Section 3.3. The Γ , χ^2 , and β Distributions

Note. In this section we define the gamma function using an improper integral. We then use it to define three distributions: the Γ distribution, the χ^2 distribution, and the β distribution. These distributions have a number of applications, some related to lifetimes, failure times, and waiting times.

Definition. The gamma function is
$$\Gamma(a) = \int_0^\infty y^{\alpha-1} e^{-y} dy$$
, where $\alpha > 0$.

Note. We now show that $\Gamma(\alpha)$ actually exists for all $\alpha > 0$; that is, the indefinite integral defining $\Gamma(\alpha)$ is convergent for all $\alpha > 0$. The following computations are largely based on Jia-Ming (Frank) Liou's Calculus 2 webpage (accessed 6/28/2021).

Note 3.3.A. We can show by an inductive application of L'Hoptial's Rule (see my online notes for Calculus 1 on Section 4.5. Indeterminate Forms and L'Hôpital's Rule) that for $n \in \mathbb{N}$ we have $\lim_{y \to \infty} \frac{y^{n-1}}{e^{y/2}} = 0$. So by the definition of "limit as $y \to \infty$," there exists M > 0 such that for all $y \geq M$ we have $|y^{n-1}/e^{y/2}| < 1$. So for $y \geq M > 0$ we also have $0 \leq y^{n-1} < e^{y/2}$ when y > 0, or $0 \leq y^{n-1}e^{-y} \leq e^{y/2}e^{-y} = e^{-y/2}$. Now

$$\int_0^\infty e^{-y/2} dy = \lim_{b \to \infty} \left(\int_0^b e^{-y/2} dy \right) = \lim_{b \to \infty} (-2e^{-y/2}) \Big|_0^b$$
$$= \lim_{b \to \infty} \left((-2^{-(b)/2}) - (-2e^{-(0)/2}) \right) = 2.$$

So by the Direct Comparison Test (see my online notes for Calculus 2 [MATH 1920]

on Section 8.7. Improper Integrals; see Theorem 2), $\int_0^\infty y^{n-1}e^{-y}\,dy$ converges when $n\in\mathbb{N}$. So we need to consider the integral when $n\in\mathbb{N}$ is replace with $\alpha>0$. With $\lfloor\alpha\rfloor$ as the greatest integer function (or the "integer floor function") then for $\alpha\geq 1$ we have $\lfloor\alpha\rfloor\leq\alpha<\lfloor\alpha\rfloor+1$ or $\alpha-1\leq\lfloor\alpha\rfloor\in\mathbb{N}$. So for x>0 we have $0\leq y^{\alpha-1}e^{-y}\leq x^{\lfloor\alpha\rfloor}e^{-y}$. So $\lfloor\alpha\rfloor\in\mathbb{N}$ and so $\int_0^\infty y^{\alpha-1}e^{-y}\,dy$ converges (by the Direct Comparison Test) when $\alpha\geq 1$.

Note 3.3.B. We now consider $0 < \alpha < 1$. Then $-1 < \alpha - 1 < 0$ and so for $y \ge 1$ we have $0 < y^{\alpha - 1} \le 1$. This implies that $0 < y^{\alpha - 1}e^{-y} \le e^{-y}$ for $y \ge 1$. So by the Direct Comparison Test,

$$\int_{1}^{\infty} y^{\alpha - 1} e^{-y} \, dy \le \int_{1}^{\infty} e^{-y} \, dy = \lim_{b \to \infty} \left(\int_{1}^{b} e^{-y} \, dy \right)$$
$$= \lim_{b \to \infty} (-e^{-y})|_{1}^{b} = \lim_{b \to \infty} \left((-e^{-b}) - (-e^{-1}) \right) = 1/e$$

and hence

$$\int_{1}^{\infty} y^{\alpha - 1} e^{-y} \, dy \text{ is convergent.} \qquad (*)$$

