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Section 3.3. The I, ¥, and /3 Distributions

Note. In this section we define the gamma function using an improper integral.
We then use it to define three distributions: the I' distribution, the y? distribution,
and the [ distribution. These distributions have a number of applications, some

related to lifetimes, failure times, and waiting times.
o0
Definition. The gamma function is I'(a) = / y* e ¥ dy, where a > 0.
0

Note. We now show that I'(a) actually exists for all a > 0; that is, the indefinite
integral defining I'(«) is convergent for all « > 0. The following computations are

largely based on Jia-Ming (Frank) Liou’s Calculus 2 webpage (accessed 6/28/2021).

Note 3.3.A. We can show by an inductive application of L’Hoptial’s Rule (see my

online notes for Calculus 1 on Section 4.5. Indeterminate Forms and L’Hopital’s
n—1

Rule) that for n € N we have lim

7 = 0. So by the definition of “limit as
y—oo e

y — 00,” there exists M > 0 such that for all y > M we have |y"~!/e¥/?| < 1.
So for y > M > 0 we also have 0 < ¢y" ! < e¥/2 when y > 0, or 0 < y" le ¥ <

e¥/2e=Y = ¢ Y/2 Now

00 b
[t ([ o) -
0 b—o0 0 b—o0

— lim ((—2—<b>/2) - (—26—@)/2)) — 2.

b—oo

So by the Direct Comparison Test (see my online notes for Calculus 2 [MATH 1920]


http://www.math.ncku.edu.tw/~fjmliou/Calculus2/Gamma.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c4s5-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c4s5-14E.pdf
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on Section 8.7. Improper Integrals; see Theorem 2), fooo y" e ¥ dy converges when
n € N. So we need to consider the integral when n € N is replace with a > 0.
With |« as the greatest integer function (or the “integer floor function”) then for
a > 1we have |a)] <a < |aJ]+1ora—1< |a] € N. So for x > 0 we have
0<y*te ¥ <zlele ¥ So |a] € N and so fooo y*“~te™¥ dy converges (by the Direct

Comparison Test) when o > 1.

Note 3.3.B. We now consider 0 < o« < 1. Then —1 < a—1 < 0 and so for y > 1
we have 0 < y* ! < 1. This implies that 0 < y* e ¥ < e ¥ for y > 1. So by the

Direct Comparison Test,

0 0 b
/ y“leVdy < / e Ydy = lim (/ e VY dy)
1 1 b—oo \J1

= lim (—e )} = lim ((—e ") — (—e™)) = 1/e

b—oo b—oo

and hence
o0
/ y*“ eV dy is convergent. (%)
1
Finally, we show that fol y*~le™¥ dy converges (notice that

1 - e’
lim(y“ “e™) = lim
y—0 Yy—00 y1 @

= 0

since 0 < a < 1landso0<1—«a <1, and so this is in fact an improper integral).

Now 0 < y* le™¥ < y*~le for y > 0, so by the Direct Comparison Test

1 1 ya
/ Y le TV dy < / “ledy = lim (e—)
0 0 a—0*t «

(o) e 0 _e

1

a

a a

a (87 a

= lim
a—0t


https://faculty.etsu.edu/gardnerr/1920/12/c8s7.pdf
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and so

1
/ y*te ¥ dy converges when 0 < v < 1. (%%)
0

Therefore, by (%) and (%), we have that

00 1 %)
/ y* e Vdy = / Yl dy + / Yy le ™ dy
0 0 1

is convergent (“exists”). Hence I'(«) is defined for all 0 < o < 1. Combining this

with Note 3.3.A, we see that ['(«) is defined for all « > 0.

