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Section 3.3. The Γ, χ2, and β Distributions

Note. In this section we define the gamma function using an improper integral.

We then use it to define three distributions: the Γ distribution, the χ2 distribution,

and the β distribution. These distributions have a number of applications, some

related to lifetimes, failure times, and waiting times.

Definition. The gamma function is Γ(a) =

∫ ∞

0
yα−1e−y dy, where α > 0.

Note. We now show that Γ(α) actually exists for all α > 0; that is, the indefinite

integral defining Γ(α) is convergent for all α > 0. The following computations are

largely based on Jia-Ming (Frank) Liou’s Calculus 2 webpage (accessed 6/28/2021).

Note 3.3.A. We can show by an inductive application of L’Hoptial’s Rule (see my

online notes for Calculus 1 on Section 4.5. Indeterminate Forms and L’Hôpital’s

Rule) that for n ∈ N we have lim
y→∞

yn−1

ey/2 = 0. So by the definition of “limit as

y → ∞,” there exists M > 0 such that for all y ≥ M we have |yn−1/ey/2| < 1.

So for y ≥ M > 0 we also have 0 ≤ yn−1 < ey/2 when y > 0, or 0 ≤ yn−1e−y ≤

ey/2e−y = e−y/2. Now∫ ∞

0
e−y/2 dy = lim

b→∞

(∫ b

0
e−y/2 dy

)
= lim

b→∞
(−2e−y/2)|b0

= lim
b→∞

(
(−2−(b)/2)− (−2e−(0)/2)

)
= 2.

So by the Direct Comparison Test (see my online notes for Calculus 2 [MATH 1920]

http://www.math.ncku.edu.tw/~fjmliou/Calculus2/Gamma.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c4s5-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c4s5-14E.pdf
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on Section 8.7. Improper Integrals; see Theorem 2),
∫ ∞

0 yn−1e−y dy converges when

n ∈ N. So we need to consider the integral when n ∈ N is replace with α > 0.

With bαc as the greatest integer function (or the “integer floor function”) then for

α ≥ 1 we have bαc ≤ α < bαc + 1 or α − 1 ≤ bαc ∈ N. So for x > 0 we have

0 ≤ yα−1e−y ≤ xbαce−y. So bαc ∈ N and so
∫ ∞

0 yα−1e−y dy converges (by the Direct

Comparison Test) when α ≥ 1.

Note 3.3.B. We now consider 0 < α < 1. Then −1 < α− 1 < 0 and so for y ≥ 1

we have 0 < yα−1 ≤ 1. This implies that 0 < yα−1e−y ≤ e−y for y ≥ 1. So by the

Direct Comparison Test,∫ ∞

1
yα−1e−y dy ≤

∫ ∞

1
e−y dy = lim

b→∞

(∫ b

1
e−y dy

)
= lim

b→∞
(−e−y)|b1 = lim

b→∞

(
(−e−b)− (−e−1)

)
= 1/e

and hence ∫ ∞

1
yα−1e−y dy is convergent. (∗)

Finally, we show that
∫ 1

0 yα−1e−y dy converges (notice that

lim
y→0

(yα−1e−y) = lim
y→∞

e−y

y1−α
= ∞

since 0 < α < 1 and so 0 < 1− α < 1, and so this is in fact an improper integral).

Now 0 < yα−1e−y ≤ yα−1e for y ≥ 0, so by the Direct Comparison Test∫ 1

0
yα−1e−y dy ≤

∫ 1

0
yα−1e dy = lim

a→0+

(
e
yα

α

)∣∣∣∣1
a

= lim
a→0+

(
e
(1)n

α
− e

(a)α

α

)
=

e

α
− e

(0)α

α
=

e

α

https://faculty.etsu.edu/gardnerr/1920/12/c8s7.pdf
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and so ∫ 1

0
yα−1e−y dy converges when 0 < α < 1. (∗∗)

Therefore, by (∗) and (∗∗), we have that∫ ∞

0
yα−1e−y dy =

∫ 1

0
yα−1e−y dy +

∫ ∞

1
yα−1e−y dy

is convergent (“exists”). Hence Γ(α) is defined for all 0 < α < 1. Combining this

with Note 3.3.A, we see that Γ(α) is defined for all α > 0.

