere. By Note 2.1.C, the marginal

probability density functions are

g1(y1) =

∫ ∞

−∞

∫ ∞

−∞
g(y1, y2, y3) dy2 dy3 =

∫ 1

0

∫ 1

0
48y1y

3
2y

5
3 dy2 dy3

=

∫ 1

0
48y1

(
1

4
y4

2

)
y5

3

∣∣∣∣y2=1

y2=0
dy3 =

∫ 1

0
12y1y

5
3

= 12y1

(
1

6
y6

3

)∣∣∣∣y3=1

y3=0
= 2y1 for 0 < y1 < 1,

g2(y2) =

∫ ∞

−∞

∫ ∞

−∞
g(y1, y2, y3) dy1 dy3 =

∫ 1

0

∫ 1

0
48y1y

3
2y

5
3 dy1 dy3

=

∫ 1

0
48

(
1

2
y2

1

)
y3

2y
5
3

∣∣∣∣y1=1

y1=0
dy3 =

∫ 1

0
24y3

2y
5
3 dy3

= 24y3
2

(
1

6
y6

3

)∣∣∣∣y3=1

y3=0
= 4y3

2 for 0 < y2 < 1, and

g3(y3) =

∫ ∞

−∞

∫ ∞

−∞
g(y1, y2, y3) dy1 dy3 =

∫ 1

0

∫ 1

0
48y1y

3
2y

5
3 dy1 dy2
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=

∫ 1

0
48

(
1

2
y2

1

)
y3

2y
5
3

∣∣∣∣y1=1

y1=0
dy2 =

∫ 1

0
24y3

2y
5
3 dy2

= 24

(
1

4
y4

2

)
y5

3

∣∣∣∣y2=1

y2=0
= 6y5

3 for 0 < y3 < 1.

Notice that g(y1, y2, y3) = g1(y1)g2(y2)g3(y3) so that Y1, Y2, Y3 are mutually inde-

pendent (by definition; see Section 2.6).

Example 2.7.2. Let random variables X1, X2, X3 be independent and identical in

distribution (“idd,” see Section 2.6) with common probability density function

f(x) =

 e−x for 0 < x < ∞

0 elsewhere.

Since X1, X2, X3 are mutually independent then the joint probability density func-

tion of X1, X2, X3 is

fX1,X2,X3
(x1, x2, x3) = fX1

(x1)fX2
(x2)fX3

(x3) =

 e−x1e−x2e−x3 for 0 < xi < ∞, i = 1, 2, 3

0 elsewhere.

Define random variables Y1, Y2, Y3 as Y1 =
X1

X1 + X2 + X3
, Y2 =

X2

X1 + X2 + X3
,

Y3 = X1+X2+X3. So the inverse transformation is (as is easily verified) x1 = y1y3,

x2 = y2y3, and x3 = y3 − y1y3 − y2y3. So the Jacobian is

J =

∣∣∣∣∣∣∣∣∣
∂x1/∂y1 ∂x1/∂y2 ∂x1/∂y3

∂x2/∂y1 ∂x2/∂y2 ∂x2/∂y3

∂x3/∂y1 ∂x3/∂y2 ∂x3/∂y3

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
y3 0 y1

0 y3 y2

−y3 −y3 1− y1 − y2

∣∣∣∣∣∣∣∣∣
= (y3)((y3)(1− y1− y2)− (y2)(−y3))+ (y1)(0− (y3)(−y3)) = y2

3(1− y1)+ y1y
2
3 = y2

3.

The support S of X1, X2, X3, S = {(x1, x2, x3) | 0 < xi < ∞, i = 1, 2, 3}, maps

onto the set T where 0 < y1y3 < ∞, 0 < y2y3 < ∞, 0 < y3(1 − y1 − y2) < ∞, so
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the support of the joint probability g of Y1, Y2, Y3 is T = {(y1, y2, y3) | 0 < y1, 0 <

y2, 0 < y3, 0 < 1− y1 − y2}. In the y1y2-plane we have the region:

