Section 2.8. Linear Combinations of

Random Variables

Note. We considered linear combinations of random variables in Section 2.6, "Extension to Several Variables," in connection with moment generating functions (see Theorem 2.6.1 and Corollary 2.6.1). In this section we consider expectations of random variables, variances, and covariances of linear combinations of random variables. With X_1, X_2, \ldots, X_n as the random variables, we define random variable $T = \sum_{i=1}^{n} a_i X_i$ where each a_i is some constant.

Theorem 2.8.1. Let X_1, X_2, \ldots, X_n be random variables and define $T = \sum_{i=1}^n a_i X_i$. Suppose $E[X_i] = \mu_i$ for $i = 1, 2, \ldots, n$. Then $E[T] = \sum_{i=1}^n a_i \mu_i$.

Note. To find the variance of T, we first consider covariances.

Theorem 2.8.2. Let $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$ be random variables and define $T = \sum_{i=1}^n a_i X_i$ and $W = \sum_{j=1}^m b_j Y_j$. If $E[X_i^2] < \infty$ and $E[Y_j^2] < \infty$ for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$, then

$$Cov(T, W) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(X_i, Y_j).$$

Corollary 2.8.1. Let X_1, X_2, \ldots, X_n be random variables and define $T = \sum_{i=1}^n a_i X_i$. Provided $E[X_i^2] < \infty$ for $i = 1, 2, \ldots, n$, then

$$Var(T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + s \sum_{i < j} a_i a_j Cov(X_i, X_j).$$

Corollary 2.8.2. Let X_1, X_2, \ldots, X_n be independent random variables and define $T = \sum_{i=1}^n a_i X_i$. With $\text{Var}(X_i) = \sigma_i^2$ for $i = 1, 2, \ldots, n$ we have $\text{Var}(T) = \sum_{i=1}^n a_i^2 \sigma_i^2$.

Note. We now give definitions which are our first step from mathematical probability to mathematical statistics.

Definition 2.8.1. If the random variables $X_1, X_2, ..., X_n$ are independent and identically distributed; that is, each X_i has the same distribution, then these random variables constitute a $random\ sample$ of size n from that common distribution. We abbreviate independent and identically distributed as "iid."

Definition. Let X_1, X_2, \ldots, X_n be a random sample of size n from some distribution with mean μ and variance σ^2 . The sample mean is $\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$. The sample variance is $S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$.

Theorem 2.8.A. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with common mean μ and variance σ^2 . We have

$$E[\overline{X}] = \mu, \ \operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n}, \ S^2 = \frac{\sum_{i=1}^n X_i^2 - n\overline{X}^2}{n-1}, \ \text{and} \ E[S^2] = \sigma^2.$$

Note. Since $E[\overline{X}] = \mu$ and $E[S^2] = \sigma^2$, then \overline{X} is an *unbiased* estimate of μ , and S^2 is an unbiased estimate of σ^2 .

Revised: 2/18/2020