Note. We have

Γ(1) =

∫ ∞

0
e(1)−1e−y dy =

∫ ∞

0
e−y dy = 1.

We can use Integration by Parts to show for α > 1 that Γ(α) = (α − 1)Γ(α − 1)

(see Thomas’ Calculus, Early Transcendentals, 14th Edition, “Chapter 8. Tech-

niques of Integration,” “Additional and Advanced Exercises” Number 43). So by

induction we have Γ(n) = (n− 1)! where n ∈ N. So the Γ function generalizes the

factorial function by extending it from N to (0,∞). In fact, the Γ function can be

extended to the complex plane where it is defined, except that it has simple poles

at 0,−1,−2, . . .. Formally, it is defined as

Γ(z) =
e−γz

z

∞∏
n=1

(
1 +

z

n

)−1
ez/n

where γ is a constant (called the Euler constant) such that Γ(1) = 1. See my online

notes for Complex Analysis 1 and 2 (MATH 5510/5520) on Section VII.7. The

Gamma Function (see in particular Definition VII.7.2 and Theorem VII.7.15). A

graph of the Γ function can be found in Thomas’ Calculus, Early Transcendentals

(in the exercise referenced above):

https://faculty.etsu.edu/gardnerr/5510/notes/VII-7.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/VII-7.pdf
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Definition. Continuous random variable X has a Γ-distribution with parameters

α > 0 and β > 0, if its probability density function is

f(x) =

 1
Γ(α)βαxα−1e−x/β for 0 < x < ∞

0 elsewhere.

We denote this by saying that X has a Γ(α, β) distribution.

Note. We need to confirm that f actually integrates to 1 over [0,∞) to insure

that it is a probability density function. We have∫ ∞

0

1

Γ(α)βα
xα−1e−x/β dx [ let z = x/β and dx = 1/β dx]

=

∫ ∞

0

1

Γ(α)βα
(βz)α−1e−zβ dz

=
βα

Γ(α)βα

∫ ∞

0
zα−1e−z dz =

1

Γ(α)
Γ(α) = 1.
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Note 3.3.C. The moment generating function of the Γ distribution is

M(t) = E[etX ] =

∫ ∞

0
etx 1

Γ(α)βα
xα−1e−x/β dx

=

∫ ∞

0

1

Γ(α)βα
xα−1e−x(1−βt)/β dx

let y = x(1− βt)/β where t < 1/β, or x = βy/(1− βt),

and dx = β/(1− βt) dy

=

∫ ∞

0

1

Γ(α)βα

(
βy

1− βt

)α−1

e−y β

1− βt
dx

=

∫ ∞

0

1

Γ(α)βα

(
βy

1− βt

)α−1

e−y β

1− βt
dx

=
1

Γ(α)(1− βt)α

∫ ∞

0
yα−1e−y dy

=
1

Γ(α)(1− βt)α
Γ(α) =

1

(1− βt)α
for t < 1/β.

Then

M ′(t) =
(−α)(−β)

(1− βt)α+1 =
αβ

(1− βt)α+1

and

M ′′(t) =
(αβ)(−(α + 1))(−β)

(1− βt)α+2 =
α(α + 1)β2

(1− βt)α+2 .

By Note 1.9.B, the mean of the Γ distribution is µ = M ′(0) = αβ and the variance

is

σ2 = M ′′(0)− µ2 = α(α + 1)β2 − (αβ)2 = αβ2.

Note. Figure 3.3.1 gives six probability density functions for different values of α

and β (below).
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Figure 3.3.1

The appeal of Γ-distribution in applications results from the many different shapes

they can take by varying the values of α and β.