Finally, we show that $\int_0^1 y^{\alpha-1} e^{-y} dy$ converges (notice that

$$\lim_{y \to 0} (y^{\alpha - 1} e^{-y}) = \lim_{y \to \infty} \frac{e^{-y}}{y^{1 - \alpha}} = \infty$$

since $0 < \alpha < 1$ and so $0 < 1 - \alpha < 1$, and so this is in fact an improper integral). Now $0 < y^{\alpha - 1}e^{-y} \le y^{\alpha - 1}e$ for $y \ge 0$, so by the Direct Comparison Test

$$\int_0^1 y^{\alpha - 1} e^{-y} dy \le \int_0^1 y^{\alpha - 1} e dy = \lim_{a \to 0^+} \left(e^{\frac{y^{\alpha}}{\alpha}} \right) \Big|_a^1$$
$$= \lim_{a \to 0^+} \left(e^{\frac{(1)^n}{\alpha}} - e^{\frac{(a)^{\alpha}}{\alpha}} \right) = \frac{e}{\alpha} - e^{\frac{(0)^{\alpha}}{\alpha}} = \frac{e}{\alpha}$$

and so

$$\int_0^1 y^{\alpha - 1} e^{-y} dy \text{ converges when } 0 < \alpha < 1. \quad (**)$$

Therefore, by (*) and (**), we have that

$$\int_0^\infty y^{\alpha - 1} e^{-y} \, dy = \int_0^1 y^{\alpha - 1} e^{-y} \, dy + \int_1^\infty y^{\alpha - 1} e^{-y} \, dy$$

is convergent ("exists"). Hence $\Gamma(\alpha)$ is defined for all $0 < \alpha < 1$. Combining this with Note 3.3.A, we see that $\Gamma(\alpha)$ is defined for all $\alpha > 0$.

Note. We have

$$\Gamma(1) = \int_0^\infty e^{(1)-1} e^{-y} dy = \int_0^\infty e^{-y} dy = 1.$$

We can use Integration by Parts to show for $\alpha > 1$ that $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$ (see *Thomas' Calculus, Early Transcendentals*, 14th Edition, "Chapter 8. Techniques of Integration," "Additional and Advanced Exercises" Number 43). So by induction we have $\Gamma(n) = (n-1)!$ where $n \in \mathbb{N}$. So the Γ function generalizes the factorial function by extending it from \mathbb{N} to $(0, \infty)$. In fact, the Γ function can be extended to the complex plane where it is defined, except that it has simple poles at $0, -1, -2, \ldots$ Formally, it is defined as

$$\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}$$

where γ is a constant (called the *Euler constant*) such that $\Gamma(1) = 1$. See my online notes for Complex Analysis 1 and 2 (MATH 5510/5520) on Section VII.7. The Gamma Function (see in particular Definition VII.7.2 and Theorem VII.7.15). A graph of the Γ function can be found in *Thomas' Calculus, Early Transcendentals* (in the exercise referenced above):

Definition. Continuous random variable X has a Γ -distribution with parameters $\alpha > 0$ and $\beta > 0$, if its probability density function is

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} & \text{for } 0 < x < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

We denote this by saying that X has a $\Gamma(\alpha, \beta)$ distribution.

Note. We need to confirm that f actually integrates to 1 over $[0, \infty)$ to insure that it is a probability density function. We have

$$\int_0^\infty \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} dx \qquad [\text{let } z = x/\beta \text{ and } dx = 1/\beta dx]$$

$$= \int_0^\infty \frac{1}{\Gamma(\alpha)\beta^{\alpha}} (\beta z)^{\alpha-1} e^{-z} \beta dz$$

$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)\beta^{\alpha}} \int_0^\infty z^{\alpha-1} e^{-z} dz = \frac{1}{\Gamma(\alpha)} \Gamma(\alpha) = 1.$$

Note 3.3.C. The moment generating function of the Γ distribution is

$$M(t) = E[e^{tX}] = \int_0^\infty e^{tx} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} dx$$

$$= \int_0^\infty \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x(1-\beta t)/\beta} dx$$

$$= t y = x(1-\beta t)/\beta \text{ where } t < 1/\beta, \text{ or } x = \beta y/(1-\beta t),$$
and $dx = \beta/(1-\beta t) dy$

$$= \int_0^\infty \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \left(\frac{\beta y}{1-\beta t}\right)^{\alpha-1} e^{-y} \frac{\beta}{1-\beta t} dx$$

$$= \int_0^\infty \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \left(\frac{\beta y}{1-\beta t}\right)^{\alpha-1} e^{-y} \frac{\beta}{1-\beta t} dx$$

$$= \frac{1}{\Gamma(\alpha)(1-\beta t)^{\alpha}} \int_0^\infty y^{\alpha-1} e^{-y} dy$$

$$= \frac{1}{\Gamma(\alpha)(1-\beta t)^{\alpha}} \Gamma(\alpha) = \frac{1}{(1-\beta t)^{\alpha}} \text{ for } t < 1/\beta.$$

