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Chapter 3. Some Special Distributions

Section 3.1. The Binomial and Related Distributions

Note. In this section, we consider Bernoulli trials, binomial distributions, multi-

nomial distributions, geometric distributions, and hypergeometric distributions.

Definition. A Bernoulli experiment is a random experiment the outcome of which

can be classified in exactly one of two mutually exclusive exhaustive ways (usually

termed a “success” and a “failure”). A sequence of Bernoulli trials occurs when a

Bernoulli experiment is performed several independent times so that the probability

of success, say p, remains the same from trial to trial.

Note. The Bernoulli family of the late 17th and early 18th century included a

number of influential mathematicians (including his brother Johann and his nephew

Daniel). Influenced by Leibniz’s work, Jacob Bernoulli studies series and differential

equations (the “Bernoulli [differential] equation” describes the isochrone problem;

a solution to the differential equation gives the curve along which a particle will

descend under gravity from any point to the bottom in the same amount of time, no

matter the starting point). He is therefore recognized as contributing to mechanics

and the calculus of variations. His contributions to probability include his Law of

Large Numbers published in 1689, which implies that as an experiment is repeated

a large number of times, then the relative frequency with which an event occurs
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approaches the probability of the event. In 1713, Jacob Bernoulli’s Ars Conjectandi

(“The Art of Conjecturing”) was published posthumously by his nephew, Niklaus.

This work included information on combinatorics related to counting and appli-

cations to games of chance concerning cards or dice. This is where the idea of a

Bernoulli trail first appears. This historical information is based on the Wikipedia

page on Bernoulli, the Wikipedia page on Ars Conjectandi, and the Saint Andrews

MacTutor page on Jacob Bernoulli.

Jacob (Jacques) Bernoulli, January 6, 1655–August 16, 1705

Image from the Wikipedia page on Bernoulli

Note. Define random variable X associated with a Bernoullis trial as:

X(success) = 1 and X(failure) = 0.

The probability mass function of X is

p(x) = px(1− p)1−x where x ∈ {0, 1}

https://en.wikipedia.org/wiki/Jacob_Bernoulli
https://en.wikipedia.org/wiki/Jacob_Bernoulli
https://en.wikipedia.org/wiki/Ars_Conjectandi
https://mathshistory.st-andrews.ac.uk/Biographies/Bernoulli_Jacob/
https://mathshistory.st-andrews.ac.uk/Biographies/Bernoulli_Jacob/
https://en.wikipedia.org/wiki/Jacob_Bernoulli
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and p is the probability of success. The expected value of X is

µ = E[X] =
∑

x

xp(x) = (0)(1− p) + (1)(p) = p,

and the variance is

σ2 = E[(X − µ)2] =
∑

x

(x− µ)2p(x) = (0− p)2(1− p) + (1− p)2(p)

= (p2 + (1− p)p)(1− p) = p(1− p).

So the standard deviation is σ =
√

p(1− p).

Definition. With sample space C = {failure, success} and random variable X

satisfying X(success) = 1 and X(failure) = 0, the probability mass function of X,

p(x) = px(1− p)1−x where x ∈ {0, 1} is the Bernoulli distribution.

Note. Consider a sequence of n independent Bernoulli trials where the probability

of success remains p for each trial. Let X be the random variable equal to the

number of observed successes in the n Bernoulli trials. If we perform the trials

successively and x successes occur (so x ∈ {0, 1, . . . , n}), then the number of ways

of selecting the x positions of the successes is

(
n

x

)
=

n!

x!(n− x)!
. The probability

of x successes and n − x failures (in some particular order) by the multiplicative

rule is px(1−p)n−x. Now x successes and n−x failures can happen in

(
n

x

)
different

ways, so the probability of x successes and n−x failures in not particular order by

finite additivity is

(
n

x

)
px(1− p)n−x. So the probability mass function of X is

p(x) =


(
n
x

)
px(1− p)n−x for x ∈ {0, 1, . . . , n}

0 otherwise.
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By the Binomial Theorem (a + b)n =
n∑

k=0

(
n

k

)
akbn−k and so

∑
x

p(x) =
n∑

x=0

(
n

x

)
px(1− p)n−x = ((p) + (1− p))n = 1,

as needed.