Note. Let X denote the time until the failure of a device, and suppose the proba-

bility density function is f(x) and the cumulative distribution function is (differen-

tiable) F (x). The “hazard function” of X can be helpful in finding f(x). let x be

in the support of X. Suppose the device has not failed at time x; that is, suppose

X > x. The “rate of failure” as a function of time x over the interval x to x + ∆

satisfies

r(x) ≈ P (x ≤ x < x + ∆ | X ≥ x)

∆

and

r(x) = lim
∆→0

P (x ≤ x < x + ∆ | X ≥ x)

∆
=

P (x ≤ x < x + ∆)

P (X ≥ x)

1

∆
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=
1

1− F (x)
lim
∆→0

P (x ≤ X < x + ∆)

∆
=

F ′(x)

1− F (x)
= f(x)1− F (x),

since F ′(x) = f(x) by Note 1.7.A. This function r(x) is the hazard function of X

at x. So

r(x) = − d

dx
[log(1− F (x)] or log(1− F (x)) ∈ −

∫
r(x) dx

(where we treat the indefinite integral as the set of antiderivatives of the integrand),

of

1− F (x) ∈ e−
∫

r(x) dx so that 1− F (x) = e−R(x)eC

for some R(x) where R′(x) = r(x) and C is some constant. With the support

of X as (0,∞ then we take F (0) = 0 as the boundary condition that determines

constant C.

Note/Definition. If the hazard rate is constant, say r(x) = 1/β for some β > 0,

then an antiderivative of r is R(x) = x/β and so 1 − F (x) = e−x/βeC . Since

F (0) = 0 then eC = 1 so that F (x) = 1− e−x/β and

f(x) = F ′(x) =

 1
βe−x/β for x > 0

0 elsewhere.

This is the Γ(α, β) = Γ(1, β) distribution. It is also called the exponential distribu-

tion with parameter 1/β.

Note. The next result shows that a sum of Γ(α, β) distributions is additive in the

first variable (i.e., the α).
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Theorem 3.3.1. Let X1, X2, . . . , Xn be independent random variables. Suppose,

for i = 1, 2, . . . , n that Xi has a Γ(αi, β) distribution. Let Y =
∑n

i=1 Xi. Then Y

has a Γ(
∑n

i=1 αi, β) distribution.

Note 3.3.D. The Γ distribution also arises in Poisson processes. For t > 0, the

Xt denote the number of events that occur in the interval (0, t], and assume that

Xt satisfies the axioms of a Poisson processes given in the previous section. Let k

be a fixed positive integer and define the (continuous) random variable Wk to be

the “waiting time” until the kth event occurs. The range of Wk is (0,∞). For any

w > 0, we have Wk > w (that is, it takes longer than time w for k occurrences of

the event of interest) if and only if Xw ≤ k − 1 (that is, at most k − 1 events have

occurred at time w). Since Xt has a Poisson distribution then

P (Wk > w) = P (Xw ≤ k − 1) =
k−1∑
x=0

P (Xw − x) =
k−1∑
x=0

(λw)xe−λw

x!
.

Now

∫ ∞

λw

zk−1e−z

(k − 1)!
dz =

k−1∑
x=0

(λw)xe−λw

x!
by Exercise 3.3.5. So for w > 0, the cumu-

lative distribution function of Wk is

fWk
(w) = 1− P (Wk > w) = 1−

k−1∑
x=0

(λw)xe−λw

x!