Then

$$M'(t) = \frac{(-\alpha)(-\beta)}{(1-\beta t)^{\alpha+1}} = \frac{\alpha\beta}{(1-\beta t)^{\alpha+1}}$$

and

$$M''(t) = \frac{(\alpha\beta)(-(\alpha+1))(-\beta)}{(1-\beta t)^{\alpha+2}} = \frac{\alpha(\alpha+1)\beta^2}{(1-\beta t)^{\alpha+2}}.$$

By Note 1.9.B, the mean of the Γ distribution is $\mu = M'(0) = \alpha \beta$ and the variance is

$$\sigma^{2} = M''(0) - \mu^{2} = \alpha(\alpha + 1)\beta^{2} - (\alpha\beta)^{2} = \alpha\beta^{2}.$$

Note. Figure 3.3.1 gives six probability density functions for different values of α and β (below).

The appeal of Γ -distribution in applications results from the many different shapes they can take by varying the values of α and β .

Note. Let X denote the time until the failure of a device, and suppose the probability density function is f(x) and the cumulative distribution function is (differentiable) F(x). The "hazard function" of X can be helpful in finding f(x). let x be in the support of X. Suppose the device has not failed at time x; that is, suppose X > x. The "rate of failure" as a function of time x over the interval x to $x + \Delta$ satisfies

$$r(x) \approx \frac{P(x \le x < x + \Delta \mid X \ge x)}{\Delta}$$

and

$$r(x) = \lim_{\Delta \to 0} \frac{P(x \le x < x + \Delta \mid X \ge x)}{\Delta} = \frac{P(x \le x < x + \Delta)}{P(X \ge x)} \frac{1}{\Delta}$$

$$= \frac{1}{1 - F(x)} \lim_{\Delta \to 0} \frac{P(x \le X < x + \Delta)}{\Delta} = \frac{F'(x)}{1 - F(x)} = f(x)1 - F(x),$$

since F'(x) = f(x) by Note 1.7.A. This function r(x) is the hazard function of X at x. So

$$r(x) = -\frac{d}{dx} \left[\log(1 - F(x)) \right]$$
 or $\log(1 - F(x)) \in -\int r(x) dx$

(where we treat the indefinite integral as the <u>set</u> of antiderivatives of the integrand), of

$$1 - F(x) \in e^{-\int r(x) dx}$$
 so that $1 - F(x) = e^{-R(x)}e^{C}$

for some R(x) where R'(x) = r(x) and C is some constant. With the support of X as $(0, \infty)$ then we take F(0) = 0 as the boundary condition that determines constant C.

Note/Definition. If the hazard rate is constant, say $r(x) = 1/\beta$ for some $\beta > 0$, then an antiderivative of r is $R(x) = x/\beta$ and so $1 - F(x) = e^{-x/\beta}e^C$. Since F(0) = 0 then $e^C = 1$ so that $F(x) = 1 - e^{-x/\beta}$ and

$$f(x) = F'(x) = \begin{cases} \frac{1}{\beta}e^{-x/\beta} & \text{for } x > 0\\ 0 & \text{elsewhere.} \end{cases}$$

This is the $\Gamma(\alpha, \beta) = \Gamma(1, \beta)$ distribution. It is also called the *exponential distribution* with parameter $1/\beta$.

Note. The next result shows that a sum of $\Gamma(\alpha, \beta)$ distributions is additive in the first variable (i.e., the α).

Theorem 3.3.1. Let X_1, X_2, \ldots, X_n be independent random variables. Suppose, for $i = 1, 2, \ldots, n$ that X_i has a $\Gamma(\alpha_i, \beta)$ distribution. Let $Y = \sum_{i=1}^n X_i$. Then Y has a $\Gamma(\sum_{i=1}^n \alpha_i, \beta)$ distribution.

Note 3.3.D. The Γ distribution also arises in Poisson processes. For t > 0, the X_t denote the number of events that occur in the interval (0,t], and assume that X_t satisfies the axioms of a Poisson processes given in the previous section. Let k be a fixed positive integer and define the (continuous) random variable W_k to be the "waiting time" until the kth event occurs. The range of W_k is $(0,\infty)$. For any w > 0, we have $W_k > w$ (that is, it takes longer than time w for k occurrences of the event of interest) if and only if $X_w \leq k - 1$ (that is, at most k - 1 events have occurred at time w). Since X_t has a Poisson distribution then

$$P(W_k > w) = P(X_w \le k - 1) = \sum_{x=0}^{k-1} P(X_w - x) = \sum_{x=0}^{k-1} \frac{(\lambda w)^x e^{-\lambda w}}{x!}.$$