So T is then a right triangular cylinder with this as its base and with 0 < y3. The

joint probability density function is then

g(y1, y2, y3) = e−(y1y3)e−(y2y3)e−(y3−y1y3−y2y3)|y2
3| = y2

3e
−y3

where (y1, y2, y3) ∈ T , and 0 elsewhere. By Note 2.1.C, the marginal probability

density functions are

g1(y1) =

∫ 1−y1

0

∫ ∞

0
y2

3e
−y3 dy3 dy2

=

∫ 1−y1

0

(
−y2

3e
−y3 + 2

∫
y3e

−y3 dy3

)∣∣∣∣∞
0

dy2 by integration by parts

=

∫ 1−y1

0
(−y2

3e
−y3 + 2(−y3e

−y3 − e−y3)

∣∣∣∣∞
0

dy2 by integration by parts

= =

∫ 1−y1

0
(2) dy2 = 2y2

∣∣∣∣y2=1−y1

y2=0
= 2(1− y1) where 0 < y1 < 1,

g2(y2) =

∫ 1−y2

0

∫ ∞

0
y2

3e
−y3 dy3 dy1 = 2(1− y2) where 0 < y2 < 1 (as with g1(y1))

g3(y3) =

∫ 1

0

∫ 1−y1

0
y2

3e
−y3 dy2 dy1 =

∫ 1

0
y2

3e
−y3(1− y1) dy1

= y2
3e
−y3(y1 − y2

1/2)

∣∣∣∣y1=1

y1=0
=

1

2
y2

3e
−y3 where 0 < y3.
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Notice that g(y1y2, y3) = y2
3e
−y3 6= g(y1)g2(y2)g3(y3) = 2(1 − y1)(1 − y2)y

2
3e
−y3 so

that Y1, Y2, Y3 are not mutually independent (by definition; see Section 2.6). Hence,

the joint probability density function of Y1 and Y3 (obtained from g by integrating

over y2) is

g13(y1, y3) =

∫ 1−y1

0
y2

3e
−y3 dy2 = (1− y1)y

2
3e
−y3 where 0 < y1 < 1 and 0 < y3.

So g13(y1, y3) = g1(y1)g3(y3) = (2(1− y1))(y
2
3e
−y3/2) so that Y1 and Y3 are indepen-

dent. Similarly, g12(y1, y2) =
∫∞

0 y2
3e
−y3 dy3 = 2 (as shown above) where 0 < y1,

0 < y2, and y1 + y2 < 1. So g12(y1, y2) 6= g1(y1)g2(y2) = (2(1− y1))(2(1− y2)) and

Y1 and Y2 are dependent. �

Note. We now describe a transformation which is not one-to-one. Let X be a

random variable with the Cauchy probability density function f(x) =
1

π(1 + x2)
where −∞ < x < ∞, and let Y = X2. We want the probability density function

of Y . Now the support of X is S = R and the transformation y = x2 maps S

onto T = {y | 0 ≤ y < ∞}, but the transformation is two-to-one except at x = 0.

Since X is a continuous random variable, no probabilities change if we redefine

(f(0) as 0 (instead of 1/π). This then modifies the support of f so that it becomes

S = R \ {0} and modifies T to T = {y | 0 < y < ∞}. Next we partition S as

A1 ∪· A2 where A1 = {x | −∞ < x < 0} and A2 = {x | 0 < x < ∞}. Then

the transformation y = x2 maps A1 onto T in a one-to-one way and has inverse

x = −√y, and y = x2 maps A2 onto T in a one-to-one way and has inverse

x =
√

y. Consider the probability P (Y ∈ B) where B ⊂ T (and B is measurable).

Let A3 = {x | x = −√y, y ∈ B} ⊂ A1 and A4 = {x | x =
√

y, y ∈ B} ⊂ A2. Then
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Y ∈ B if and only if either X ∈ A3 or X ∈ A4. So

P (Y ∈ B) = P (X ∈ A3) + P (X ∈ A4) =

∫
A3

f(x) dx +

∫
A4

f(x) dx.

In the first integral we have x = −√y and the Jacobian is J1 =
d

dx
0−√y] =

−1

2
√

y
;

in the second integral we have x =
√

y and the Jacobian is J2 =
d

dx
[
√

y] =
1

2
√

y
(of course the Jacobian is just the coefficient of “dy” in this change of variables).

