Section 3.3. The Γ, χ^{2}, and β Distributions

Note. In this section we define the gamma function using an improper integral. We then use it to define three distributions: the Γ distribution, the χ^{2} distribution, and the β distribution. These distributions have a number of applications, some related to lifetimes, failure times, and waiting times.

Definition. The gamma function is $\Gamma(a)=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y$, where $\alpha>0$.

Note. We now show that $\Gamma(\alpha)$ actually exists for all $\alpha>0$; that is, the indefinite integral defining $\Gamma(\alpha)$ is convergent for all $\alpha>0$. The following computations are largely based on Jia-Ming (Frank) Liou's Calculus 2 webpage (accessed 6/28/2021).

Note 3.3.A. We can show by an inductive application of L'Hoptial's Rule (see my online notes for Calculus 1 on Section 4.5. Indeterminate Forms and L'Hôpital's Rule) that for $n \in \mathbb{N}$ we have $\lim _{y \rightarrow \infty} \frac{y^{n-1}}{e^{y / 2}}=0$. So by the definition of "limit as $y \rightarrow \infty$," there exists $M>0$ such that for all $y \geq M$ we have $\left|y^{n-1} / e^{y / 2}\right|<1$. So for $y \geq M>0$ we also have $0 \leq y^{n-1}<e^{y / 2}$ when $y>0$, or $0 \leq y^{n-1} e^{-y} \leq$ $e^{y / 2} e^{-y}=e^{-y / 2}$. Now

$$
\begin{gathered}
\int_{0}^{\infty} e^{-y / 2} d y=\lim _{b \rightarrow \infty}\left(\int_{0}^{b} e^{-y / 2} d y\right)=\left.\lim _{b \rightarrow \infty}\left(-2 e^{-y / 2}\right)\right|_{0} ^{b} \\
=\lim _{b \rightarrow \infty}\left(\left(-2^{-(b) / 2}\right)-\left(-2 e^{-(0) / 2}\right)\right)=2
\end{gathered}
$$

So by the Direct Comparison Test (see my online notes for Calculus 2 [MATH 1920]
on Section 8.7. Improper Integrals; see Theorem 2), $\int_{0}^{\infty} y^{n-1} e^{-y} d y$ converges when $n \in \mathbb{N}$. So we need to consider the integral when $n \in \mathbb{N}$ is replace with $\alpha>0$. With $\lfloor\alpha\rfloor$ as the greatest integer function (or the "integer floor function") then for $\alpha \geq 1$ we have $\lfloor\alpha\rfloor \leq \alpha<\lfloor\alpha\rfloor+1$ or $\alpha-1 \leq\lfloor\alpha\rfloor \in \mathbb{N}$. So for $x>0$ we have $0 \leq y^{\alpha-1} e^{-y} \leq x^{\lfloor\alpha\rfloor} e^{-y}$. So $\lfloor\alpha\rfloor \in \mathbb{N}$ and so $\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y$ converges (by the Direct Comparison Test) when $\alpha \geq 1$.

Note 3.3.B. We now consider $0<\alpha<1$. Then $-1<\alpha-1<0$ and so for $y \geq 1$ we have $0<y^{\alpha-1} \leq 1$. This implies that $0<y^{\alpha-1} e^{-y} \leq e^{-y}$ for $y \geq 1$. So by the Direct Comparison Test,

$$
\begin{aligned}
& \int_{1}^{\infty} y^{\alpha-1} e^{-y} d y \leq \int_{1}^{\infty} e^{-y} d y=\lim _{b \rightarrow \infty}\left(\int_{1}^{b} e^{-y} d y\right) \\
& =\left.\lim _{b \rightarrow \infty}\left(-e^{-y}\right)\right|_{1} ^{b}=\lim _{b \rightarrow \infty}\left(\left(-e^{-b}\right)-\left(-e^{-1}\right)\right)=1 / e
\end{aligned}
$$

and hence

$$
\begin{equation*}
\int_{1}^{\infty} y^{\alpha-1} e^{-y} d y \text { is convergent. } \tag{*}
\end{equation*}
$$

Finally, we show that $\int_{0}^{1} y^{\alpha-1} e^{-y} d y$ converges (notice that

$$
\lim _{y \rightarrow 0}\left(y^{\alpha-1} e^{-y}\right)=\lim _{y \rightarrow \infty} \frac{e^{-y}}{y^{1-\alpha}}=\infty
$$

since $0<\alpha<1$ and so $0<1-\alpha<1$, and so this is in fact an improper integral). Now $0<y^{\alpha-1} e^{-y} \leq y^{\alpha-1} e$ for $y \geq 0$, so by the Direct Comparison Test