Now $\int_{\lambda w}^{\infty} \frac{z^{k-1}e^{-z}}{(k-1)!} dz = \sum_{x=0}^{k-1} \frac{(\lambda w)^x e^{-\lambda w}}{x!}$ by Exercise 3.3.5. So for w > 0, the cumulative distribution function of W_k is

$$f_{W_{k}}(w) = 1 - P(W_{k} > w) = 1 - \sum_{x=0}^{k-1} \frac{(\lambda w)^{x} e^{-\lambda w}}{x!}$$

$$= 1 - \int_{\lambda w}^{\infty} \frac{z^{k-1} e^{-z}}{(k-1)!} dz$$

$$= 1 - \int \lambda w^{\infty} \frac{z^{k-1} e^{-z}}{\Gamma(k)} dz \text{ since } \Gamma(k) = (k-1)! \text{ for } k \in \mathbb{N}$$

$$= \frac{\Gamma(k)}{\Gamma(k)} = \frac{1}{\Gamma(k)} \infty \lambda w^{\infty} z^{k-1} e^{-z} dz$$

$$= \frac{1}{\Gamma(k)} \left(\int_{0}^{\infty} z^{k-1} e^{-z} dz - \int_{\lambda w}^{\infty} z^{k-1} e^{-z} dz \right)$$

since
$$\Gamma(k) = \int_0^\infty z^{k-1} e^{-z} dz$$
 by definition
= $\frac{1}{\Gamma(k)} \int_0^{\lambda w} z^{k-1} e^{-z} dz$,

and $F_{W_k}(w) = 0$ for $w \leq 0$. With the substitution $z = \lambda y$ and $dz = \lambda dy$ in the last integral, we have

$$F_{W_k}(w) = \frac{1}{\Gamma(k)} \int_0^{\lambda w} z^{k-1} e^{-z} dz = \int_0^w \frac{\lambda^k y^{k-1} e^{-\lambda y}}{\Gamma(k)} dy$$

for w > 0. So the probability density function of W_k is

$$F_{W_k}(w) = F'_{W_k}(w) \text{ by Note 1.7.A}$$

$$= \frac{d}{dw} \left[\int_0^w \frac{\lambda^k y^{k-1} e^{-\lambda y}}{\Gamma(k)} dy \right] = \frac{\lambda^k w^{k-1} e^{-\lambda w}}{\Gamma(k)}$$

for w > 0 and $f_{W_k}(w) = 0$ for $w \leq 0$. Since the Γ -distribution, $\Gamma(\alpha, \beta)$, has probability density function

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} & \text{for } 0 < x < \infty \\ 0 & \text{elsewhere,} \end{cases}$$

then we see that the waiting item until the kth occurrence, W_k , has the Γ -distribution $\Gamma(\alpha, \beta) = \Gamma(k, 1/\lambda)$. In this way, we see the role that a Γ -distribution can play in a Poisson process.

Note. Continuing the previous example on the waiting itme of a Poisson process, if we let T_1 be the waiting time until the first event occurs (so $T_1 = W_1$) then the probability density function of T_1 is

$$f_{T_1}(w) = \Gamma(1, 1/\lambda) = \begin{cases} \lambda e^{-\lambda w} & \text{for } 0 < w < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

So the mean of T_1 is $\alpha\beta = 1/\lambda$ and the mean of X_1 is λ . That is, we expect λ events to occur in a unit of time and we *expect* the first event to occur at time $1/\lambda$. With T_i as the time between the occurrence of event (i-1) and event i, we have that T_i also has a $\Gamma(1,1/\lambda)$ distribution (this follows from Axioms 1(a) and 2(a) of a Poisson process). Since T_1, T_2, \ldots are independent (by Axiom 3) then the waiting time until the kth event satisfies $W_k = T_1 + T_2 + \cdots + T_k$. So by Theorem 3.3.1, W_k has a $\Gamma(k, 1/\lambda)$ distribution (as argued above).

Definition. The distribution $\Gamma(\alpha,\beta) = \Gamma(r/2,2)$ where r > 0 is the *chi-square distribution*, denoted χ^2 -distribution, and any probability density function which is the same as the probability density function of $\Gamma(r/2,2)$ (stated below) is a *chi-square probability function*. Parameter r is the *degrees of freedom* of the χ^2 -distribution. The χ^2 -distribution with r degrees of freedom is denoted $\chi^2(r)$.