Also, x = −√y maps A3 onto B and x =
√

y maps A4 onto B. So we have

P (Y ∈ B) =

∫
B

f(−√y)

∣∣∣∣ −1

2
√

y

∣∣∣∣ dy +

∫
B

f(
√

y)

∣∣∣∣ 1

2
√

y

∣∣∣∣ dy

=

∫
B

(f(−√y) + f(
√

y))
1

2
√

y
dy.

Hence the probability density function of Y is g(y) =
1

2
√

y
f(−√y) + f(

√
y)) for

y ∈ T . Since f is the Cauchy probability density function (well, except at the

single point x = 0) we have

g(y) =
1

2
√

y

(
1

π(1 + (−√y)2)
+

1

π(1 + (
√

y)2)

)
=

1

π
√

y(1 + y)
for 0 < y < ∞.

Note. Inspired by the previous example, we now consider continuous random vari-

ables X1, X2, . . . , Xn with joint probability density function f(x1, x2, . . . , xn). Let

S be the support of f and consider the transformation y1 = u1(x1, x2, . . . , xn), y2 =

u2(x1, x2, . . . , xn), . . . , yn = un(x1, x2, . . . , xn) which maps S onto T where T is in

the y1y2 · · · yn-space. But the transformation may not be one-to-one. Suppose that

S can be written as the union of a finite number, say k, of mutually disjoint sets

A1, A2, . . . , Ak, so that S = ∪· k
i=1Ai, and the transformation is one-to-one on each
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Ai and maps each Ai onto T . Thus to each point in T there corresponds exactly

one point in each of A1, A2, . . . , Ak (so the transformation is a k-to-one mapping).

Since the transformation is one-to-one on each Ai and onto T then there is an

inverse transformation mapping T onto Ai. Say the inverse transformation is

x1 = w1i(y1, y2, . . . , yn), x2 = w2i(y1, y2, . . . , yn), . . . , xn = wni(y1, y2, . . . , yn)

for i = 1, 2, . . . , k. Suppose the first partial derivatives are continuous and define

for i− 1, 2, . . . , k

Ji =

∣∣∣∣∣∣∣∣∣∣∣∣

∂w1i/∂y1 ∂w1i/∂y2 · · · ∂w1i/∂yn

∂w2i/∂y1 ∂w2i/∂y2 · · · ∂w2i/∂yn

...
... . . . ...

∂wni/∂y1 ∂wni/∂y2 · · · ∂wni/∂yn

∣∣∣∣∣∣∣∣∣∣∣∣
and suppose each Ji is not identically equal to 0 in T . As in the previous example,

P (X ∈ A) =
k∑

i=1

P (X ∈ Ai) =
k∑

i=1

(∫
Ai

f(~x) d~x

)

=
k∑

i=1

(∫
B

f(x1, x2, . . . , xn) dx1 dx2 · · · dxn

)

=
k∑

i=1

∫
B

f(w1i(y1, y2, . . . , yn), w2i(y1, y2, . . . , yn),

. . . , wni(y1, y2, . . . , yn))|Ji| dy1 dy2 · · · dyn

=
k∑

i=1

(∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

−∞
f(w1i(y1, y2, . . . , yn), w2i(y1, y2, . . . , yn),

· · · , wni(y1, y2, . . . , yn))|Ji| dy1 dy2 · · · dyn

)
since the support of f is S

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
∞∞

−∞

(
k∑

i=1

f(w1i(y1, y2, . . . , yn), w2i(y1, y2, . . . , yn),
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· · · , wni(y1, y2, . . . , yn))|Ji| dy1 dy2 · · · dyn

)
=

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

−∞
g(y1, y2, . . . , yn) dy1 dy2 · · · dyn.

So the joint probability density function of Y1 = u1(X1, X2, . . . , Xn), Y2 = u2(X1, X2,

. . . , Xn), . . . , Yn = un(X1, X2, . . . , Xn) is

g(y1, y2, . . . , yn) =
k∑

i=1

f(w1i(y1, y2, . . . , yn), w2i(y1, y2, . . . , yn), . . . , wni(y1, y2, . . . , yn))|Ji|

for (y1, y2, . . . , yn) ∈ T and is 0 elsewhere.