$$
\begin{gathered}
\int_{0}^{1} y^{\alpha-1} e^{-y} d y \leq \int_{0}^{1} y^{\alpha-1} e d y=\left.\lim _{a \rightarrow 0^{+}}\left(e \frac{y^{\alpha}}{\alpha}\right)\right|_{a} ^{1} \\
=\lim _{a \rightarrow 0^{+}}\left(e \frac{(1)^{n}}{\alpha}-e \frac{(a)^{\alpha}}{\alpha}\right)=\frac{e}{\alpha}-e \frac{(0)^{\alpha}}{\alpha}=\frac{e}{\alpha}
\end{gathered}
$$

and so

$$
\int_{0}^{1} y^{\alpha-1} e^{-y} d y \text { converges when } 0<\alpha<1
$$

Therefore, by $(*)$ and $(* *)$, we have that

$$
\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y=\int_{0}^{1} y^{\alpha-1} e^{-y} d y+\int_{1}^{\infty} y^{\alpha-1} e^{-y} d y
$$

is convergent ("exists"). Hence $\Gamma(\alpha)$ is defined for all $0<\alpha<1$. Combining this with Note 3.3.A, we see that $\Gamma(\alpha)$ is defined for all $\alpha>0$.

Note. We have

$$
\Gamma(1)=\int_{0}^{\infty} e^{(1)-1} e^{-y} d y=\int_{0}^{\infty} e^{-y} d y=1
$$

We can use Integration by Parts to show for $\alpha>1$ that $\Gamma(\alpha)=(\alpha-1) \Gamma(\alpha-1)$ (see Thomas' Calculus, Early Transcendentals, 14th Edition, "Chapter 8. Techniques of Integration," "Additional and Advanced Exercises" Number 43). So by induction we have $\Gamma(n)=(n-1)$! where $n \in \mathbb{N}$. So the Γ function generalizes the factorial function by extending it from \mathbb{N} to $(0, \infty)$. In fact, the Γ function can be extended to the complex plane where it is defined, except that it has simple poles at $0,-1,-2, \ldots$ Formally, it is defined as

$$
\Gamma(z)=\frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1} e^{z / n}
$$

where γ is a constant (called the Euler constant) such that $\Gamma(1)=1$. See my online notes for Complex Analysis 1 and 2 (MATH 5510/5520) on Section VII.7. The Gamma Function (see in particular Definition VII.7.2 and Theorem VII.7.15). A graph of the Γ function can be found in Thomas' Calculus, Early Transcendentals (in the exercise referenced above):

Definition. Continuous random variable X has a Γ-distribution with parameters $\alpha>0$ and $\beta>0$, if its probability density function is

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} & \text { for } 0<x<\infty \\
0 & \text { elsewhere }
\end{array}\right.
$$

We denote this by saying that X has a $\Gamma(\alpha, \beta)$ distribution.

Note. We need to confirm that f actually integrates to 1 over $[0, \infty)$ to insure that it is a probability density function. We have

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} d x & {[\text { let } z=x / \beta \text { and } d x=1 / \beta d x] } \\
= & \int_{0}^{\infty} \frac{1}{\Gamma(\alpha) \beta^{\alpha}}(\beta z)^{\alpha-1} e^{-z} \beta d z \\
= & \frac{\beta^{\alpha}}{\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} z^{\alpha-1} e^{-z} d z=\frac{1}{\Gamma(\alpha)} \Gamma(\alpha)=1 .
\end{aligned}
$$

Note 3.3.C. The moment generating function of the Γ distribution is

$$
\begin{aligned}
M(t)= & E\left[e^{t X}\right]=\int_{0}^{\infty} e^{t x} \frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} d x \\
= & \int_{0}^{\infty} \frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x(1-\beta t) / \beta} d x \\
& \operatorname{let} y=x(1-\beta t) / \beta \text { where } t<1 / \beta, \text { or } x=\beta y /(1-\beta t), \\
& \text { and } d x=\beta /(1-\beta t) d y \\
= & \int_{0}^{\infty} \frac{1}{\Gamma(\alpha) \beta^{\alpha}}\left(\frac{\beta y}{1-\beta t}\right)^{\alpha-1} e^{-y} \frac{\beta}{1-\beta t} d x \\
= & \int_{0}^{\infty} \frac{1}{\Gamma(\alpha) \beta^{\alpha}}\left(\frac{\beta y}{1-\beta t}\right)^{\alpha-1} e^{-y} \frac{\beta}{1-\beta t} d x \\
= & \frac{1}{\Gamma(\alpha)(1-\beta t)^{\alpha}} \int_{0}^{\infty} y^{\alpha-1} e^{-y} d y \\
= & \frac{1}{\Gamma(\alpha)(1-\beta t)^{\alpha}} \Gamma(\alpha)=\frac{1}{(1-\beta t)^{\alpha}} \text { for } t<1 / \beta .
\end{aligned}
$$

