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Section 3.2. The Poisson Distribution

Note. In this section, we define the Poisson distribution and see how it is related

to the number of occurrences of an event in various time intervals. We give some

properties (such as the moment generating function) and examples.

Definition. A random variable X with probability mass function

p(x) =

 λxe−λ

x! for x ∈ {0, 1, 2, . . .}

0 elsewhere

where λ > 0, is said to have a Poisson distribution with parameter λ.

Note. Since ex =
∞∑

n=0

xn

n!
for all x ∈ R, then summing over the support of p gives

∞∑
n=0

p(n) =
∞∑

n=0

λne−λ

n!
= e−λ

∞∑
n=0

λn

n!
= (e−λ)(eλ) = 1,

as needed.

Note. Siméon Poisson introduced this distribution in 1837 in Recherches sur la

probabilité des jugements en matière criminelle et matière civile [Research on the

likelihood of judgments in criminal and civil matters] (Paris: Bachelier, Imprimeur-

Libraire pour lex mathématiques, La Physique, #55, 1837); a copy appears online

from the Gallica online digital library.

https://gallica.bnf.fr/ark:/12148/bpt6k110193z/f3.item
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Siméon Denis Poisson, June 21, 1781–April 25, 1840

Image from the MacTutor History of Mathematics Archive page on Poisson

Note 3.2.A. We consider a process that occurs repeatedly through time. Let

Xt denote the number of occurrences of the process over the interval (0, t]. The

range of Xt is {0, 1, 2, . . .}. For k ∈ {0, 1, 2, . . .} and real number t > 0, define the

probability mass function of Xt as P (Xt = k) = g(k, t) (and we take g(0, 0) = 1).

We assume

Axiom 1. g(1, h) = λh + o(h) for a constant λ > 0,

Axiom 1(a). P (Xt+h = n + 1) − P (Xt = n) = g(n + 1, t + h) − g(n, t) =

λh + o(h) for constant λ and for all n ∈ N,

Axiom 2.
∑∞

k=2 g(k, h) = o(h), and

Axiom 2(a).
∑∞

k=2 P (Xt+h = n + k)− P (Xt = n) =
∑∞

k=2 g(n + k, t + h)−

g(n, t) = o(h),

https://mathshistory.st-andrews.ac.uk/Biographies/Poisson/
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Axiom 3. the number of occurrences in nonoverlapping intervals are independent

of one another.

Hogg, McKean, and Craig do not state Axioms 1(a) and 2(a) explicitly, but we

need these ideas in our derivation below. They hint that these are necessary by

stating on in Section 3.3 that “the Axioms (1) and (2) of the Poisson process only

depend on λ and the length of the interval; in particular, they do not depend on

the endpoints of the interval.” See page 178. So we conclude from Axioms 1 and

1(a) that the probability of one occurrence of the process in any interval (t, t + h]

of length h is λh+ o(h). We conclude from Axioms 2 and 2(a) that the probability

of more than one occurrence of the process in any interval (t, t + h] of length h is

o(h). The “little oh” notation o(h) means that o(h) is some function of h satisfying

limh→0 o(h)/h = 0 (see my online Calculus 2 [MATH 1920] notes on 7.4. Relative

Rates of Growth ). From (1) and (2) we have

P (Xt ≥ 1) =
∞∑

k=1

g(k, t) = g(1, t) +
∞∑

k=1

g(k, t) = λt + o(t) + o(t).

So in a small interval of time, say (0, h], P (Xh ≥ 1) = λh+2o(h). So for h “small,”

P (Xh = 1) is approximately proportional to λ, P (Xn > 1) is approximately 0, and

hence P (Xh = 0) is approximately 1 − λh. We now show that Xt has a Poisson

distribution.

Note 3.2.B. Now no events occur in (0, t + h] if and only if no event occur in

(0, t] and no events occur in (t, t + h]. As just discussed, the probability that

no events occur in (0, h] is 1 − λh − 2o(h). Since “o(h)” simply represents some

function of h such that limh→0 o(h)/h = 0, then any scalar multiple of o(h) can be

https://faculty.etsu.edu/gardnerr/1920/12/c7s4.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c7s4.pdf
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“absorbed” into the “o(h)” term. Hence the probability that no events occur in

(0, h] is 1 − λh + o(h), as the text states (see page 168). Since intervals (0, t] and

(t, t + h] do not overlap, by (3) (and the Multiplicative Rule) we have

g(0, t + h) = g(0, t)(1− λh + o(h)).

Therefore,

lim
h→0

g(0, t + h)− g(0, t)

h
= lim

h→0

g(0, t)(1− λh + o(h))− g(0, t)

h

= lim
h→0

(
−λg(0, t) + g(0, t)

o(h)

h

)
= −λg(0, t) + g(0, t) lim

h→0

o(h)

h
= −λg(0, t).

So with g(0, t) as a function of t, it is differentiable and

d

dt
[g(0, t)] = −λg(0, t), or

g′(0, t)

g(0, t)
= −λ

where the prime indicates differentiation with respect to t. So we have by integrat-

ing and using u-substitution with u = g(0, t) we have∫
g′(0, t)

g(0, t)
dt =

∫
−λ dt or lim |g(0, t)| = −λt + c

for some c ∈ R. Since g(0, t) = P (Xt = 0) > 0 then we have |g(0, t)| = g(0, t) or

ln g(0, t) = −λ + c or, by exponentiating, g(0, t) = e−λt+c. Since g(0, 0) = 1, then

we see that c = 0, so that g(0, t) = e−λt.