Example 2.7.3. Let X1 and X2 be continuous random variables with joint prob-

ability density function over the unit circle by

f(x1, x2)−

 1/π for 0 < x2
1 + x2

2 < 1

0 elsewhere.

Define random variables Y1 = X2
1 + X2

2 and Y2 =
X2

1

X2
1 + X2

2
. Then y1y2 = x2

1 and

x2
2 = y1 − x2

1 = y1 − y1y2 = y1(1− y2). Notice y2 =
x2

1

x2
1 + x2

2
satisfies 0 < y1 < 1 so

that the support S = {(x1, x2) | 0 < x2
1 + x2

2 < 1} is mapped onto T = {(y1, y2) |

0 < yi < 1, i = 1, 2}. But each (y1, y2) ∈ T is the image of four points in S, namely

(x1, x2) = (
√

y1y2,
√

y1(1− y2)),

(x1, x2) = (
√

y1y2,−
√

y1(1− y2)),

(x1, x2) = (−√y1y2,
√

y1(1− y2)), and

(x1, x2) = (−√y1y2,−
√

y1(1− y2)).

We find that |Ji| =
1

4
√

y2(1− y2)
for i = 1, 2, 3, 4; for example, based on the
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one-to-one and onto mapping (x1, x2) = (
√

y1y2,−
√

y1(1− y2)) we have

J2 =

∣∣∣∣∣∣∣
1
2

√
y2

y1

1
2

√
y1

y2

−1
2

√
1−y2

y1

1
2

√
y1

1−y2

∣∣∣∣∣∣∣ =
1

4

√
y21− y2

+

1

4

√
1− y2

y2

=
1

4

√
y2

2

y2(1− y2)
+

1

4

√
(1− y2)2

y2(1− y2)
=

1

4
√

y2(1− y2)
.

So the joint probability density function of Y1 and Y2 is

g(y1, y2) = f(
√

y1y2,
√

y1(1− y2))|J1|+ f(
√

y1y2,−
√

y1(1− y2))|J2|

+f(−√y1y2,
√

y1(1− y2))|J3|+ f(−√y1y2,−
√

y1(1− y2))|J4|

= 4

(
1

π

)
1

4
√

y2(1− y2)
=

1

π
√

y2(1− y2)

for (y1, y2) ∈ T and 0 elsewhere. Notice that Theorem 2.4.1 implies that Y1 and Y2

are independent.

Note. We can extend the moment generating function concept from the bivariate

case (see Definition 2.1.2) to the multivariate case. With Y = g(X1, X2, . . . , Xn)

an df(x1, x2, . . . , xn) the joint probability density function of X1, X2, . . . , Xn, the

moment generating function of Y is

E(etY ) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

−∞
rtg(x1,x2,...,xn)f(x1, x2, . . . , xn) dx1 dx2 · · · dxn

where the random variables are continuous. Hogg and Craig claim (see page 149):

“This procedure is particularly useful in cases in which we are dealing with linear

functions of independent random variables.” This idea is illustrated in Example

2.7.4 and the following example (the linear combination allows us to expand the

exponential).
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Example 2.7.5. Let X1, X2, X3, X4 be independent continuous random variables

with common probability density function

f(x) =

 e−x for x > 0

0 elsewhere.

Define Y = X1 + X2 + X3 + X4. The moment generating function of Y is

E(etY ) = E(et(X1+X2+X3+X4)) = E(eyX1etX2etX3eyX4) = E(etX1)E(etX2)E(etX3)E(etX4)

by Theorem 2.4.4, since X1, X2, X3, X4 are independent. In Example 1.9.A we saw

that E(etX) =
1

1− t
, so that E(etXi) = 1

1−t for i = 1, 2, 3, 4 and hence E(etY ) =

1
(1−t)4 . It will be shown in Section 3.3, “The Γ, χ2, and β Distributions,” that this is

the moment generating function of a distribution with probability density function

fY (y) =

 1
3!y

3e−y where 0 < y < ∞

0 elsewhere.

So this is the probability density function of Y (this is the Γ-distribution Γ(3, 0)).
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