Note. We have
['(1) = / eM=lev dy = / e Vdy=1.
0 0

We can use Integration by Parts to show for @ > 1 that ['(a) = (o — 1)['(av — 1)
(see Thomas’ Calculus, Early Transcendentals, 14th Edition, “Chapter 8. Tech-
niques of Integration,” “Additional and Advanced Exercises” Number 43). So by
induction we have I'(n) = (n — 1)! where n € N. So the I' function generalizes the
factorial function by extending it from N to (0,00). In fact, the I' function can be
extended to the complex plane where it is defined, except that it has simple poles
at 0,—1,—2,.... Formally, it is defined as

[(z) = . ﬁ <1 —l—%)_lez/n

n=1

where v is a constant (called the Fuler constant) such that I'(1) = 1. See my online
notes for Complex Analysis 1 and 2 (MATH 5510/5520) on Section VIIL.7. The
Gamma Function (see in particular Definition VII.7.2 and Theorem VIIL.7.15). A
graph of the I" function can be found in Thomas’ Calculus, Farly Transcendentals

(in the exercise referenced above):


https://faculty.etsu.edu/gardnerr/5510/notes/VII-7.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/VII-7.pdf
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Definition. Continuous random variable X has a I'-distribution with parameters

a > 0 and 8 > 0, if its probability density function is

Fe) = F(a)ﬁaxa_le_x/ﬁ for 0 < z < o0

0 elsewhere.

We denote this by saying that X has a I'(«, §) distribution.

Note. We need to confirm that f actually integrates to 1 over [0,00) to insure

that it is a probability density function. We have

<1
/ F(—xo‘_le_x/ﬂ dx [let z =2/ and dx = 1/0 dx]
0

= 1 a—1_-—=z

o Ba e a—1_—=z _L —
= F(Oé)ﬁa/o 2“7 e dz—F(a)F(a)—l.
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Note 3.3.C. The moment generating function of the I' distribution is

o0 1
M(t) = Elet* :/ et~ polemw/B gy
(¥ <) 0 ['(a) g

DR S SRR
= x4 e dx
|

let y = x(1 — pt)/F where t < 1/3, or x = py/(1 — pt),
and dx = 3/(1 — Bt) dy

[ (i) i

Jo T(a)pr \1-pt 1—pt
00 a—1

:/ 1 < By ) e Y o dx
o D(a)p* \1-pt 1— Gt

_ 1 > a—1_—y
- F(Oé)(l—ﬂt)“/o yTre T dy

1 1
— o)1 ﬁt)aF(a) = m for t < 1/p.
Then
iy (C)(=B)  ap
M= e~ T e
and

M”(t) _ (&6)(_(&—'— 1))(_6) _ &(Q+ 1)62

(1 _ 5t)0‘+2 (1 _ ﬁt)a+2'
By Note 1.9.B, the mean of the I" distribution is u = M’(0) = a8 and the variance

1S

0’ = M"(0) — p* = a(a+1)5" - (aB)’ = ap”.

Note. Figure 3.3.1 gives six probability density functions for different values of «

and § (below).
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Figure 3.3.1

The appeal of I'-distribution in applications results from the many different shapes

they can take by varying the values of o and 3.

Note. Let X denote the time until the failure of a device, and suppose the proba-
bility density function is f(z) and the cumulative distribution function is (differen-
tiable) F'(x). The “hazard function” of X can be helpful in finding f(z). let = be
in the support of X. Suppose the device has not failed at time x; that is, suppose

X > x. The “rate of failure” as a function of time z over the interval x to z + A

satisfies
Prx<z<z+A|X>2x)

A

r(r) ~

and

(2) = 1 Pa<z<z+A|X>z) P<z<z+A)1l
A v A T PX>a2) A
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1 Pe<X<z+A) Flz)
1o FE) A% A _1—F(:c)_f(x)1_F(x)’

since F'(x) = f(x) by Note 1.7.A. This function r(z) is the hazard function of X

at x. So

r(x) = —% [log(1 — F(z)] or log(l — F(x)) € —/T(:):) dx

(where we treat the indefinite integral as the set of antiderivatives of the integrand),
of
1 — F(z) € e /7@ g5 that 1 — F(z) = e @S

for some R(x) where R'(z) = r(z) and C is some constant. With the support
of X as (0,00 then we take F'(0) = 0 as the boundary condition that determines

constant C'.