Then

$$
M^{\prime}(t)=\frac{(-\alpha)(-\beta)}{(1-\beta t)^{\alpha+1}}=\frac{\alpha \beta}{(1-\beta t)^{\alpha+1}}
$$

and

$$
M^{\prime \prime}(t)=\frac{(\alpha \beta)(-(\alpha+1))(-\beta)}{(1-\beta t)^{\alpha+2}}=\frac{\alpha(\alpha+1) \beta^{2}}{(1-\beta t)^{\alpha+2}} .
$$

By Note 1.9.B, the mean of the Γ distribution is $\mu=M^{\prime}(0)=\alpha \beta$ and the variance is

$$
\sigma^{2}=M^{\prime \prime}(0)-\mu^{2}=\alpha(\alpha+1) \beta^{2}-(\alpha \beta)^{2}=\alpha \beta^{2}
$$

Note. Figure 3.3.1 gives six probability density functions for different values of α and β (below).

Figure 3.3.1

The appeal of Γ-distribution in applications results from the many different shapes they can take by varying the values of α and β.

Note. Let X denote the time until the failure of a device, and suppose the probability density function is $f(x)$ and the cumulative distribution function is (differentiable) $F(x)$. The "hazard function" of X can be helpful in finding $f(x)$. let x be in the support of X. Suppose the device has not failed at time x; that is, suppose $X>x$. The "rate of failure" as a function of time x over the interval x to $x+\Delta$ satisfies

$$
r(x) \approx \frac{P(x \leq x<x+\Delta \mid X \geq x)}{\Delta}
$$

and

$$
r(x)=\lim _{\Delta \rightarrow 0} \frac{P(x \leq x<x+\Delta \mid X \geq x)}{\Delta}=\frac{P(x \leq x<x+\Delta)}{P(X \geq x)} \frac{1}{\Delta}
$$

$$
=\frac{1}{1-F(x)} \lim _{\Delta \rightarrow 0} \frac{P(x \leq X<x+\Delta)}{\Delta}=\frac{F^{\prime}(x)}{1-F(x)}=f(x) 1-F(x),
$$

since $F^{\prime}(x)=f(x)$ by Note 1.7.A. This function $r(x)$ is the hazard function of X at x. So

$$
r(x)=-\frac{d}{d x}\left[\log (1-F(x)] \text { or } \log (1-F(x)) \in-\int r(x) d x\right.
$$

(where we treat the indefinite integral as the set of antiderivatives of the integrand), of

$$
1-F(x) \in e^{-\int r(x) d x} \text { so that } 1-F(x)=e^{-R(x)} e^{C}
$$

for some $R(x)$ where $R^{\prime}(x)=r(x)$ and C is some constant. With the support of X as $(0, \infty$ then we take $F(0)=0$ as the boundary condition that determines constant C.

Note/Definition. If the hazard rate is constant, say $r(x)=1 / \beta$ for some $\beta>0$, then an antiderivative of r is $R(x)=x / \beta$ and so $1-F(x)=e^{-x / \beta} e^{C}$. Since $F(0)=0$ then $e^{C}=1$ so that $F(x)=1-e^{-x / \beta}$ and

$$
f(x)=F^{\prime}(x)=\left\{\begin{array}{cl}
\frac{1}{\beta} e^{-x / \beta} & \text { for } x>0 \\
0 & \text { elsewhere }
\end{array}\right.
$$

This is the $\Gamma(\alpha, \beta)=\Gamma(1, \beta)$ distribution. It is also called the exponential distribution with parameter $1 / \beta$.

Note. The next result shows that a sum of $\Gamma(\alpha, \beta)$ distributions is additive in the first variable (i.e., the α).

Theorem 3.3.1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables. Suppose, for $i=1,2, \ldots, n$ that X_{i} has a $\Gamma\left(\alpha_{i}, \beta\right)$ distribution. Let $Y=\sum_{i=1}^{n} X_{i}$. Then Y has a $\Gamma\left(\sum_{i=1}^{n} \alpha_{i}, \beta\right)$ distribution.

Note 3.3.D. The Γ distribution also arises in Poisson processes. For $t>0$, the X_{t} denote the number of events that occur in the interval $(0, t]$, and assume that X_{t} satisfies the axioms of a Poisson processes given in the previous section. Let k be a fixed positive integer and define the (continuous) random variable W_{k} to be the "waiting time" until the k th event occurs. The range of W_{k} is $(0, \infty)$. For any $w>0$, we have $W_{k}>w$ (that is, it takes longer than time w for k occurrences of the event of interest) if and only if $X_{w} \leq k-1$ (that is, at most $k-1$ events have occurred at time w). Since X_{t} has a Poisson distribution then

$$
P\left(W_{k}>w\right)=P\left(X_{w} \leq k-1\right)=\sum_{x=0}^{k-1} P\left(X_{w}-x\right)=\sum_{x=0}^{k-1} \frac{(\lambda w)^{x} e^{-\lambda w}}{x!}
$$