Note. If random variable X has a χ^2 -distribution (i.e., a $\Gamma(r/2, 2)$ distribution), then the probability density function is

$$f(x) = \begin{cases} \frac{1}{\Gamma(r/2)2^{r/2}} x^{r/2-1} e^{-x/2} & \text{for } 0 < x < \infty \\ 0 & \text{elsewhere} \end{cases}$$

and the moment generating function is $M(t) = \frac{1}{(1-2t)^{r/2}}$ for t < 1/2. By Note 3.3.C implies that the mean is $M'(0) = \alpha\beta = r$ and the variance is $\sigma^2 = \alpha\beta^2 = 2r$.

Theorem 3.3.2. Let X have a $\chi^2(r)$ distribution. If k > -r/2 then $E(X^k)$ exists and is

$$E(X^k) = \frac{2^k \Gamma(r/2 + k)}{\Gamma(r/2)} \text{ if } k > -r/2.$$

Note. The kth moment of the distribution of X is (by definition; see Section 1.9. Some Special Expectations) $E(X^k)$. So Theorem 3.3.2 (since for $k \in \mathbb{N}$ we have k > -r/2) the kth moment of the χ^2 -distribution is $E(X^k) = 2^k \Gamma(r/2 + k) / \Gamma(r/2)$.

Example 3.3.4. Let X have a Γ -distribution with $\alpha = r/2$ (where $4 \in \mathbb{N}$) and $\beta > 0$. Define random variable $Y = 2X/\beta$. The moment generating function of Y is

$$M_Y(t) = E(e^{tY}) = E(e^{2tX/\beta})$$

= $(1 - \beta(2t/\beta))^{-r/2}$ by Note 3.3.C
= $(1 - 2y)^{-r/2}$.

Notice that this is the moment generating function of a χ^2 -distribution (a $\Gamma(r/2, 2)$ distribution) as shown above. By the uniqueness of the moment generating function (Theorem 1.9.2), we see that Y has a $\chi^2(r)$ -distribution.

Corollary 3.3.1. Let $X_1, X_2, ..., X_n$ be independent random variables. Suppose X_i has a $\chi^2(r_i)$ distribution for i = 1, 2, ..., n. Let $Y = \sum_{i=1}^n X_i$. Then Y has a $\chi^2(\sum_{i=1}^n r_i)$ -distribution.

Note. The support of any Γ -distribution is the unbounded interval $(0, \infty)$. We now seek a distribution X with support a bounded interval (a, b). Without loss of generality, we may consider random variable Y with support (0, 1) since then Y = (X-a)/(b-a) (or X = (b-a)Y+a). An example of such a distribution is a β -distribution. We approach the β -distributions by considering a pair of independent Γ random variables.

Note 3.3.E. Let X_1 and X_2 be two independent random variables that have Γ distributions and have the joint probability density function

$$h(x_1, x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x_1^{\alpha - 1} x_2^{\beta - 1} e^{-x_1 - x_2} \text{ for } 0 < x_1 < \infty \text{ and } 0 < x_2 < \infty,$$

and $h(x_1, x_2) = 0$ elsewhere; we also require $\alpha > 0$ and $\beta > 0$. Let $Y_1 = X_1 + X_2$ and $Y_2 = X_1/(X_1 + X_2)$. We now show that Y_1 and Y_2 are independent (we will choose the marginal distribution of Y_2 as the β distribution). The support of \mathcal{S} of h is the open first quadrant of the x_1x_2 -plane. Introduce u_1 and u_2 mapping \mathcal{S} into \mathbb{R} as

$$y_1 = u_1(x_1, x_2) = x_1 + x_2$$
 and $y_2 = u_2(x_1, x_2) = x_1/(x_1 + x_2)$.

Notice that

$$x_1 = (x_1 + x_2)y_2 = y_1y_2$$
 and $x_2 = y_1 - x_1 = y_1 - y_1y_2 = y_1(1 - y_2)$.

