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Section 3.4. The Normal Distribution

Note. You see the importance of the normal distribution in, even, Introduction

to Probability and Statistics (MATH 1530); see my online notes for this class on

Chapter 3. The Normal Distributions and Chapter 11. Sampling Distributions (this

second source includes a statement of the Central Limit Theorem, which we will see

in Section 5.3 of these notes). In this section, we define the normal distribution and

the standard normal distribution. We show some properties of these distributions.

Note. Consider the integral

∫ ∞

−∞

1√
2π

e−z2/2 dz (we’ll see that the integrand is the

standard normal distribution). First, we apply the Direct Comparison Test for

improper integrals of nonnegative functions to show that this integral exists (see

Theorem 2 of my online Calculus 2 [MATH 1920] notes on Section 8.7. Improper

Integrals). Since the exponential function exp(x) is an increasing function then

exp(−z2/2) < exp(−z + 1) for all z ≥ 0 since −z2/2 < −z + 1 for z ≥ 0. Similarly

−z2/2 ≤ z + 1 for z ≤ 0 and so −z2/2 ≤ −|z|+ 1 for all z ∈ R. Since∫ ∞

−∞
e−|z|+1 dz = 2

∫ ∞

0
e−z+1 dz = 2(−e−z+1)∞0

= −2 lim
b→∞

(e−z+1)|b0 = −2
(

lim
b→∞

e−b+1
)

+ 2e = 0 + 2e = 2e,

then by the Direct Comparison Test,

∫ ∞

−∞

1√
2π

e−z2/2 dz exists.

Note. We can in fact show that for I =

∫ ∞

0

2√
π

e−x2

dx, we have

I2 =

(∫ ∞

0

2√
π

e−x2

dx

)2

=
4

π

(∫ ∞

0
e−x2

dx

)(∫ ∞

0
e−y2

dy

)

https://faculty.etsu.edu/gardnerr/1530/Chapter3.pdf
https://faculty.etsu.edu/gardnerr/1530/Chapter11.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c8s7.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c8s7.pdf
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=
4

π

∫ ∞

0

∫ ∞

0
e−(x2+y2) dx dy = 1

with substitutions x = r cos θ, y = r sin θ, r2 = x2 + y2, and dx dy = r dr dθ (i.e.,

the use of polar coordinates; see Exercise 15.4.41 of my online Calculus 3 [MATH

2110] on Section 15.4. Double Integrals in Polar Form ). From this, we have with

the substitution z =
√

2x that

1 =

∫ ∞

0

2√
π

e−x2

dx =

∫ ∞

0

2√
π

e−z2/2 1√
2

dz =

∫ ∞

0

√
2

π
e−z2/2 dz (∗)

and so, by (∗),∫ ∞

−∞

1√
2π

e−z2/2 dz = 2

∫ ∞

0

1√
2π

e−z2/2 dz =

∫ ∞

0

√
2

π
e−z2/2 dz = 1.

Since f(z) =
1√
2π

e−z2/2 is nonnegative on R and integrates to 1, then f is a

probability density function of a random variable, which we denote Z.

Note 3.4.A. By Definition 1.9.3, the moment generating function of Z is (for

t ∈ R):

MZ(t) = E[etZ ] =

∫ ∞

−∞
etzf(z) dz =

∫ ∞

−∞
etz 1√

2π
e−z2/2 dz =

∫ ∞

−∞

1√
2π

e−z2/2+tz dz

=

∫ ∞

−∞

1√
2π

e−z2/2+2tz/2−t2/2+t2/2 dt = et2/2
∫ ∞

−∞

1√
2π

e−(z2−2tz+t2)/2 dz

= et2/2
∫ ∞

−∞

1√
2π

e−(z−t)2 dz = et2/2(1) = et2/2.

Note. Since we have the moment generating function MZ(t) = et2/2, then

M ′
Z(t) = tet2/2 and M ′′

Z(t) = et2/2 + t2et2/2.

https://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s4.pdf
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By Note 1.9.B,

µ = E(Z) = M ′
Z(0) = 0 and E[Z2] = M ′′

Z(0) = 1.

So the variance of Z is Var(Z) = σ2 = M ′′
Z(0)− (M ′

Z(0))2 = (1)− (0)2 = 1.

Note. Define another (continuous) random variable X as X = g(Z) = bZ + a

where b > 0. Then Z = g−1(X) = (X − a)/b and so, by “Theorem 1.7.1. The

Cumulative Distribution Function Technique,” the probability density function of

X is

fX(x) = fZ(g−1(x))|dz/dx| = fZ((x− a)/b)|1/b| = 1√
2πb

e−(x−a)2/b2

for x ∈ R.

Since E(Z) = 0 then E((X − z)/b) = 0 and so E(X) = a (because expectation

is linear by Theorem 1.8.2). By Theorem 1.9.1 (which implies Var(aX + b) =

a2Var(X)) we have

Var(Z) = b2Var

(
1

b
X − a

b

)
=

1

b2Var(X),

or Var(X) = b2Var(Z) = b2(1) = b2. We now replace a with µ and b with σ to get

the normal distribution.