Now $\int_{\lambda w}^{\infty} \frac{z^{k-1} e^{-z}}{(k-1)!} d z=\sum_{x=0}^{k-1} \frac{(\lambda w)^{x} e^{-\lambda w}}{x!}$ by Exercise 3.3.5. So for $w>0$, the cumulative distribution function of W_{k} is

$$
\begin{aligned}
f_{W_{k}}(w) & =1-P\left(W_{k}>w\right)=1-\sum_{x=0}^{k-1} \frac{(\lambda w)^{x} e^{-\lambda w}}{x!} \\
& =1-\int_{\lambda w}^{\infty} \frac{z^{k-1} e^{-z}}{(k-1)!} d z \\
& =1-\int \lambda w^{\infty} \frac{z^{k-1} e^{-z}}{\Gamma(k)} d z \text { since } \Gamma(k)=(k-1)!\text { for } k \in \mathbb{N} \\
& \left.=\frac{\Gamma(k)}{\Gamma(k)}=\frac{1}{\Gamma(k)} \infty\right) \lambda w^{\infty} z^{k-1} e^{-z} d z \\
& =\frac{1}{\Gamma(k)}\left(\int_{0}^{\infty} z^{k-1} e^{-z} d z-\int_{\lambda w}^{\infty} z^{k-1} e^{-z} d z\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { since } \Gamma(k)=\int_{0}^{\infty} z^{k-1} e^{-z} d z \text { by definition } \\
= & \frac{1}{\Gamma(k)} \int_{0}^{\lambda w} z^{k-1} e^{-z} d z
\end{aligned}
$$

and $F_{W_{k}}(w)=0$ for $w \leq 0$. With the substitution $z=\lambda y$ and $d z=\lambda d y$ in the last integral, we have

$$
F_{W_{k}}(w)=\frac{1}{\Gamma(k)} \int_{0}^{\lambda w} z^{k-1} e^{-z} d z=\int_{0}^{w} \frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{\Gamma(k)} d y
$$

for $w>0$. So the probability density function of W_{k} is

$$
\begin{aligned}
F_{W_{k}}(w) & =F_{W_{k}}^{\prime}(w) \text { by Note 1.7.A } \\
& =\frac{d}{d w}\left[\int_{0}^{w} \frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{\Gamma(k)} d y\right]=\frac{\lambda^{k} w^{k-1} e^{-\lambda w}}{\Gamma(k)}
\end{aligned}
$$

for $w>0$ and $f_{W_{k}}(w)=0$ for $w \leq 0$. Since the Γ-distribution, $\Gamma(\alpha, \beta)$, has probability density function

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} & \text { for } 0<x<\infty \\
0 & \text { elsewhere }
\end{array}\right.
$$

then we see that the waiting item until the k th occurrence, W_{k}, has the Γ-distribution $\Gamma(\alpha, \beta)=\Gamma(k, 1 / \lambda)$. In this way, we see the role that a Γ-distribution can play in a Poisson process.

Note. Continuing the previous example on the waiting itme of a Poisson process, if we let T_{1} be the waiting time until the first event occurs (so $T_{1}=W_{1}$) then the probability density function of T_{1} is

$$
f_{T_{1}}(w)=\Gamma(1,1 / \lambda)=\left\{\begin{array}{cl}
\lambda e^{-\lambda w} & \text { for } 0<w<\infty \\
0 & \text { elsewhere }
\end{array}\right.
$$

So the mean of T_{1} is $\alpha \beta=1 / \lambda$ and the mean of X_{1} is λ. That is, we expect λ events to occur in a unit of time and we expect the first event to occur at time $1 / \lambda$. With T_{i} as the time between the occurrence of event $(i-1)$ and event i, we have that T_{i} also has a $\Gamma(1,1 / \lambda)$ distribution (this follows from Axioms 1(a) and 2(a) of a Poisson process). Since T_{1}, T_{2}, \ldots are independent (by Axiom 3) then the waiting time until the k th event satisfies $W_{k}=T_{1}+T_{2}+\cdots T_{k}$. So by Theorem 3.3.1, W_{k} has a $\Gamma(k, 1 / \lambda)$ distribution (as argued above).

Definition. The distribution $\Gamma(\alpha, \beta)=\Gamma(r / 2,2)$ where $r>0$ is the chi-square distribution, denoted χ^{2}-distribution, and any probability density function which is the same as the probability density function of $\Gamma(r / 2,2)$ (stated below) is a chi-square probability function. Parameter r is the degrees of freedom of the χ^{2} distribution. The χ^{2}-distribution with r degrees of freedom is denoted $\chi^{2}(r)$.