With

$$x_1 = v_1(y_1, y_2) = y_1y_2$$
 and $x_2 = v_2(y_1, y_2) = y_1(1 - y_2)$

we have the Jacobian (or "Jacobian determinant"; see my online Calculus 3 notes

on Section 15.8. Substitution in Multiple Integrals)

$$J(x_1, x_2) = J(v_1, v_2) = \begin{vmatrix} \frac{\partial v_1}{\partial y_1} & \frac{\partial v_1}{\partial y_2} \\ \frac{\partial v_2}{\partial y_1} & \frac{\partial v_2}{\partial y_2} \end{vmatrix} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$$

$$= \begin{vmatrix} y_2 & y_1 \\ 1 - y_2 & -y_1 \end{vmatrix} = (y_2)(-y_1) - (y_1)(1 - y_2) = -y_1 \neq 0 \text{ on } \mathcal{S}.$$

So the transformation $(x_1, x_2) \mapsto (y_1, y_2)$ is one-to-one (injective; this is due to the nonzero Jacobian) mapping of S onto $T = \{(y_1, y_2) \mid 0 < y_1 < \infty, 0 < y_2 < 1\}$ is the y_1y_2 -plane. Now for $R \subset S$ a region in the x_1x_2 -plane and $G \subset T$ a region in the y_1y_2 -plane such that the transformation $(x_1, x_2) \mapsto (y_1, y_2)$ maps R onto G then

$$\iint_R h(x_1, x_2) dx_1 dx_2 = \iint_G h(v_1(y_1, y_2), v_2(y_1, y_2)) |J(v_1, v_2)| dv_1 dv_2$$

provided h, v_1 , and v_2 have continuous partial derivatives and $J(v_1, v_2)$ is zero only at isolated points (again, see my online Calculus 3 notes on Section 15.8. Substitution in Multiple Integrals). So we get the probability density function of Y_1 and Y_2 can be obtained form the joint probability density function of X_1 and X_2 by replacing x_1 and y_1y_2 , x_2 with $y_1(1-y_2)$, $x_1 + x_2$ with y_1 , and introducing $|J(v_1, v_2)| = |-y_1| = y_1$. This gives the joint probability density function of Y_1 and Y_2 on its support of

$$g(y_1, y_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} (y_1 y_2)^{\alpha - 1} (y_1 (1 - y_2))^{\beta - 1} e^{-y_1} | - y_1 |$$

$$= \begin{cases} \frac{y_2^{\alpha - 1} (1 - y_2)^{\beta - 1}}{\Gamma(\alpha)\Gamma(\beta)} y_1^{\alpha + \beta - 1} e^{-y_1} & \text{for } 0 < y_1 < \infty, 0 < y_2 < 1 \\ 0 & \text{elsewhere.} \end{cases}$$

Since g can be written as a product of a nonnegative function of y_1 with a nonnegative function of y_2 , then by Theorem 2.4.1 we have that Y_1 and Y_2 are independent. The marginal probability density function of Y_2 (by Note 2.1.C) is

$$g_{2}(y_{2}) = \int_{0}^{\infty} \frac{y_{2}^{\alpha-1}(1-y_{2})^{\beta-1}}{\Gamma(\alpha)\Gamma(\beta)} y_{1}^{\alpha-\beta-1} e^{-y_{1}} dy_{1} = \frac{y_{2}^{\alpha-1}(1-y_{2})^{\beta-1}}{\Gamma(\alpha)\Gamma(\beta)} \int_{0}^{\infty} y_{1}^{\alpha+\beta-1} e^{-y_{1}} dy_{1}$$

$$= \frac{y_{2}^{\alpha-1}(1-y_{2})^{\beta-1}}{\Gamma(\alpha)\Gamma(\beta)} \Gamma(\alpha+\beta) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} y_{2}^{\alpha-1}(1-y_{2})^{\beta-1} & \text{for } 0 < y_{2} < 1 \\ 0 & \text{elsewhere.} \end{cases}$$

As observed above, Y_1 and Y_2 are independent, so by Definition 2.4.1 the joint probability density function and the marginal probability density functions are related as $g(y_1, y_2) = g_1(y_1)g_2(y_2)$ so it must be that the probability density function of Y_1 is

$$g_1(y_1) = \begin{cases} \frac{1}{\Gamma(\alpha+\beta)} y_1^{\alpha+\beta-1} e^{-y_1} & \text{for } 0 < y_1 < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Notice that $g_1(y_1)$ is the $\Gamma(\alpha + \beta, 1)$ distribution. But it is $g_1(y_2)$ that we are interested in.

Definition. A random variable Y with probability density function

$$g(y) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha-1} (1-y)^{\beta-1} & \text{for } 0 < y < 1\\ 0 & \text{elsewhere} \end{cases}$$

is a beta distribution (or " β distribution") with parameters α and β .

