Section 2.8. Linear Combinations of Random Variables

Note. We considered linear combinations of random variables in Section 2.6, "Extension to Several Variables," in connection with moment generating functions (see Theorem 2.6.1 and Corollary 2.6.1). In this section we consider expectations of random variables, variances, and covariances of linear combinations of random variables. With $X_{1}, X_{2}, \ldots, X_{n}$ as the random variables, we define random variable $T=\sum_{i=1}^{n} a_{i} X_{i}$ where each a_{i} is some constant.

Theorem 2.8.1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables and define $T=\sum_{i=1}^{n} a_{i} X_{i}$. Suppose $E\left[X_{i}\right]=\mu_{i}$ for $i=1,2, \ldots, n$. Then $E[T]=\sum_{i=1}^{n} a_{i} \mu_{i}$.

Note. To find the variance of T, we first consider covariances.

Theorem 2.8.2. Let $X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{m}$ be random variables and define $T=\sum_{i=1}^{n} a_{i} X_{i}$ and $W=\sum_{j=1}^{m} b_{j} Y_{j}$. If $E\left[X_{i}^{2}\right]<\infty$ and $E\left[Y_{j}^{2}\right]<\infty$ for $i=$ $1,2, \ldots, n$ and $j=1,2, \ldots, m$, then

$$
\operatorname{Cov}(T, W)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

Corollary 2.8.1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables and define $T=\sum_{i=1}^{n} a_{i} X_{i}$. Provided $E\left[X_{i}^{2}\right]<\infty$ for $i=1,2, \ldots, n$, then

$$
\operatorname{Var}(T)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+s \sum_{i<j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Corollary 2.8.2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables and define $T=\sum_{i=1}^{n} a_{i} X_{i}$. With $\operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$ for $i=1,2, \ldots, n$ we have $\operatorname{Var}(T)=\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}$.

Note. We now give definitions which are our first step from mathematical probability to mathematical statistics.

Definition 2.8.1. If the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed; that is, each X_{i} has the same distribution, then these random variables constitute a random sample of size n from that common distribution. We abbreviate independent and identically distributed as "iid."

Definition. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from some distribution with mean μ and variance σ^{2}. The sample mean is $\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$. The sample variance is $S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$.

Theorem 2.8.A. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed random variables with common mean μ and variance σ^{2}. We have

$$
E[\bar{X}]=\mu, \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}, S^{2}=\frac{\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}}{n-1}, \text { and } E\left[S^{2}\right]=\sigma^{2} .
$$

Note. Since $E[\bar{X}]=\mu$ and $E\left[S^{2}\right]=\sigma^{2}$, then \bar{X} is an unbiased estimate of μ, and S^{2} is an unbiased estimate of σ^{2}.