= 1−
∫ ∞

λw

zk−1e−z

(k − 1)!
dz

= 1−
∫

λw∞zk−1e−z

Γ(k)
dz since Γ(k) = (k − 1)! for k ∈ N

=
Γ(k)

Γ(k)
=

1

Γ(k)
∞)λw∞zk−1e−z dz

=
1

Γ(k)

(∫ ∞

0
zk−1e−z dz −

∫ ∞

λw

zk−1e−z dz

)
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since Γ(k) =

∫ ∞

0
zk−1e−z dz by definition

=
1

Γ(k)

∫ λw

0
zk−1e−z dz,

and FWk
(w) = 0 for w ≤ 0. With the substitution z = λy and dz = λ dy in the last

integral, we have

FWk
(w) =

1

Γ(k)

∫ λw

0
zk−1e−z dz =

∫ w

0

λkyk−1e−λy

Γ(k)
dy

for w > 0. So the probability density function of Wk is

FWk
(w) = F ′

Wk
(w) by Note 1.7.A

=
d

dw

[∫ w

0

λkyk−1e−λy

Γ(k)
dy

]
=

λkwk−1e−λw

Γ(k)

for w > 0 and fWk
(w) = 0 for w ≤ 0. Since the Γ-distribution, Γ(α, β), has

probability density function

f(x) =

 1
Γ(α)βαxα−1e−x/β for 0 < x < ∞

0 elsewhere,

then we see that the waiting item until the kth occurrence, Wk, has the Γ-distribution

Γ(α, β) = Γ(k, 1/λ). In this way, we see the role that a Γ-distribution can play in

a Poisson process.

Note. Continuing the previous example on the waiting itme of a Poisson process,

if we let T1 be the waiting time until the first event occurs (so T1 = W1) then the

probability density function of T1 is

fT1
(w) = Γ(1, 1/λ) =

 λe−λw for 0 < w < ∞

0 elsewhere.
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So the mean of T1 is αβ = 1/λ and the mean of X1 is λ. That is, we expect λ

events to occur in a unit of time and we expect the first event to occur at time 1/λ.

With Ti as the time between the occurrence of event (i − 1) and event i, we have

that Ti also has a Γ(1, 1/λ) distribution (this follows from Axioms 1(a) and 2(a) of

a Poisson process). Since T1, T2, . . . are independent (by Axiom 3) then the waiting

time until the kth event satisfies Wk = T1 + T2 + · · ·Tk. So by Theorem 3.3.1, Wk

has a Γ(k, 1/λ) distribution (as argued above).

Definition. The distribution Γ(α, β) = Γ(r/2, 2) where r > 0 is the chi-square

distribution, denoted χ2-distribution, and any probability density function which

is the same as the probability density function of Γ(r/2, 2) (stated below) is a

chi-square probability function. Parameter r is the degrees of freedom of the χ2-

distribution. The χ2-distribution with r degrees of freedom is denoted χ2(r).

Note. If random variable X has a χ2-distribution (i.e., a Γ(r/2, 2) distribution),

then the probability density function is

f(x) =

 1
Γ(r/2)2r/2x

r/2−1e−x/2 for 0 < x < ∞

0 elsewhere

and the moment generating function is M(t) =
1

(1− 2t)r/2 for t < 1/2. By Note

3.3.C implies that the mean is M ′(0) = αβ = r and the variance is σ2 = αβ2 = 2r.
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Theorem 3.3.2. Let X have a χ2(r) distribution. If k > −r/2 then E(Xk) exists

and is

E(Xk) =
2kΓ(r/2 + k)

Γ(r/2)
if k > −r/2.

Note. The kth moment of the distribution of X is (by definition; see Section 1.9.

Some Special Expectations) E(Xk). So Theorem 3.3.2 (since for k ∈ N we have

k > −r/2) the kth moment of the χ2-distribution is E(Xk) = 2kΓ(r/2+k)/Γ(r/2).

Example 3.3.4. Let X have a Γ-distribution with α = r/2 (where 4 ∈ N) and

β > 0. Define random variable Y = 2X/β. The moment generating function of Y

is

MY (t) = E(etY ) = E(e2tX/β)

= (1− β(2t/β))−r/2 by Note 3.3.C

= (1− 2y)−r/2.

Notice that this is the moment generating function of a χ2-distribution (a Γ(r/2, 2)

distribution) as shown above. By the uniqueness of the moment generating function

(Theorem 1.9.2), we see that Y has a χ2(r)-distribution.