Note. In Exercise 3.3.A, it is to be shown that the mean and variance of a β distribution with parameters α and β are

$$\mu = \frac{\alpha}{\alpha + \beta}$$
 and $\sigma^2 = \frac{\alpha\beta}{(\alpha + \beta + 1)(\alpha + \beta)^2}$.

Note. Here is the shape of the beta distribution for various values of α and β . This image is form the Wikipedia webpage on the beta distribution.

Example 3.3.6. (Dirichlet Distribution) Let $X_1, X_2, ..., X_{k+1}$ be independent random variables, each having a Γ distribution with $\beta = 1$. The joint probability density function is then

$$h(x_1, x_2, \dots, x_{k+1}) = \begin{cases} \prod_{i=1}^{k} k + 1 \frac{1}{\Gamma(\alpha_i)} x_i^{\alpha_i - 1} e^{-x_i} \\ 0 & \text{elsewhere.} \end{cases}$$

Let $Y_i = \frac{X_i}{X_1 + X_2 + \dots + X_{k-1}}$ for $i = 1, 2, \dots, k$, and $Y_{k+1} = X_1 + X_2 + \dots + X_{k+1}$ denote k+1 new random variables. Now the transformation $(x_1, x_2, \dots, x_{k+1}) \mapsto (y_1, y_2, \dots, y_{k+1})$ maps set

$$\mathcal{A} = \{(x_1, x_2, \dots, x_{k+1}) \mid 0 < x_i < \infty \text{ for } i = 1, 2, \dots, k+1\}$$

onto set

$$\mathcal{B} = \{ (y_1, y_2, \dots, y_{k+1}) \mid 0 < y_i < 1 \text{ for } i = 1, 2, \dots, k,$$
$$y_1 + y_2 + \dots + y_k < 1, \text{ and } 0 < y_{k+1} < \infty \}.$$

Since
$$y_{k+1} = x_1 + x_2 + \cdots + x_{k+1}$$
 then $x_i = y_i y_{k+1}$ for $i = 1, 2, \dots, k$ and

$$x_{k+1} = y_{k+1} - x_1 - x_2 - \dots - x_k = y_{k+1} - y_1 y_{k+1} - y_2 y_{k+1} - \dots - y_k y_{k+1}$$
$$= y_{k+1} (1 - y_1 - y_2 - \dots - y_k).$$

With
$$x_i = v_i(y_1, y_2, \dots, y_{k+1}) = y_i y_{k+1}$$
 for $i = 1, 2, \dots, k$ and

$$x_{k+1} = v_{k+1}(y_1, y_2, \dots, y_{k+1}) = y_{k+1}(1 - y_1 - y_2 - \dots - y_k),$$

we have the Jacobian

$$J(x_{1}, x_{2}, \dots, x_{k+1}) = J(v_{1}, v_{2}, \dots, v_{k+1}) = \begin{vmatrix} \frac{\partial v_{1}}{\partial y_{1}} & \frac{\partial v_{1}}{\partial y_{2}} & \dots & \frac{\partial v_{1}}{\partial y_{k+1}} \\ \frac{\partial v_{2}}{\partial y_{1}} & \frac{\partial v_{2}}{\partial y_{2}} & \dots & \frac{\partial v_{2}}{\partial y_{k+1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial v_{k+1}}{\partial y_{1}} & \frac{\partial v_{k+1}}{\partial y_{2}} & \dots & \frac{\partial v_{k+1}}{\partial y_{k+1}} \end{vmatrix}$$

$$= \begin{vmatrix} y_{k+1} & 0 & \cdots & 0 & y_{1} \\ 0 & y_{k+1} & \cdots & 0 & y_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & y_{k+1} & y_{k} \\ -y_{k+1} & -y_{k+1} & \cdots & -y_{k+1} & (1 - y_{1} - y_{2} - \dots - y_{k}) \end{vmatrix}$$

$$= \begin{vmatrix} y_{k+1} & 0 & \cdots & 0 & y_{1} \\ 0 & y_{k+1} & \cdots & 0 & y_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & y_{k+1} & y_{k} \\ 0 & 0 & \cdots & y_{k+1} & y_{k} \\ 0 & 0 & \cdots & 0 & 1 \end{vmatrix}$$
(by adding each of rows 1 through k to row $k+1$)