Note. If random variable X has a χ^{2}-distribution (i.e., a $\Gamma(r / 2,2)$ distribution), then the probability density function is

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{\Gamma(r / 2) 2^{r / 2}} x^{r / 2-1} e^{-x / 2} & \text { for } 0<x<\infty \\
0 & \text { elsewhere }
\end{array}\right.
$$

and the moment generating function is $M(t)=\frac{1}{(1-2 t)^{r / 2}}$ for $t<1 / 2$. By Note 3.3.C implies that the mean is $M^{\prime}(0)=\alpha \beta=r$ and the variance is $\sigma^{2}=\alpha \beta^{2}=2 r$.

Theorem 3.3.2. Let X have a $\chi^{2}(r)$ distribution. If $k>-r / 2$ then $E\left(X^{k}\right)$ exists and is

$$
E\left(X^{k}\right)=\frac{2^{k} \Gamma(r / 2+k)}{\Gamma(r / 2)} \text { if } k>-r / 2 .
$$

Note. The k th moment of the distribution of X is (by definition; see Section 1.9. Some Special Expectations) $E\left(X^{k}\right)$. So Theorem 3.3.2 (since for $k \in \mathbb{N}$ we have $k>-r / 2)$ the k th moment of the χ^{2}-distribution is $E\left(X^{k}\right)=2^{k} \Gamma(r / 2+k) / \Gamma(r / 2)$.

Example 3.3.4. Let X have a Γ-distribution with $\alpha=r / 2$ (where $4 \in \mathbb{N}$) and $\beta>0$. Define random variable $Y=2 X / \beta$. The moment generating function of Y is

$$
\begin{aligned}
M_{Y}(t) & =E\left(e^{t Y}\right)=E\left(e^{2 t X / \beta}\right) \\
& =(1-\beta(2 t / \beta))^{-r / 2} \text { by Note 3.3.C } \\
& =(1-2 y)^{-r / 2} .
\end{aligned}
$$

Notice that this is the moment generating function of a χ^{2}-distribution (a $\Gamma(r / 2,2)$ distribution) as shown above. By the uniqueness of the moment generating function (Theorem 1.9.2), we see that Y has a $\chi^{2}(r)$-distribution.

Corollary 3.3.1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables. Suppose X_{i} has a $\chi^{2}\left(r_{i}\right)$ distribution for $i=1,2, \ldots, n$. Let $Y=\sum_{i=1}^{n} X_{i}$. Then Y has a $\chi^{2}\left(\sum_{i=1}^{n} r_{i}\right)$-distribution.

Note. The support of any Γ-distribution is the unbounded interval $(0, \infty)$. We now seek a distribution X with support a bounded interval (a, b). Without loss of generality, we may consider random variable Y with support $(0,1)$ since then $Y=(X-a) /(b-a)($ or $X=(b-a) Y+a)$. An example of such a distribution is a β distribution. We approach the β-distributions by considering a pair of independent Γ random variables.

Note 3.3.E. Let X_{1} and X_{2} be two independent random variables that have Γ distributions and have the joint probability density function

$$
h\left(x_{1}, x_{2}\right)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} x_{1}^{\alpha-1} x_{2}^{\beta-1} e^{-x_{1}-x_{2}} \text { for } 0<x_{1}<\infty \text { and } 0<x_{2}<\infty
$$

and $h\left(x_{1}, x_{2}\right)=0$ elsewhere; we also require $\alpha>0$ and $\beta>0$. Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1} /\left(X_{1}+X_{2}\right)$. We now show that Y_{1} and Y_{2} are independent (we will choose the marginal distribution of Y_{2} as the β distribution). The support of \mathcal{S} of h is the open first quadrant of the $x_{1} x_{2}$-plane. Introduce u_{1} and u_{2} mapping \mathcal{S} into \mathbb{R} as

$$
y_{1}=u_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \text { and } y_{2}=u_{2}\left(x_{1}, x_{2}\right)=x_{1} /\left(x_{1}+x_{2}\right) .
$$

Notice that

$$
x_{1}=\left(x_{1}+x_{2}\right) y_{2}=y_{1} y_{2} \text { and } x_{2}=y_{1}-x_{1}=y_{1}-y_{1} y_{2}=y_{1}\left(1-y_{2}\right) .
$$

With

$$
x_{1}=v_{1}\left(y_{1}, y_{2}\right)=y_{1} y_{2} \text { and } x_{2}=v_{2}\left(y_{1}, y_{2}\right)=y_{1}\left(1-y_{2}\right)
$$

we have the Jacobian (or "Jacobian determinant"; see my online Calculus 3 notes
on Section 15.8. Substitution in Multiple Integrals)

$$
\begin{gathered}
J\left(x_{1}, x_{2}\right)=J\left(v_{1}, v_{2}\right)=\left|\begin{array}{ll}
\frac{\partial v_{1}}{\partial y_{1}} & \frac{\partial v_{1}}{\partial y_{2}} \\
\frac{\partial v_{2}}{\partial y_{1}} & \frac{\partial v_{2}}{\partial y_{2}}
\end{array}\right|=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right| \\
=\left|\begin{array}{cc}
y_{2} & y_{1} \\
1-y_{2} & -y_{1}
\end{array}\right|=\left(y_{2}\right)\left(-y_{1}\right)-\left(y_{1}\right)\left(1-y_{2}\right)=-y_{1} \neq 0 \text { on } \mathcal{S} .
\end{gathered}
$$