Note/Definition. If the hazard rate is constant, say r(z) = 1/ for some 3 > 0,
then an antiderivative of r is R(z) = x/8 and so 1 — F(z) = e */%¢C. Since

F(0) =0 then ¢“ = 1 so that F(z) =1 — e */% and

/ %e‘x/ﬂ forx >0
f(z) =F(r) =

0 elsewhere.

This is the I'(«, 8) = I'(1, 8) distribution. It is also called the ezponential distribu-

tion with parameter 1/,

Note. The next result shows that a sum of I'(«, §) distributions is additive in the

first variable (i.e., the «).
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Theorem 3.3.1. Let X;, Xs,..., X, be independent random variables. Suppose,
for i =1,2,...,n that X; has a I'(y;, ) distribution. Let Y = >" | X;. Then Y
has a I'(>°1 oy, 3) distribution.

Note 3.3.D. The I' distribution also arises in Poisson processes. For ¢ > 0, the
Xy denote the number of events that occur in the interval (0,¢], and assume that
X; satisfies the axioms of a Poisson processes given in the previous section. Let k
be a fixed positive integer and define the (continuous) random variable W}, to be
the “waiting time” until the kth event occurs. The range of W is (0,00). For any
w > 0, we have Wy, > w (that is, it takes longer than time w for k occurrences of
the event of interest) if and only if X, <k — 1 (that is, at most k — 1 events have

occurred at time w). Since X; has a Poisson distribution then

??‘

1(AU0x —Aw

k—1
PWy>w)=PX,<k-1)=) P(X,— —
=0 )

8
Il
o

a)zk—le—z k—1 LXUOxG_Aw .
Now ——dz = Z —— by Exercise 3.3.5. So for w > 0, the cumu-
Aw (k - 1)' =0 x!

lative distribution function of W, is

k—1 AU}I —A\w
fw,(w) = 1=PW, >w)=1-

K>Zk—1e—z
= 1- —d
/Aw (k=11
Zk—le—z
= 1—/)\w°° k) dz since I'(k) = (k — 1)! for k e N

. F(k) - 1 Ufm k— 1 P
BECEICRA

1 /°° 1 - /°° f1 - )
= — 2 e dz — 2V e dz
F(k) < 0 Aw

M

=0
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since ['(k) = / 2F1e™* dz by definition
0

1 /)\w k—1_—=z d
= — e dz,
I'(k) Jo

and Fyy, (w) = 0 for w < 0. With the substitution z = Ay and dz = A dy in the last

integral, we have

1 \w w )\kyk:—le—)\y
Fy (w) = —— zk_le_zdz:/ —
) = | T

for w > 0. So the probability density function of W}, is

Fy,(w) = Fy, (w) by Note 1.7.A

d w )\kyk—le—)\y /\kwk—le—/\w
= — _— d e ———
du U C(k) y] (k)

for w > 0 and fy,(w) = 0 for w < 0. Since the I'-distribution, I'(a, 3), has
probability density function

1

o) = F(a)ﬁaxo‘_le_z/ﬂ for0 <z < o0

0 elsewhere,

then we see that the waiting item until the kth occurrence, Wy, has the I'-distribution
[(«, 8) = T'(k,1/X). In this way, we see the role that a I'-distribution can play in

a Poisson process.

Note. Continuing the previous example on the waiting itme of a Poisson process,
if we let 77 be the waiting time until the first event occurs (so 77 = W) then the
probability density function of 17 is

e ™ for 0 < w < 00
fri(w) =T(1,1/)) =

0 elsewhere.
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So the mean of T} is @ = 1/ and the mean of X; is A\. That is, we expect A
events to occur in a unit of time and we expect the first event to occur at time 1/\.
With 7} as the time between the occurrence of event (i — 1) and event i, we have
that 7; also has a I'(1,1/\) distribution (this follows from Axioms 1(a) and 2(a) of
a Poisson process). Since 11,75, ... are independent (by Axiom 3) then the waiting
time until the kth event satisfies Wy, =Ty + T + - - - T;. So by Theorem 3.3.1, W},
has a I'(k, 1/)) distribution (as argued above).