Corollary 3.3.1. Let X1, X2, . . . , Xn be independent random variables. Suppose

Xi has a χ2(ri) distribution for i = 1, 2, . . . , n. Let Y =
∑n

i=1 Xi. Then Y has a

χ2(
∑n

i=1 ri)-distribution.

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-9.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-9.pdf
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Note. The support of any Γ-distribution is the unbounded interval (0,∞). We

now seek a distribution X with support a bounded interval (a, b). Without loss

of generality, we may consider random variable Y with support (0, 1) since then

Y = (X−a)/(b−a) (or X = (b−a)Y +a). An example of such a distribution is a β-

distribution. We approach the β-distributions by considering a pair of independent

Γ random variables.

Note 3.3.E. Let X1 and X2 be two independent random variables that have Γ

distributions and have the joint probability density function

h(x1, x2) =
1

Γ(α)Γ(β)
xα−1

1 xβ−1
2 e−x1−x2 for 0 < x1 < ∞ and 0 < x2 < ∞,

and h(x1, x2) = 0 elsewhere; we also require α > 0 and β > 0. Let Y1 = X1 + X2

and Y2 = X1/(X1 + X2). We now show that Y1 and Y2 are independent (we will

choose the marginal distribution of Y2 as the β distribution). The support of S of

h is the open first quadrant of the x1x2-plane. Introduce u1 and u2 mapping S into

R as

y1 = u1(x1, x2) = x1 + x2 and y2 = u2(x1, x2) = x1/(x1 + x2).

Notice that

x1 = (x1 + x2)y2 = y1y2 and x2 = y1 − x1 = y1 − y1y2 = y1(1− y2).

With

x1 = v1(y1, y2) = y1y2 and x2 = v2(y1, y2) = y1(1− y2)

we have the Jacobian (or “Jacobian determinant”; see my online Calculus 3 notes
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on Section 15.8. Substitution in Multiple Integrals)

J(x1, x2) = J(v1, v2) =

∣∣∣∣∣∣
∂v1

∂y1

∂v1

∂y2

∂v2

∂y1

∂v2

∂y2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ y2 y1

1− y2 −y1

∣∣∣∣∣∣ = (y2)(−y1)− (y1)(1− y2) = −y1 6= 0 on S.

So the transformation (x1, x2) 7→ (y1, y2) is one-to-one (injective; this is due to the

nonzero Jacobian) mapping of S onto T = {(y1, y2) | 0 < y1 < ∞, 0 < y2 < 1}

is the y1y2-plane. Now for R ⊂ S a region in the x1x2-plane and G ⊂ T a region

in the y1y2-plane such that the transformation (x1, x2) 7→ (y1, y2) maps R onto G

then ∫∫
R

h(x1, x2) dx1 dx2 =

∫∫
G

h(v1(y1, y2), v2(y1, y2))|J(v1, v2)| dv1 dv2

provided h, v1, and v2 have continuous partial derivatives and J(v1, v2) is zero

only at isolated points (again, see my online Calculus 3 notes on Section 15.8.

Substitution in Multiple Integrals). So we get the probability density function of

Y1 and Y2 can be obtained form the joint probability density function of X1 and

X2 by replacing x1 and y1y2, x2 with y1(1 − y2), x1 + x2 with y1, and introducing

|J(v1, v2)| = |−y1| = y1. This gives the joint probability density function of Y1 and

Y2 on its support of

g(y1, y2) =
1

Γ(α)Γ(β)
(y1y2)

α−1(y1(1− y2))
β−1e−y1| − y1|

=


yα−1
2 (1−y2)β−1

Γ(α)Γ(β) yα+β−1
1 e−y1 for 0 < y1 < ∞, 0 < y2 < 1

0 elsewhere.

https://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
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Since g can be written as a product of a nonnegative function of y1 with a nonnega-

tive function of y2, then by Theorem 2.4.1 we have that Y1 and Y2 are independent.