So the transformation $\left(x_{1}, x_{2}\right) \mapsto\left(y_{1}, y_{2}\right)$ is one-to-one (injective; this is due to the nonzero Jacobian) mapping of \mathcal{S} onto $\mathcal{T}=\left\{\left(y_{1}, y_{2}\right) \mid 0<y_{1}<\infty, 0<y_{2}<1\right\}$ is the $y_{1} y_{2}$-plane. Now for $R \subset \mathcal{S}$ a region in the $x_{1} x_{2}$-plane and $G \subset \mathcal{T}$ a region in the $y_{1} y_{2}$-plane such that the transformation $\left(x_{1}, x_{2}\right) \mapsto\left(y_{1}, y_{2}\right)$ maps R onto G then

$$
\iint_{R} h\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\iint_{G} h\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right)\left|J\left(v_{1}, v_{2}\right)\right| d v_{1} d v_{2}
$$

provided h, v_{1}, and v_{2} have continuous partial derivatives and $J\left(v_{1}, v_{2}\right)$ is zero only at isolated points (again, see my online Calculus 3 notes on Section 15.8. Substitution in Multiple Integrals). So we get the probability density function of Y_{1} and Y_{2} can be obtained form the joint probability density function of X_{1} and X_{2} by replacing x_{1} and $y_{1} y_{2}, x_{2}$ with $y_{1}\left(1-y_{2}\right), x_{1}+x_{2}$ with y_{1}, and introducing $\left|J\left(v_{1}, v_{2}\right)\right|=\left|-y_{1}\right|=y_{1}$. This gives the joint probability density function of Y_{1} and Y_{2} on its support of

$$
\begin{aligned}
& g\left(y_{1}, y_{2}\right)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)}\left(y_{1} y_{2}\right)^{\alpha-1}\left(y_{1}\left(1-y_{2}\right)\right)^{\beta-1} e^{-y_{1}}\left|-y_{1}\right| \\
& =\left\{\begin{array}{cl}
\frac{y_{2}^{\alpha-1}\left(1-y_{2}\right)^{\beta-1}}{\Gamma(\alpha) \Gamma(\beta)} y_{1}^{\alpha+\beta-1} e^{-y_{1}} & \text { for } 0<y_{1}<\infty, 0<y_{2}<1 \\
0 & \text { elsewhere. }
\end{array}\right.
\end{aligned}
$$

Since g can be written as a product of a nonnegative function of y_{1} with a nonnegative function of y_{2}, then by Theorem 2.4.1 we have that Y_{1} and Y_{2} are independent. The marginal probability density function of Y_{2} (by Note 2.1.C) is

$$
\begin{aligned}
g_{2}\left(y_{2}\right) & =\int_{0}^{\infty} \frac{y_{2}^{\alpha-1}\left(1-y_{2}\right)^{\beta-1}}{\Gamma(\alpha) \Gamma(\beta)} y_{1}^{\alpha-\beta-1} e^{-y_{1}} d y_{1}=\frac{y_{2}^{\alpha-1}\left(1-y_{2}\right)^{\beta-1}}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{\infty} y_{1}^{\alpha+\beta-1} e^{-y_{1}} d y_{1} \\
& =\frac{y_{2}^{\alpha-1}\left(1-y_{2}\right)^{\beta-1}}{\Gamma(\alpha) \Gamma(\beta)} \Gamma(\alpha+\beta)=\left\{\begin{array}{cl}
\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} y_{2}^{\alpha-1}\left(1-y_{2}\right)^{\beta-1} & \text { for } 0<y_{2}<1 \\
0 & \text { elsewhere. }
\end{array}\right.
\end{aligned}
$$

As observed above, Y_{1} and Y_{2} are independent, so by Definition 2.4.1 the joint probability density function and the marginal probability density functions are related as $g\left(y_{1}, y_{2}\right)=g_{1}\left(y_{1}\right) g_{2}\left(y_{2}\right)$ so it must be that the probability density function of Y_{1} is

$$
g_{1}\left(y_{1}\right)=\left\{\begin{array}{cl}
\frac{1}{\Gamma(\alpha+\beta)} y_{1}^{\alpha+\beta-1} e^{-y_{1}} \text { for } 0<y_{1}<\infty \\
0 & \\
0 & \text { elsewhere. }
\end{array}\right.
$$

Notice that $g_{1}\left(y_{1}\right)$ is the $\Gamma(\alpha+\beta, 1)$ distribution. But it is $g_{1}\left(y_{2}\right)$ that we are interested in.