Definition 3.4.1. A random variable X has a normal distribution if its probability

density function is

f(x) =
1√
2πσ

exp

(
−1

2

(
x− µ

σ

)2
)

for z ∈ R.

The parameters µ and σ2 are the mean and variance of X, respectively. We denote

this as the N(µ, σ2) distribution. The distribution N(0, 1) is the standard normal

distribution.
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Note 3.4.B. We can use the relationship and linearity of expectation (Theorem

1.8.2) to find the expectation of normally distributed random variable X:

MX(t) = E(etx) = E(t(σZ + µ)) = E(eµtetσZ) = eµtE(e(tσZ))

= eµte(tσ)2/2 since E(etZ) = et2/2

= eµt+t2σ2/2 for t ∈ R.

Of course if µ = 0 and σ = 1, then this reduces to MZ(t).

Note. The graph of the probability density function of normally distributed ran-

dom variable X is given in Figure 3.4.1. Notice that the graph is (1) symmetric

with respect to the vertical line x = µ, (2) has a maximum at x = µ of 1/(σ
√

2π),

(3) has a horizontal asymptote of y = 0, and (4) has points of inflection at x = µ±σ

(as is to be verified in Exercise 3.4.7).

Figure 3.4.1. The normal distribution N(µ, σ2).
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Note. As you likely know, many statistical applications involve the cumulative

area under the probability density function of the normal distribution:

P (X ≤ x) =

∫ x

−∞

1√
2πσ

e−(t−µ)2/(2σ2) dt.

Hogg, McKean, and Craig comment: “From calculus we know that the integrand

[here] does not have an antiderivative. . . ” (see page 189). This is not the case!

There is not an antiderivative that can be expressed in terms of “elementary”

functions. This is explained in some detail in Maxwell Rosenlicht’s “Integration

in Finite Terms,” American Mathematical Monthly, 79(0), 963–972 (1972) (in the

first paragraph of this work, it is claimed that Joseph Liouville [1809-1882] proved

that
∫

ex2

dx cannot be expressed in terms of elementary functions). However, we

can find an antiderivative using series, Recall that ex =
∞∑

k=0

xk

k!
for x ∈ R. So

e−x2/2 =
∞∑

k=0

(−x2/2)k

k!
=

∞∑
k=0

(−1)kx2k

2kk!
for x ∈ R.

Therefore, the indefinite integral of the probability density function of the standard

normal distribution is∫
1√
2π

e−x2/2 dx =
1√
2π

∫ ( ∞∑
k=0

(−1)kx2k

2kk!

)
dx

=
1√
2π

∞∑
k=0

(−1)kx2k+1

2k(2k + 1)k!
+ C for x ∈ R.

So we have an explicit antiderivative, it is just given by a series. Notice that we have

used the (absolute) convergence of the series for e−x2/2 in order to find this series.

This is justified in Calculus 2 (MATH 1920) by the “Term-by-Term Integration

Theorem”; see my online notes on Section 10.7. Power Series. We can then find

P (0 ≤ Z ≤ z) =

∫ z

0

1√
2π

e−t2/2 dt

https://faculty.etsu.edu/gardnerr/1920/12/c10s7.pdf
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=
1√
2π

( ∞∑
k=0

(−1)kx2k+1

2k(2k + 1)k!

)∣∣∣∣∣
z

0

=
1√
2π

∞∑
k=0

(−1)kz2k+1

2k(2k + 1)k!
.

Notice that this is an alternating series and so can be estimated to any desired

level of accuracy using the Alternating Series Estimation Theorem (see Theorem

15 in my online notes for Calculus 2 on Section 10.6. Alternating Series, Absolute

and Conditional Convergence). We can use symmetry and the fact that P (Z ≤

0) = 1/2 to find P (Z ≤ z) for any z ∈ R. Finally, we can compute P (X ≤ x)

where X has a N(µ, σ2) distribution by computing “z-values” using the relationship

z = (x− µ)/σ2.

Note. The cumulative distribution function of standard normal random variable

Z is denoted Φ(z) and is

Φ(z) = P (Z ≤ z) =

∫ z

−∞

1√
2π

e−t/2 dt.

The usual “z-table” used in introductory statistics is a table of Φ(z) values. Such

a table is given in the text book in Table II of Appendix D. The table only gives

values of Φ(z) for z ≥ 0 since for −z ≤ 0 we have the identity Φ(−z) = 1 − Φ(z)

(which is to be shown in Exercise 3.4.1).

Example 3.4.2. To illustrate the use of Φ, let X have a N(µ, σ2) distribution.

Consider P (µ− σ < X < µ + σ). We write this as P (X < µ + σ)−P (X ≤ µ− σ).