Definition. A random variable X that has a probability mass function of the form

p(x) =


(
n
x

)
px(1− p)n−x for x ∈ {0, 1, . . . , n}

0 otherwise

is said to have a binomial distribution and any such p(x) is a binomial probability

mass function. A binomial distribution is denoted b(n, p). The constants n and p

are the parameters of the binomial distribution.

Note 3.1.A. The moment generating function of a binomial distribution is

M(t) = E[etX ] =
∑

x

etxp(x) =
n∑

x=0

etx

(
n

x

)
px(1− p)n−x

=
n∑

x=0

(
n

x

)
(pet)x(1− p)n−x = (pet + (1− p))n by the Binomial Theorem

= (1− p + pet)n

and this is valid for all t. Notice that M ′(t) = n(1− p + pet)n−1 and

M ′′(t) = n(n− 1)(1− p + pet)n−2(pet)2 + n(1− p + pet)n−1pet

= n(1−p+pet)n− 2pet((n−1)pet+(1−p+pet)) = n(1−p+pet)n−2pet(npet+1−p).
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In Note 1.9.B we see that µ = M ′(0) and Var(X) = σ2 = M ′′(0) = (M ′(0))2. Hence

the mean and variance of the binomial distribution are

µ = M ′(0) = n(1− p + pe(0))n−1pe(0) = np,

and

σ2 = M ′′(0)− (M ′(0))2 = n(1− p + pe(0))n−2pe(0)(npe(0) + 1− p)− (np)2

= np(np + 1− p)− (np)2 = np(1− p).

Example 3.1.2. If random variable X has moment generating function M(t) =(
2

3
+

1

3
et

)5

, then X has a binomial distribution since

M(t) =

(
2

3
+

1

3
et

)5

= (1− p + pet)5,

where p = 1/3 and n = 5. The mean and variance of this binomial distribution are

µ = np = 5/3 and σ2 = np(1 − p) = 10/9. The probability mass function of X is

(by definition):

p(x) =


(5
x

) (1
3

)x (2
3

)5−x
for x ∈ {0, 1, 2, 3, 4, 5}

0 otherwise.

Example 3.1.4. We now establish one form of the Weak Law of Large Numbers.

Let random variable Y be the number of successes in n independent repetitions of a

Bernoulli experiment with probability p of a success, so that Y has the distribution

b(n, p). The ratio Y/n is the relative frequency of success. We’ll show that the
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relative frequency of a success, Y/n, approaches p as n → ∞. By Chebyshev’s

Inequality (Theorem 1.10.3; see Note 1.10.A) we have for all ε > 0 that

P

(∣∣∣∣Yn − p

∣∣∣∣ ≥ ε

)
≤ Var(Y/n)

ε2 =
p(1− p)

nε2 ,

since the mean of Y is pn/n = p and Var(Y/n) = p(1− p)/(nε2) by Exercise 3.1.3.

So for given ε > 0, lim
n→∞

p(1− p)

nε2 = 0 and so (by the Sandwich Theorem, say)

lim
n→∞

P

(∣∣∣∣Yn − p

∣∣∣∣ ≥ ε

)
= 0 so that lim

n→∞
P

(∣∣∣∣Yn − p

∣∣∣∣ < ε

)
= 1.

Since ε > 0 is arbitrary, we see that Y/n → p as n → ∞ (with probability 1; in

some settings, such behavior is referred to as “almost surely” so that we would say

Y/n → p as n →∞ almost surely—see my online notes for Graph Theory 2 [MATH

5450] on 13.3. Variance and notice that Chebyshev’s Inequality in a special setting

is also stated here as Theorem 13.7, and an application in graph theory is given

in Note 13.3.A). This example will be generalized in Section 5.1. Convergence in

Probability, where we will prove the Weak Law of Large Numbers in (see Theorem

5.1.1).

Note. We now show that a sum of independent binomial random variables (each

with the same probability of success) is itself a binomial random variable.

Theorem 3.1.1. Let X1, X2, . . . , Xm be independent random variables such that

Xi has the binomial b(ni, p) distribution for i ∈ {1, 2, . . . ,m}. Let Y =
∑m

i=1 Xi.