As in Note 3.3.E, the joint probability density function of $Y_1, Y_2, \ldots, T_{k+1}$ can be

obtained from the joint probability density function of $X_1, X_2, \ldots, X_{k+1}$ by replacing x_i by $y_i y_{k+1}$ for $i = 1, 2, \ldots, k$, by replacing x_{k+1} by $y_{k+1} (1 - y_1 - y_2 - \cdots y_k)$, and by introducing a factor of $|J(v_1, v_2, \ldots, v_{k+1})| = |y_{k+1}^k| = y_{k+1}^k$. This gives the joint probability density function of $Y_1, Y_2, \ldots, Y_{k+1}$ on its support \mathcal{B} is

$$\{ (y_1 y_{k+1})^{\alpha_1 - 1} (y_2 y_{k+1})^{\alpha_2 - 1} \cdots (y_k y_{k+1})^{\alpha_k - 1} y_{k+1} (1 - y_1 - y_2 - \dots - y_k)^{\alpha_{k+1} - 1}$$

$$\times e^{-y_1 y_{k+1}} e^{-y_2 y_{k+1}} \cdots e^{-y_k t_{k+1}} e^{-y_{k+1} (1 - y_1 - y_2 - \dots - y_k)} y_{k+1}^k \} / (\Gamma(\alpha_1) \Gamma(\alpha_2) \cdots \Gamma(\alpha_{k+1}))$$

$$= \frac{y_{k+1}^{\alpha_1 + \alpha_2 + \dots + \alpha_{k+1} - 1} y_1^{\alpha_1 - 1} y_2^{\alpha_2 - 1} \cdots y_k^{\alpha_k - 1} (1 - y_1 - y_2 - \dots - y_k)^{\alpha_{k+1} - 1} e^{-y_{k+1}}}{\Gamma(\alpha_1) \Gamma(\alpha_2) \cdots \Gamma(\alpha_{k+1})} ;$$

and the joint probability density function is 0 off of \mathcal{B} . Integrating out y_{k+1} and using the fact that

$$\Gamma(\alpha_1 + \alpha_2 + \dots + \alpha_{k+1}) = \int_0^\infty y_{k+1}^{\alpha_1 + \alpha_2 + \dots + \alpha_{k+1} - 1} e^{y_{k+1}} \, dy_{k+1}$$

we have the joint probability density function of Y_1, Y_2, \dots, Y_k as

$$g(y_1, y_2, \dots, y_k) = \frac{\Gamma(\alpha_1 + \alpha_2 + \dots + \alpha_{k+1})}{\Gamma(\alpha_1)\Gamma(\alpha_2) \cdots \Gamma(\alpha_{k+1})} y_1^{\alpha_1 - 1} y_2^{\alpha_2 - 1} \cdots y_k^{\alpha_k - 1} (1 - y_1 - y_2 - \dots - y_K)^{\alpha_{k+1} - 1}$$
where $0 < y_i < 1$ for $i = 1, 2, \dots, k$ and $y_1 + y_2 + \dots + y_k < 1$. Also $g(y_1, y_2, \dots, y_k) = 0$ elsewhere. This is the Dirichlet probability density function.

Definition. Random variables Y_1, Y_2, \ldots, Y_k that have a joint probability density function of

$$g(y_1, y_2, \dots, y_k) = \frac{\Gamma(\alpha_1 + \alpha_2 + \dots + \alpha_{k+1})}{\Gamma(\alpha_1)\Gamma(\alpha_2) \cdots \Gamma(\alpha_{k+1})} y_1^{\alpha_1 - 1} y_2^{\alpha_2 - 1} \cdots y_k^{\alpha_k - 1} (1 - y_1 - y_2 - \dots - y_K)^{\alpha_{k+1} - 1}$$
where $0 < y_i < 1$ for $i = 1, 2, \dots, k$ and $y_1 + y_2 + \dots + y_k < 1$, and we have $g(y_1, y_2, \dots, y_k) = 0$ elsewhere, have the *Dirichlet probability density function* with parameters $\alpha_1, \alpha_2, \dots, \alpha_{k+1}$ where $\alpha_i > 0$ for $i = 1, 2, \dots, k+1$.

3.3. The Γ , χ^2 , and β Distributions

18

Note. If k=1 then the Dirichlet probability density function is of the form $\frac{\Gamma(\alpha_1+\alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)}y_1^{\alpha_1-1}(1-y_1)^{\alpha_2-1}$, which is a β distribution (with $\alpha=\alpha_1$ and $\beta=\alpha_2$).

Note. The Dirac probability density function should not be confused with the Dirac delta distribution. See my online notes for Real Analysis 1 (MATH 5210) on Supplement. The Dirac Delta Function, A Cautionary Tale for more details.

Revised: 7/14/2021