Definition. A random variable Y with probability density function

$$
g(y)=\left\{\begin{array}{cl}
\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} y^{\alpha-1}(1-y)^{\beta-1} & \text { for } 0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

is a beta distribution (or " β distribution") with parameters α and β.

Note. In Exercise 3.3.A, it is to be shown that the mean and variance of a β distribution with parameters α and β are

$$
\mu=\frac{\alpha}{\alpha+\beta} \text { and } \sigma^{2}=\frac{\alpha \beta}{(\alpha+\beta+1)(\alpha+\beta)^{2}} .
$$

Note. Here is the shape of the beta distribution for various values of α and β. This image is form the Wikipedia webpage on the beta distribution.

Example 3.3.6. (Dirichlet Distribution) Let $X_{1}, X_{2}, \ldots, X_{k+1}$ be independent random variables, each having a Γ distribution with $\beta=1$. The joint probability density function is then

$$
h\left(x_{1}, x_{2}, \ldots, x_{k+1}\right)=\left\{\begin{array}{cc}
\prod_{i=1} k+1 \frac{1}{\Gamma\left(\alpha_{i}\right)} x_{i}^{\alpha_{i}-1} e^{-x_{i}} & \\
0 & \text { elsewhere. }
\end{array}\right.
$$

Let $Y_{i}=\frac{X_{i}}{X_{1}+X_{2}+\cdots+X_{k=1}}$ for $i=1,2, \ldots, k$, and $Y_{k+1}=X_{1}+X_{2}+\cdots+X_{k+1}$ denote $k+1$ new random variables. Now the transformation $\left(x_{1}, x_{2}, \ldots, x_{k+1}\right) \mapsto$ $\left(y_{1}, y_{2}, \ldots, y_{k+1}\right)$ maps set

$$
\mathcal{A}=\left\{\left(x_{1}, x_{2}, \ldots, x_{k+1}\right) \mid 0<x_{i}<\infty \text { for } i=1,2, \ldots, k+1\right\}
$$

onto set

$$
\begin{aligned}
& \mathcal{B}=\left\{\left(y_{1}, y_{2}, \ldots, y_{k+1}\right) \mid 0<y_{i}<1 \text { for } i=1,2, \ldots, k,\right. \\
&\left.y_{1}+y_{2}+\cdots y_{k}<1, \text { and } 0<y_{k+1}<\infty\right\} .
\end{aligned}
$$

Since $y_{k+1}=x_{1}+x_{2}+\cdots+x_{k+1}$ then $x_{i}=y_{i} y_{k+1}$ for $i=1,2, \ldots, k$ and

$$
\begin{gathered}
x_{k+1}=y_{k+1}-x_{1}-x_{2}-\cdots-x_{k}=y_{k+1}-y_{1} y_{k+1}-y_{2} y_{k+1}-\cdots-y_{k} y_{k+1} \\
=y_{k+1}\left(1-y_{1}-y_{2}-\cdots-y_{k}\right)
\end{gathered}
$$

With $x_{i}=v_{i}\left(y_{1}, y_{2}, \ldots, y_{k+1}\right)=y_{i} y_{k+1}$ for $i=1,2, \ldots, k$ and

$$
x_{k+1}=v_{k+1}\left(y_{1}, y_{2}, \ldots, y_{k+1}\right)=y_{k+1}\left(1-y_{1}-y_{2}-\cdots-y_{k}\right),
$$

we have the Jacobian

$$
\begin{aligned}
J\left(x_{1}, x_{2}, \ldots, x_{k+1}\right) & =J\left(v_{1}, v_{2}, \ldots, v_{k+1}\right)=\left|\begin{array}{ccccc}
\frac{\partial v_{1}}{\partial y_{1}} & \frac{\partial v_{1}}{\partial y_{2}} & \cdots & \frac{\partial v_{1}}{\partial y_{k+1}} \\
\frac{\partial v_{2}}{\partial y_{1}} & \frac{\partial v_{2}}{\partial y_{2}} & \cdots & \frac{\partial v_{2}}{\partial y_{k+1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial v_{k+1}}{\partial y_{1}} & \frac{\partial v_{k+1}}{\partial y_{2}} & \cdots & \frac{\partial v_{k+1}}{\partial y_{k+1}}
\end{array}\right| \\
& =\left|\begin{array}{ccccc}
y_{k+1} & 0 & \cdots & 0 & \\
0 & y_{k+1} & \cdots & 0 & \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & y_{k+1} \\
-y_{k+1} & -y_{k+1} & \cdots & -y_{k+1} & \left(1-y_{1}-y_{2}-\cdots-y_{k}\right)
\end{array}\right| \\
& =\left|\begin{array}{ccccc}
y_{k+1} & 0 & \cdots & 0 & y_{1} \\
0 & y_{k+1} & \cdots & 0 & y_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & y_{k+1} & y_{k} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right| \text { (by adding each of rows 1 } \\
& =y_{k+1}^{k} \neq 0 .
\end{aligned}
$$