Definition. The distribution I'(«, ) = I'(r/2,2) where r > 0 is the chi-square
distribution, denoted y?-distribution, and any probability density function which
is the same as the probability density function of I'(r/2,2) (stated below) is a
chi-square probability function. Parameter r is the degrees of freedom of the y?*-

distribution. The y?-distribution with r degrees of freedom is denoted x*(r).

Note. If random variable X has a x2-distribution (i.e., a I'(r/2,2) distribution),

then the probability density function is

1 r/2—1_—x/2
f(z) = Wﬂf/ e™/? for 0 <z < o0
0 elsewhere
: .. 1
and the moment generating function is M(t) = a2 for t < 1/2. By Note

3.3.C implies that the mean is M’(0) = a3 = r and the variance is 02 = o3> = 2r.
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Theorem 3.3.2. Let X have a \*(r) distribution. If & > —r/2 then E(X*) exists

and is
2’“1“(7’/2 + k)

B =147

if k > —r/2.

Note. The kth moment of the distribution of X is (by definition; see Section 1.9.
Some Special Expectations) E(X*). So Theorem 3.3.2 (since for ¥ € N we have
k > —r/2) the kth moment of the y2-distribution is E(X*) = 2*T'(r/2+k)/T(r/2).

Example 3.3.4. Let X have a [-distribution with o = /2 (where 4 € N) and
B > 0. Define random variable Y = 2X/3. The moment generating function of ¥’
is
My(t) = B(") = B(7)
= (1—p(2t/8))7""? by Note 3.3.C

= (1 — Qy)_T/Q.

Notice that this is the moment generating function of a y*-distribution (a I'(r/2, 2)
distribution) as shown above. By the uniqueness of the moment generating function

(Theorem 1.9.2), we see that Y has a x?(r)-distribution.

Corollary 3.3.1. Let X;, X, ..., X,, be independent random variables. Suppose
X; has a x?(r;) distribution for ¢ = 1,2,...,n. Let Y = > | X;. Then Y has a
x*(O21 | ri)-distribution.


https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-9.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-9.pdf
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Note. The support of any I'-distribution is the unbounded interval (0,00). We
now seek a distribution X with support a bounded interval (a,b). Without loss
of generality, we may consider random variable Y with support (0, 1) since then
Y =(X—-a)/(b—a) (or X = (b—a)Y +a). An example of such a distribution is a (3-
distribution. We approach the -distributions by considering a pair of independent

I" random variables.

Note 3.3.E. Let X; and X5 be two independent random variables that have I'

distributions and have the joint probability density function

1 _
h(z1,x9) = —x?_lajg Le™ ™17 for 0 < 11 < 00 and 0 < 19 < 00,

INCOINCE)
and h(x1,z9) = 0 elsewhere; we also require & > 0 and 5 > 0. Let Y1 = X7 + X5
and Y; = X;/(X7 + X3). We now show that Y; and Y, are independent (we will
choose the marginal distribution of Y5 as the 3 distribution). The support of S of
h is the open first quadrant of the xyxs-plane. Introduce u; and us mapping § into
R as

y1 = ui(w1, T2) = x1 + @9 and yo = us(x1, v2) = 21 /(21 + X2).

Notice that

I = (fl‘1 + $2)y2 =11y and To = Y1 — T1 = Y1 — Y1Yo = y1(1 - 92)-

With
Ty = v1(y1, y2) = y1y2 and xg = 02(917 y2) = yl(l - 92)

we have the Jacobian (or “Jacobian determinant”; see my online Calculus 3 notes
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on Section 15.8. Substitution in Multiple Integrals)

Ovi vy Oz, Oz
J —J _ | 9y Oy2 | _ | Oy Oy
(xb $2) (Ula U2) Doy Ouy dey Oy
oy Oys oy1 Oy
Y2 n
= = (y2)(=y1) — ()1 —y2) = =y #0 on S.
L=y —un