The marginal probability density function of Y2 (by Note 2.1.C) is

g2(y2) =

∫ ∞

0

yα−1
2 (1− y2)

β−1

Γ(α)Γ(β)
yα−β−1

1 e−y1 dy1 =
yα−1

2 (1− y2)
β−1

Γ(α)Γ(β)

∫ ∞

0
yα+β−1

1 e−y1 dy1

=
yα−1

2 (1− y2)
β−1

Γ(α)Γ(β)
Γ(α + β) =


Γ(α+β)
Γ(α)Γ(β)y

α−1
2 (1− y2)

β−1 for 0 < y2 < 1

0 elsewhere.

As observed above, Y1 and Y2 are independent, so by Definition 2.4.1 the joint

probability density function and the marginal probability density functions are

related as g(y1, y2) = g1(y1)g2(y2) so it must be that the probability density function

of Y1 is

g1(y1) =

 1
Γ(α+β)y

α+β−1
1 e−y1 for0 < y1 < ∞

0 elsewhere.

Notice that g1(y1) is the Γ(α + β, 1) distribution. But it is g1(y2) that we are

interested in.

Definition. A random variable Y with probability density function

g(y) =


Γ(α+β)
Γ(α)Γ(β)y

α−1(1− y)β−1 for 0 < y < 1

0 elsewhere

is a beta distribution (or “β distribution”) with parameters α and β.

Note. In Exercise 3.3.A, it is to be shown that the mean and variance of a β

distribution with parameters α and β are

µ =
α

α + β
and σ2 =

αβ

(α + β + 1)(α + β)2 .
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Note. Here is the shape of the beta distribution for various values of α and β.

This image is form the Wikipedia webpage on the beta distribution.

Example 3.3.6. (Dirichlet Distribution) Let X1, X2, . . . , Xk+1 be independent

random variables, each having a Γ distribution with β = 1. The joint probability

density function is then

h(x1, x2, . . . , xk+1) =


∏

i=1 k + 1 1
Γ(αi)

xαi−1
i e−xi

0 elsewhere.

Let Yi =
Xi

X1 + X2 + · · ·+ Xk=1
for i = 1, 2, . . . , k, and Yk+1 = X1 +X2 + · · ·+Xk+1

denote k + 1 new random variables. Now the transformation (x1, x2, . . . , xk+1) 7→

(y1, y2, . . . , yk+1) maps set

A = {(x1, x2, . . . , xk+1) | 0 < xi < ∞ for i = 1, 2, . . . , k + 1}

onto set

B = {(y1, y2, . . . , yk+1) | 0 < yi < 1 for i = 1, 2, . . . , k,

y1 + y2 + · · · yk < 1, and 0 < yk+1 < ∞}.

https://en.wikipedia.org/wiki/Beta_distribution


3.3. The Γ, χ2, and β Distributions 16

Since yk+1 = x1 + x2 + · · ·+ xk+1 then xi = yiyk+1 for i = 1, 2, . . . , k and

xk+1 = yk+1 − x1 − x2 − · · · − xk = yk+1 − y1yk+1 − y2yk+1 − · · · − ykyk+1

= yk+1(1− y1 − y2 − · · · − yk).

With xi = vi(y1, y2, . . . , yk+1) = yiyk+1 for i = 1, 2, . . . , k and

xk+1 = vk+1(y1, y2, . . . , yk+1) = yk+1(1− y1 − y2 − · · · − yk),

we have the Jacobian

J(x1, x2, . . . , xk+1) = J(v1, v2, . . . , vk+1) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂v1

∂y1

∂v1

∂y2
· · · ∂v1

∂yk+1

∂v2

∂y1

∂v2

∂y2
· · · ∂v2

∂yk+1

...
... . . . ...