As in Note 3.3.E, the joint probability density function of $Y_{1}, Y_{2}, \ldots, T_{k+1}$ can be
obtained from the joint probability density function of $X_{1}, X_{2}, \ldots, X_{k+1}$ by replacing x_{i} by $y_{i} y_{k+1}$ for $i=1,2, \ldots, k$, by replacing x_{k+1} by $y_{k+1}\left(1-y_{1}-y_{2}-\cdots y_{k}\right)$, and by introducing a factor of $\left|J\left(v_{1}, v_{2}, \ldots, v_{k+1}\right)\right|=\left|y_{k+1}^{k}\right|=y_{k+1}^{k}$. This gives the joint probability density function of $Y_{1}, Y_{2}, \ldots, Y_{k+1}$ on its support \mathcal{B} is

$$
\begin{aligned}
& \left\{\left(y_{1} y_{k+1}\right)^{\alpha_{1}-1}\left(y_{2} y_{k+1}\right)^{\alpha_{2}-1} \cdots\left(y_{k} y_{k+1}\right)^{\alpha_{k}-1} y_{k+1}\left(1-y_{1}-y_{2}-\cdots-y_{k}\right)^{\alpha_{k+1}-1}\right. \\
& \left.\times e^{-y_{1} y_{k+1}} e^{-y_{2} y_{k+1}} \cdots e^{-y_{k} t_{k+1}} e^{-y_{k+1}\left(1-y_{1}-y_{2}-\cdots-y_{k}\right.} y_{k+1}^{k}\right\} /\left(\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \cdots \Gamma\left(\alpha_{k+1}\right)\right) \\
& =\frac{y_{k+1}^{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k+1}-1} y_{1}^{\alpha_{1}-1} y_{2}^{\alpha_{2}-1} \cdots y_{k}^{\alpha_{k}-1}\left(1-y_{1}-y_{2}-\cdots-y_{k}\right)^{\alpha_{k+1}-1} e^{-y_{k+1}}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \cdots \Gamma\left(\alpha_{k+1}\right)}
\end{aligned}
$$

and the joint probability density function is 0 off of \mathcal{B}. Integrating out y_{k+1} and using the fact that

$$
\Gamma\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k+1}\right)=\int_{0}^{\infty} y_{k+1}^{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k+1}-1} e^{y_{k+1}} d y_{k+1}
$$

we have the joint probability density function of $Y_{1}, Y_{2}, \ldots, Y_{k}$ as $g\left(y_{1}, y_{2}, \ldots, y_{k}\right)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k+1}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \cdots \Gamma\left(\alpha_{k+1}\right)} y_{1}^{\alpha_{1}-1} y_{2}^{\alpha_{2}-1} \cdots y_{k}^{\alpha_{k}-1}\left(1-y_{1}-y_{2}-\cdots-y_{K}\right)^{\alpha_{k+1}-1}$
where $0<y_{i}<1$ for $i=1,2, \ldots, k$ and $y_{1}+y_{2}+\cdots+y_{k}<1$. Also $g\left(y_{1}, y_{2}, \ldots, y_{k}\right)=$ 0 elsewhere. This is the Dirichlet probability density function.

Definition. Random variables $Y_{1}, Y_{2}, \ldots, Y_{k}$ that have a joint probability density function of $g\left(y_{1}, y_{2}, \ldots, y_{k}\right)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k+1}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \cdots \Gamma\left(\alpha_{k+1}\right)} y_{1}^{\alpha_{1}-1} y_{2}^{\alpha_{2}-1} \cdots y_{k}^{\alpha_{k}-1}\left(1-y_{1}-y_{2}-\cdots-y_{K}\right)^{\alpha_{k+1}-1}$ where $0<y_{i}<1$ for $i=1,2, \ldots, k$ and $y_{1}+y_{2}+\cdots+y_{k}<1$, and we have $g\left(y_{1}, y_{2}, \ldots, y_{k}\right)=0$ elsewhere, have the Dirichlet probability density function with parameters $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k+1}$ where $\alpha_{i}>0$ for $i=1,2, \ldots, k+1$.

Note. If $k=1$ then the Dirichlet probability density function is of the form $\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} y_{1}^{\alpha_{1}-1}\left(1-y_{1}\right)^{\alpha_{2}-1}$, which is a β distribution (with $\alpha=\alpha_{1}$ and $\beta=\alpha_{2}$).

Note. The Dirac probability density function should not be confused with the Dirac delta distribution. See my online notes for Real Analysis 1 (MATH 5210) on Supplement. The Dirac Delta Function, A Cautionary Tale for more details.