Then Y has a binomial b (
∑m

i=1 ni, p) distribution.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-13-3.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-5-1.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-5-1.pdf
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Note. We again consider a sequence of independent Bernoulli trials with constant

probability p of success. But now, for fixed positive integer r, we let Y be the ran-

dom variable giving the total number of failures before the rth success (so random

variable Y + r is the number of trials that are needed to produce r successes). For

the probability mass function of Y , we compute the probability of r − 1 successes

in the first y + r − 1 trials (in any order), followed be a success in the (y + r)th

trial. This probability is(
y + r − 1

r − 1

)
pr−1(1− p)yp =

(
y + r − 1

r − 1

)
pr(1− p)y.

We now name this distribution.

Definition. A distribution with probability mass function

pY (y) =


(
y+r−1
r−1

)
pr(1− p)y for y ∈ {0, 1, 2, . . .}

0 otherwise

is a negative binomial distribution and any such pY (y) is a negative binomial prob-

ability mass function.

Note. In Exercise 3.1.17 it is to be shown that the moment generating function for

the negative binomial distribution is M(t) = pr(1−(1−p)et)−r for r < − log(1−p).

Note. If we take r = 1 in the negative binomial distribution, then the relevant

random variable Y gives the number of failures before the first success. This gives

us another distribution.
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Definition. A distribution with probability mass function

pY (y) =

 p(1− p)y for y ∈ {0, 1, 2, . . .}

0 otherwise

is a geometric distribution. The moment generating function is M(t) = p(1− (1−

p)et)−1.

Note. If we consider a Bernoulli trial with the probability of a success as p (and so

the probability of a failure is 1−p), then with Y as the random variable representing

the number of failures before a success, then Y has the geometric distribution.

Note. To generalize the Binomial Distribution to the Multinomial Distribution,

consider an experiment repeated n times where at each performance of the ex-

periment, there is only one outcome but tat outcome falls into k categories (in-

stead of two , as is the case in a Binomial Distribution, denoted C1, C2, . . . , Ck.

For i ∈ {1, 2, . . . , } let pi be the probability that the outcome of the experi-

ment is an element of Ci and assume that p1 remains constant throughout the

n independent repetitions. Define the random variable Xi as the number of out-

comes that are elements of Ci for i ∈ {1, 2, . . . k − 1} (notice that the number

of outcomes that are elements of Cn, Xn, is determined by X1, X2, . . . , Xn−1 and

Xn = n −X1 −X2 − · · · −Xn−1; more generally, for any 1 ≤ k ≤ n we have that

Xk is determined by X1, X2, . . . Xk−1, Xk+1, . . . , Xn). Now the number of different

arrangements of x1 elements of C1, x2 elements of C2, . . . , and xk elements of Ck
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is (by the Multiplicative Rule , Rule 1 of Section 1.3):(
n

x1

)(
n− x1

x2

)
· · ·

(
n− x1 − x2 − · · · − xk−2

xk−1

)

=
n!

(n− x1)!x1!

(n− x1)!

(n− x1 − x2)!x2!
· · · (n− x1 − x2 − · · · − xk−2)!

(n− x1 − x2 − · · · − xk−1)!xk−1!

=
n!

x1!x2! · · ·xk−2!(n− x1 − x2 · · · − xk−1)!xk!

=
n!

x1!x2! · · ·xk−2!xk−1!xk!
since n− x1 − x2 − · · · − xk−1 = xk,

and the probability of such an event is px1
1 px2

2 · · · pxk

k . So the joint probability mass

function of (X1, X2, . . . , Xk−1) is

P (X1 = x1, X2 = x2, . . . , Xk−1 = xk−1) =
n!

x1!x2! · · ·xk!
px1

1 px2
2 · · · pxk

k

where x1, x2, . . . , xk−1 are nonnegative integers, xk = n − x1 − x2 − · · ·xk−1, and

pk = 1−
∑k−1

j=1 pj.

Definition. Random variables X1, X2, . . . , Xk−1 have a multinomial distribution

with with parameter n and p1, p2, . . . , pk−1 where the probability that Xi is an

element of Ci is pi for i ∈ {1, 2, . . . , k−1}, if the joint moment generating functions

is

M(t1, t2, . . . , tk−1) =
∑ ∑

· · ·
∑ n!

x1!x2! · · ·xK !
(p1e

t1)x1(p2e
t2)x2 · · · (pk−1e

tk−1)xk−1p
xk

k ,

where the multiple sum is taken over all nonnegative integers such that x1 + x2 +

· · ·+ xk−1 ≤ n.
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Note. In a multinomial distribution, the marginal distribution of Xi is the same

as a binomial distribution since it has moment generating function

M(0, 0, . . . , 0, t, 0, . . . , 0) = (pie
ti + (1− pi))

n.