∂vk+1

∂y1

∂vk+1

∂y2
· · · ∂vk+1

∂yk+1

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yk+1 0 · · · 0 y1

0 yk+1 · · · 0 y2

...
... . . . ...

...

0 0 · · · yk+1 yk

−yk+1 −yk+1 · · · −yk+1 (1− y1 − y2 − · · · − yk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yk+1 0 · · · 0 y1

0 yk+1 · · · 0 y2

...
... . . . ...

...

0 0 · · · yk+1 yk

0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(by adding each of rows 1

through k to row k + 1)

= yk
k+1 6= 0.

As in Note 3.3.E, the joint probability density function of Y1, Y2, . . . , Tk+1 can be



3.3. The Γ, χ2, and β Distributions 17

obtained from the joint probability density function of X1, X2, . . . , Xk+1 by replac-

ing xi by yiyk+1 for i = 1, 2, . . . , k, by replacing xk+1 by yk+1(1− y1 − y2 − · · · yk),

and by introducing a factor of |J(v1, v2, . . . , vk+1)| = |yk
k+1| = yk

k+1. This gives the

joint probability density function of Y1, Y2, . . . , Yk+1 on its support B is

{(y1yk+1)
α1−1(y2yk+1)

α2−1 · · · (ykyk+1)
αk−1yk+1(1− y1 − y2 − · · · − yk)

αk+1−1

×e−y1yk+1e−y2yk+1 · · · e−yktk+1e−yk+1(1−y1−y2−···−yk)yk
k+1}/(Γ(α1)Γ(α2) · · ·Γ(αk+1))

=
y

α1+α2+···+αk+1−1
k+1 yα1−1

1 yα2−1
2 · · · yαk−1

k (1− y1 − y2 − · · · − yk)
αk+1−1e−yk+1

Γ(α1)Γ(α2) · · ·Γ(αk+1)
;

and the joint probability density function is 0 off of B. Integrating out yk+1 and

using the fact that

Γ(α1 + α2 + · · ·+ αk+1) =

∫ ∞

0
y

α1+α2+···+αk+1−1
k+1 eyk+1 dyk+1

we have the joint probability density function of Y1, Y2, . . . , Yk as

g(y1, y2, . . . , yk) =
Γ(α1 + α2 + · · ·+ αk+1)

Γ(α1)Γ(α2) · · ·Γ(αk+1)
yα1−1

1 yα2−1
2 · · · yαk−1

k (1−y1−y2−· · ·−yK)αk+1−1

where 0 < yi < 1 for i = 1, 2, . . . , k and y1+y2+· · ·+yk < 1. Also g(y1, y2, . . . , yk) =

0 elsewhere. This is the Dirichlet probability density function.

Definition. Random variables Y1, Y2, . . . , Yk that have a joint probability density

function of

g(y1, y2, . . . , yk) =
Γ(α1 + α2 + · · ·+ αk+1)

Γ(α1)Γ(α2) · · ·Γ(αk+1)
yα1−1

1 yα2−1
2 · · · yαk−1

k (1−y1−y2−· · ·−yK)αk+1−1

where 0 < yi < 1 for i = 1, 2, . . . , k and y1 + y2 + · · · + yk < 1, and we have

g(y1, y2, . . . , yk) = 0 elsewhere, have the Dirichlet probability density function with

parameters α1, α2, . . . , αk+1 where αi > 0 for i = 1, 2, . . . , k + 1.
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Note. If k = 1 then the Dirichlet probability density function is of the form
Γ(α1 + α2)

Γ(α1)Γ(α2)
yα1−1

1 (1− y1)
α2−1, which is a β distribution (with α = α1 and β = α2).

Note. The Dirac probability density function should not be confused with the

Dirac delta distribution. See my online notes for Real Analysis 1 (MATH 5210) on

Supplement. The Dirac Delta Function, A Cautionary Tale for more details.

Revised: 7/14/2021

https://faculty.etsu.edu/gardnerr/5210/notes/Dirac-Delta.pdf