We need to convert to z-values and so consider z = ((µ + σ) − µ)/σ = 1 and

z = ((µ− σ)− µ)/σ = −1, and so

P (µ− σ < X < µ + σ) = P (X < µ + σ)− P (X ≤ µ− σ) = Φ(1)− Φ(−1)

https://faculty.etsu.edu/gardnerr/1920/12/c10s6.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c10s6.pdf


3.4. The Normal Distribution 7

= Φ(1)− (1− Φ(1)) = 2Φ(1)− 1 ≈ 2(0.8413)− 1 = 0.6826.

Similarly,

P (µ− 2σ < X < µ + 2σ) = 2Φ(2)− 1 ≈ 2(0.9772)− 1 = 0.9544

and

P (µ− 3σ < X < µ + 3σ) = 2Φ(3)− 1 ≈ 2(0.9987)− 1 = 0.9974.

This example illustrates “The 68-95-99.7 Rule” which one sees in introductory

statistics; see my online notes for Introduction to Probability and Statistics (MATH

1530) on Chapter 3. The Normal Distributions. �

Example 3.4.4. All Moments of a Normal Distribution.

Recall from Section 1.9. Some Special Expectations, the mth moment of random

variable X is E(Xm). In Example 1.9.7 we calculated the mth moment of the

standard normal distribution for all m ∈ N. Let X be N(µ, σ2). Then X = σZ +µ

where Z is N(0, 1). So for k ∈ N we have by the Binomial Theorem and the

linearity of expectation (Theorem 1.8.2) we have

E(Xk) = E((σZ + µ)k) = E

(
k∑

j=0

(
k

j

)
σjZjµk−j

)
=

k∑
j=0

(
k

j

)
σjE(Zj)µk−j.

We can now find the kth moment of X using the results of Example 1.9.7:

E(Zj) =

 0 if j is odd

j!
2j/2(j/2)! if j is even.

�

https://faculty.etsu.edu/gardnerr/1530/Chapter3.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-9.pdf
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Note. We now find some common ground between normal distributions and χ2

distributions.

Theorem 3.4.1. If the random variable X is N(µ, σ2), where σ2 > 0, then the

random variable V = (X − µ)2/σ2 is χ2(1).

Note. The next theorem shows that a linear combination of independent normal

random variables is itself a normally distributed.

Theorem 3.4.2. Let X1, X2, . . . , Xn be independent random variables such that,

for i = 1, 2, . . . n, Xi has a N(µi, σ
2
i ) distribution. Let Y =

∑n
i=1 aiXi where

a1, a2, . . . , an are constants. Then the distribution of Y is N
(∑n

i=1 aiµi,
∑n

i=1 a2
i σ

2
1
)
.

Note. If we take Xi, i = 1, 2, . . . , n, to have the same distribution, then with each

a1 = 1/n we can find the distribution of X =
∑n

i=1 Xi/n using Theorem 3.4.2, as

follows.

Corollary 3.4.1. Let X1, X2, . . . , Xn be identical in distribution (“iid”) random

variables with a common N(µ, σ2) distribution. Let X = n−1∑n
i=1 Xi. Then X

has a N(µ, σ2/n) distribution.
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Note. We now consider a sum of two normal distributions. We consider a stan-

dard normal random variable Z with high probability, but with a low probability

“contamination” which we assume is normally distributed with mean 0 but with

a larger variance σ2
c > 1. Specifically, define I1−ε as a discrete random variable

satisfying:

I1−ε =

 1 with probability 1− ε

0 with probability ε

and assume Z and I1−ε are independent. Then let W = ZI1−ε + σcZ(1 − I1−ε).

The cumulative distribution function of W is

FW (w) = P (W ≤ w) = P (W ≤ w and I1−ε = 1) + P (W ≤ w and I1−ε = 0)

= P (W ≤ w | I1−ε = 1)P (I1−ε = 1) + P (W ≤ w | I1−ε = 0)P (I1−ε)

= P (Z ≤ w)(1− ε) + P (Z ≤ w/σc)ε since Z is N(0, 1)

= Φ(w)(1− ε) + Φ(w/σc)ε.

So W is a mixture of normal distributions. In Exercise 3.4.24, it is to be shown

that E(W ) = 0 and Var(W ) = 1 + ε(σ2
c − 1). Differentiation FW gives

F ′
W (w) = fW (w) = Φ′(w)(1− ε) + Φ′(w/σc)(ε/σc) = ϕ(w)(1− ε) + ϕ(w/σc)(ε/σc)

where ϕ is the probability density function of a standard normal (and Φ′ = ϕ by

Note 1.7.A).

Note. If we take X = a + bW where b > 0 then we have E(X) = a and Var(X) =

b2(1 + ε(σ2
c − 1)) (based on the values of E(W ) and Var(W ) given above). The

cumulative distribution function of X = a + bW is

FX(x) = Φ

(
x− a

b

)
(1− ε) + Φ

(
x− a

bσc

)
ε.
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This is a mixture of normal cumulative distribution functions. In Section 3.7 we

further explore mixture distributions.
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