Note/Definition. The marginal generating function of (Xi, Xj), when i < j, is

M(0, 0, . . . , 0, ti, 0, . . . , 0, tj, 0, . . . , 0) = (pie
ti + pje

tj + (1− pi − pj))
n

is a trinomial distribution with parameters n, pi, and pj. Think of these categories

as a “success of type i,” “a success of type j,” and a “failure.”

Note/Definition. Another distribution from the multinomial setting is the con-

ditional distribution of X2 given X1. We have (X1, X2) with the multinormal dis-

tribution (namely, the trinomial distribution) and parameters n, p1, and p2, and

we have X1 with a binomial distribution with parameters n and p1. By Note 2.3.A,

the conditional probability mass function of X2 | X1 is

pX2|X1
(x2 | x1) =

pX1,X2
(x1, x2)

pX1
(x1)

.

Now for the trinomial distribution,

pX1,|X2
(x2 | x1) =

n!

x1!x2!x3!
px1

1 px2
2 px3

3

=
n!

x1!x2!(n− (x1 + x2))!
px1

1 px2
2 (1− (p1 + p2))

n−(x1+x2)

since n = x1 + x2 + x3 and p1 + p2 + p3 = 1, and for the binomial distribution

pX1
(x1) =

(
n

x1

)
px1

1 (1− p1)
n−x1 =

n!

x1!(n− x1)!
px1

1 (1− p1)
n−x1,
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so

pX1|X1
(x1, x2) =

n!px1
1 px2

2 (1− (p1 + p2))
n−(x1+x2)

x1!x2!(n− (x1 + x2))!

x1!(n− x1)!

n!px1
1 (1− p1)n−x1

=
(n− x1)!

x2!(n− (x1 + x2))!

px2
2

(1− p1)x2

((1− p1)− p2)
n−x1−x2

(1− p)n−x1−x2

=

(
n− x1

x2

) (
p2

1− p1

)x2
(

1− p2

1− p1

)n−x1−x2

for 0 ≤ x2 ≤ n − x1. Notice that this is the same as a binomial distribution with

parameters n−x1 and p2/(1−p1). Since the mean of binomial distribution b(n, p) is

np by Note 3.1.A, then the mean of the conditional distribution is (n−X1)p2/(1−

p1).

Definition. Let N, D, n be positive integers. The random variable X with proba-

bility mass function

p(x) =

(
N−D
n−x

)(
D
x

)(
N
n

) for x ∈ {0, 1, . . . , n}

has a hypergeometric distribution with parameters (N, D, n). We take the binomial

coefficients as 0 when the top value is less than the bottom value.

Note. Consider a population of size N which contains D “defectives.” Let X

denote the number of defectives in a sample of size n. If a sample is taken with

replacement then X has a binomial distribution with parameters n and p = D/N .

If the sample is taken without replacement then there are
(
N
n

)
possible samples and

there are
(
N−D
n−x

)(
D
x

)
samples that have x defectives and n−x nondefectives. So this

second situation is an example of a hypergeometric distribution. We introduced

this idea in Example 1.6.2.
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Note. The mean of random variable X with hypergeometric distribution is

E(X) =
n∑

x=0

xp(x) =
n∑

x=1

x

(
N −D

n− x

) (
D

x

)/ (
N

n

)

=
n∑

x=1

x

(
N−D
n−x

)
D!n!(N − n)!

x!(D − x)!N !
=

n∑
x=1

x

(
N−D
n−x

)
D(D − 1)!/(x(x− 1)!(D − x)!)

N(N − 1)!/((N − n)!n!(n− 1)!

= n
D

N

n∑
x=1

(
(N − 1)− (D − 1)

(n− 1)− (x− 1)

)(
D − 1

x− 1

)(
N − 1

n− 1

)−1

= n
D

N
.

We eliminate the sum in the last step because it represents the sum of probabilities

over all possible values of x−1 in the hypergeometric distribution with parameters

(N−1, D−1, n−1), so that the sum is 1. In Exercise 3.1.31 it is to be shown that the

variance of random variable X with hypergeometric distribution with parameters

(N, D, n) is

Var(X) = n
D

N

N −D

N

N − n

N − 1
.
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