Note 3.2.C. Next, consider g(k, t) for k ∈ Z, k ≥ 0. We now show using math-

ematical induction that, under Axioms 1–3, g(k, t) = e−λt(λt)k/k!. The base

case of k = 0 is established in Note 3.2.B. So suppose for given k ≥ 1 we have

g(j, t) =
e−λt(λt)j

j!
for j = k (the induction hypothesis). We address the case
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j = k +1 and the value of g(k +1, t) by first considering g(k +1, t+h). In order to

have k +1 occurrences in (0, t+h], we must have k +1− i occurrences in (0, t] and

i occurrences in (t, t + h] for some i with 0 ≤ i ≤ k + 1. Now the probability that

there are k +1− i occurrences in (0, t] is (by definition of probability mass function

g of random variable Xt) P (Xt = k + 1− i) = g(k + 1− i, t). The probability that

there are i occurrences in (t, t + h] is: (1) 1− (λh + 2o(h)) if i = 0 by Axioms 1(a)

and 2(a), (2) λh+o(h) if i = 1 by Axiom 1(a), and (3) o(h) if i ≥ 2 by Axiom 2(a).

These are independent events by Axiom 3, so summing over i = 0 to i = k give

that the probability of k + 1 occurrences of the process in the interval (0, t + h] is

g(k + 1, t + h) = g(k + 1, t)(1− (λh + 2o(h)) + g(k, t)(λh + o(h))

+g(k − 1, t)(o(h)) + · · ·+ g(1, t)(o(h)) + g(0, t)(o(h))

= g(k + 1, )(1− λh− 2o(h)) + g(k, t)(λh + o(h))

+o(h)
k+1∑
i=2

g(k + 1− i, t).

Therefore
g(k + 1, t + h) = g(k + 1, t)

h

=

{
g(k + 1, t)(1− λh− 2o(h)) + g(k, t)(λh + o(h))

+o(h)
k+1∑
i=2

g(k + 1− i, t)− g(k + 1, t)

}/
h

=

{
λhg(k + 1, t)− 2g(k + 1, t)(o(h)) + λhg(k, t) + g(k, t)(o(h))

+o(h)
k+1∑
i=2

g(k + 1− i, t)

}/
h
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= −λg(k + 1, t) + λg(k, t) +
o(h)

h

(
−2g(k + 1, t) + g(k, t) +

k+1∑
i=2

g(k + 1− i, t)

)
.

Letting h → 0, since o(h)/h → 0, we have

d

dt
[g(k + 1, t)] = −λg(k + 1, t) + λg(k, t) = −λg(k + 1, t) + e−λt(λt)k/k!,

by the induction hypotheses that g(j, t) = e−λt(λt)j/j! for j = k. So with y =

g(k + 1, t), we need to solve the linear differential equation

y′ + λy = λe−λt(λt)k/k!.

Now by “a theorem in differential equations,” the linear differential equation y′ +

P (t)y = Q(t) has the one parameter family of solutions of

y = e−
∫

P (t) dt

{∫
Q(t)e

∫
P (t) dt dt + C

}
.

Here, constant C is the “one parameter” and indefinite integral notation is meant

to indicate any antiderivative of the integrand. For details, see my online notes for

Differential Equations (MATH 2120) on Section 2.3. Linear Equations and Bernoulli

Equations; notice Theorem 2.4. With P (t) = λ and Q(t) = λe−λt(λt)k/k! we have

y = g(k + 1, t) = e−
∫

λ dt

{∫
λe−λt(λt)k/k!(eλt dt + C

}
= e−λt

{∫
λk+1tk/k! dt + C

}
= e−λt

{
λk+1tk+1/(k + 1)! + C

}
.

For the boundary condition g(k + 1, 0) = 0, we see that the parameter C must be

0 so that

g(k + 1, t) = e−λt(λt)k+1/(k + 1)!.

So the claim holds for j = k + 1 and hence g(k, t) = e−λt(λt)k/k! for all k ∈ N (as

claimed).

https://faculty.etsu.edu/gardnerr/Differential-Equations/DE-Ross4-notes/Ross4-2-3.pdf
https://faculty.etsu.edu/gardnerr/Differential-Equations/DE-Ross4-notes/Ross4-2-3.pdf


3.2. The Poisson Distribution 7

Note. We have by Notes 3.2.A, 3.2.B, and 3.2.C that any process that occurs

repeatedly such that Axioms 1, 1(a), 2, 2(a), and 3 are satisfied, must have a

Poisson distribution.

Note. If X has a Poisson distribution with parameter λ then the moment gener-

ating function of X is

M(t) = E[etX ] =
∞∑

x=0

etxp(x) =
∞∑

x=0

etxλxe−λ

x!

= e−λ
∞∑

x=0

(λet)x

x!
= e−λeλet

= eλ(et−1) for t ∈ R.

Now M ′(t) = eλ(et−1)[λet] and

M ′′(t) = [eλ∗et−1)[λet]](λet)+(eλ(et−1))[λet] = λeλ(et−1)et(λet+1) = λeλ(et−1)+t(λet+1).

So by Note 1.9.B, µ = M ′(0) = λ and σ2 = M ′′(0)−(M ′(0))2 = (λ2+λ)−(λ) = λ2.

So a Poisson distribution has µ = σ2 = λ > 0.

Note. The next result shows that a sum of Poisson random variables is itself

Poisson.

Theorem 3.2.1. Suppose X1, X2, . . . , Xn are independent random variables and

suppose Xi has a Poisson distribution with parameters λi. Then Y =
∑n

i=1 Xi has

a Poisson distribution with parameter
∑n

i=1 λi.
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Exercise 3.2.13. On the average, a grocer sells three of a certain article per week.

How many of these should he have in stock so that the chance of his running out

within a week is less than 0.01? Assume a Poisson distribution.
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