So the transformation (z1,22) — (y1,y2) is one-to-one (injective; this is due to the
nonzero Jacobian) mapping of S onto 7 = {(y1,42) | 0 < y1 < 00,0 < yp < 1}
is the y1yo-plane. Now for R C S a region in the zyxs-plane and G C 7 a region
in the y;ys-plane such that the transformation (xy,z3) — (y1,y2) maps R onto G

then

// h(x1,x2) dxy daxe = // h(vi(y1,y2), va(y1, y2))|J (v1, v2)| dvy dvg
R G

provided h, v;, and vy have continuous partial derivatives and J(vq,vy) is zero
only at isolated points (again, see my online Calculus 3 notes on Section 15.8.
Substitution in Multiple Integrals). So we get the probability density function of
Y7 and Y5 can be obtained form the joint probability density function of X; and
Xy by replacing x; and y1ys, o with y1(1 — 39), x1 + 2 with 3, and introducing
|J(v1,v2)| = | —y1| = y1. This gives the joint probability density function of Y; and
Y5 on its support of

9(y1, y2) = m(ywﬁ“l(w(l —12)) e =y

a—1 o B—1 .
= F—((al)F%ﬁ)) y e for 0 <y < 00,0 <o <1

0 elsewhere.


https://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
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Since g can be written as a product of a nonnegative function of y; with a nonnega-
tive function of 35, then by Theorem 2.4.1 we have that Y; and Y5 are independent.

The marginal probability density function of Y5 (by Note 2.1.C) is

oo . a—1 6—1 a—1 £—1 00
Yo (1 - 92) a—B-1_—y Y (1 - 92) / at+p—1 —
= e Ndy, = e td
(1) / rrE) 0 T T e S .

a— — ['(a+B)  a—1 _
_ oy (1 —w)’ 1F(a +3) = F(E)z)F(ﬂ)yQ (1—g)"" for 0 <y <1
['(a)I'(B) 0 elsewhere.

As observed above, Y; and Y, are independent, so by Definition 2.4.1 the joint
probability density function and the marginal probability density functions are
related as g(y1,y2) = g1(y1)g2(y2) so it must be that the probability density function
of Y] is

1 a+p—-1
Tla+p) Y1

e ¥ for0 < y; < o0
91(y1) =
0 elsewhere.

Notice that ¢1(y;) is the I'(a + 3,1) distribution. But it is ¢;(y2) that we are

interested in.

Definition. A random variable Y with probability density function

LatB)  a—1(1 _ .\3-1

SEay T (1 —y) for0<y<1
g(y) = L(a)L'(B)
0 elsewhere

is a beta distribution (or “F distribution”) with parameters o and g.

Note. In Exercise 3.3.A, it is to be shown that the mean and variance of a
distribution with parameters a and ( are

a and o2 = op
a+ 5 (a+ B+ 1)(a+B)%

IU/:
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Note. Here is the shape of the beta distribution for various values of a and (.

This image is form the Wikipedia webpage on the beta distribution.

2.5

'\\ o=p=05 —
, a=5p=1—r
,\‘ a=1B=3 —
2 r e\ 0=2,Bp=2 —
K\‘C‘=2,B=5é
%_%A\Q
15 F -
w
a
o
1F
05 M
0

0 0.2 0.4 0.6 0.8 1

Example 3.3.6. (Dirichlet Distribution) Let X7, X, ..., X} 1 be independent
random variables, each having a I' distribution with 3 = 1. The joint probability

density function is then

1 i—1_—x;
Hizl ]{? + ].mx? e

h(xl, T, ... ,ZC]<H_1) =
0 elsewhere.
Let Y; Ai fori=1,2,...,k and Y] X1+ Xo+- -+ X
et Y; = ori=1,2,...,k, an =
T X T Xa bt X k+1 1 2 k+1
denote k + 1 new random variables. Now the transformation (x1,z9,...,z541) —

(yl,yz,...,ka) maps set
A={(r1,29,...,2p11) | 0<z; <00 fori=1,2,..., k+1}

onto set

B={(y1,y2,...,yps1) | 0<yi <1lfori=1,2,... k,

yi+ye+ -y <1, and 0 < Y1 < 00}


https://en.wikipedia.org/wiki/Beta_distribution
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Since Y11 = 1 + X2 + -+ + a1 then x; = yypsq fore=1,2,..., k and
Lkl = Yk+1 — X1 — X2 — = — Tk = Yk+1 — Y1Yk+1 — Y2Uk+1 — =" = YkYk+1
=yrr1(l =41 — 42—+ — yk).

With z; = vi(y1, Y2, - - -, Ykt1) = YiYpy1 for i = 1,2, ... k and

Tr+1 = Uk+1(y1,y2, ce ;yk+1) = yk+1(1 — Y1 —Yy2— = yk),

we have the Jacobian

Ov 0w ., _Ovu
oy 0y OYk+1
Ovg Qv _Ovy
J(xl,xg,...,ilfk;+1) = J(vl,vg,...,ka) = 8;%/1 8.yz 8yl.€+1
Ovgyr  Ovgyr . Ougq
oy Y2 OYr+1
Yk+1 0 0 (7
0 Yk+1 0 Y2
0 0 o Yk Yk
—Ykt1 —Ykt1 o —Uk1 (L—y1—Y2— - — )
Y1 O oo 0
0 Yr 0y _
(by adding each of rows 1
through & to row k + 1)
0 0 - Yrr1 Uk
0 o --- 0 1
= yllj—kl # 0.

As in Note 3.3.E, the joint probability density function of Y7,Y5,..., T} 1 can be
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obtained from the joint probability density function of X1, X5, ..., X1 by replac-
ing 2; by yiyr41 for i =1,2,..., k, by replacing zx1 by yrsr(1 =41 — 42— - ui),
and by introducing a factor of |J(vi,va, ..., vp41)| = |yf, | = yF,,. This gives the

joint probability density function of Yi,Y5, ..., Y, 1 on its support B is

Oék+1—1

(e )™ (e )™ ey )™ en (1 =y — 92 — - — Up)

X e TYk+1 o7 Y2Ukt1 6—yktk+1e—yk+1(1—y1—y2—'“—yk)y7]§+1}/(F(al)r(az) ... F(Oék_|_1))

oajtastFopr1—1 a;—1 as—1 ap—1 o 4
_yk+1 Y1 Yo yk (1—y1—y2—--._yk) k+1 eyk+1.

N F(C\(l)r(ag) s F(Ckk_H) 7
and the joint probability density function is 0 off of B. Integrating out y,.; and

using the fact that
o0
Nog+ag+ -+ ag) = / yi(:iaﬁ.nmﬂl_leyk“ dYi+1
0

we have the joint probability density function of Y7, Y5, ..., Y} as

llar+az+ -+ ari1) 0,1 ay-1 ap—1 -1
= 1—vy1—Yo—- -+ -— Qk+1
g(yh Y2, 7yk) F(Ch)F(OéQ) . F(Cklﬁ_l) yl y2 yk ( Y1—Y2 yK)

where 0 < y; < 1fori=1,2,... kand y1+yo+---+yr < 1. Also g(y1,v2, ..., yx) =
0 elsewhere. This is the Dirichlet probability density function.

Definition. Random variables Y7, Y5, ..., Y, that have a joint probability density
function of

F(&l + 042 + T + Oék+1) 041—1 042—1 ak—l
L = ce 1—1 — g —- « —

)ak+1_1

where 0 < y; < 1 fori = 1,2,...,k and y; + y2 + --- + yx < 1, and we have
9(Yy1, Y2, - - ., yr) = 0 elsewhere, have the Dirichlet probability density function with

parameters aq, s, ..., a1 where a; > 0fore=1,2,...,k+ 1.
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Note. If £ = 1 then the Dirichlet probability density function is of the form
F(Oq + 042) a;—1

——— 1—y;)*", which i distributi ith a = d = ).
F(ozl)f‘(ozg)yl (1 —y1)**™ ", which is a § distribution (with « = a1 and § = ay)

Note. The Dirac probability density function should not be confused with the
Dirac delta distribution. See my online notes for Real Analysis 1 (MATH 5210) on

Supplement. The Dirac Delta Function, A Cautionary Tale for more details.

Revised: 7/14/2021
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