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Section 3.5. The Multivariate Normal Distribution

Note. We start with the bivariate normal distribution and then consider the

multivariate distribution. Random vectors were introduced in our Section 2.6.

Extension to Several Random Variables.

Definition. The random vector (X, Y ) follows a bivariate normal distribution if

its probability density function given by

f(x, y) =
1

2πσ1σ2
√

1− ρ2
e−q/2 for x, y ∈ R,

where

q =
1

1− ρ2

((
x− µ1

σ1

)2

− 2ρ

(
x− µ1

σ1

)(
y − µ2

σ2

)
+

(
y − µ2

σ2

)2
)

,

and −∞ < µi < ∞, σi > 0 for i = 1, 2, and ρ satisfies ρ2 < 1.

Note 3.5.A. We’ll show below that f(x, y) is a probability density function with

moment generating function

M(X,Y )(t1, t2) = exp

(
t1µ1 + t2µ2 +

1

2
(t21σ

2
1 + 2t1t2ρσ1σ2 + t22σ

2
2)

)
.

Note 3.5.B. By Note 2.1.D, the marginal moment generating function MX(t1) =

M(X,Y )(t1, 0), so we have MX(t1) = exp(t1µ1 + t21σ
2
1/2). By Note 3.4.B, this is the

moment generating function of a random variable with distribution N(µ1, σ
2
1). So

X has a N(µ1, σ
2
1) distribution, and similarly Y has a N(µ1, σ

2
2) distribution. It is

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-2-6.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-2-6.pdf
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to be shown in Exercise 3.5.3 (with the help of Note 2.5.C) that

E[XY ] =
∂2M(X,Y )

∂t1∂t2
(0, 0) = ρσ1σ2 + µ1µ2.

Now by Note 2.5.A, cov(X, Y ) = E[XY ]−µ1µ2 so that we must have cov(X, Y ) =

ρσ1σ2 and hence ρ is the correlation between X and Y by Definition 2.5.2.

Lemma 3.5.A. Let random vector (X, Y ) have the bivariate normal distribution.

Then X and Y are independent if and only if they are uncorrelated (that is, ρ = 0).

Note. The bivariate normal probability density function f(x, y) is “mound shaped”

over R2 with a maximum at its mean (µ1µ2) (as is to be shown in Exercise 3.5.4(a)).

For a given c > 0, the points of equal probability are given by the set {(x, y) |

f(x, y) = c}. These sets form ellipses in R2 as is to be shown in Exercise 3.5.4(b)

(these ellipses are called contours of f). If X and Y are independent then these

contours are circular. This case is illustrated in the figure below, which is from

Andrew J. Baczkowski’s webpage on Statistical Methods (accessed June 10, 2021).

Figure. The contours (left) and the pdf for a bivariate

normal distribution of independent variables.

http://www1.maths.leeds.ac.uk/~sta6ajb/math2715/lec19-20.pdf
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Note 3.5.C. Let Z1, Z2, . . . , Zn be independent and identically distributed (“iid”)

standard normal random variables. The probability density functions for the Zi

are
1√
2π

exp

(
−1

2
z2
i

)
. Since the Zi are independent, then the probability density

function for Z = (Z1, Z2, . . . , Zn)
′ is

fZ(z) =
n∏

i=1

1√
2π

exp

(
−1

2
z2
i

)
=

(
1

2π

)n/2

exp

(
−1

2

n∑
i=1

z2
i

)

=

(
1

2π

)n/2

exp

(
−1

2
z′z

)
for z ∈ Rn (notice that z′z is the dot product of z with itself). The Zi have mean 0,

variance 1, and are independent (the pairwise correlation coefficients are all 0), so

the mean vector and covariance matrix of Z are E[Z] = 0 and Cov[Z] = In where

In is the n × n identity matrix. The moment generating function of Zi evaluated

at ti is exp(t2i /2) by Note 3.4.A. So by Note 2.6.B, the moment generating function

of Z is

MZ(t) = E[exp(t′Z)] = E

[
n∏

i=1

exp(tiZi)

]
=

n∏
i=1

E[exp(tiZi)]

=
n∏

i=1

exp(t2i /2) = exp

(
1

2

n∑
i=1

t2i

)
= exp

(
1

2
t′t

)
(3.5.7)

for t ∈ Rn.

Definition. Let Z1, Z2, . . . , Zn be independent and identical in distribution stan-

dard normal random variables. Then random vector Z = (Z1, Z2, . . . , Zn)
′ has a

multivariate normal distribution with mean vector 0 and covariance matrix In. We

denote this as Z has an Nn(0, In) distribution. The moment generating function of

Z is given in (3.5.7) above.



3.5. The Multivariate Normal Distribution 4

Note. In the general case of a multivariate normal distribution, we consider the

random variable X = Σ1/2Z + µ where Z is as above, µ gives the mean of X, Σ

corresponds to variance, and we will further explain the meaning of Σ1/2 below.

Note. Every real symmetric matrix A can be diagonalized as A = CDC−1,

where D is a diagonal matrix with eigenvectors of A as the diagonal entries and

the columns of C consist of eigenvectors of A (with the eigenvalues in D and the

eigenvectors in C are in corresponding positions); in addition, the eigenvectors can

be chosen so that they form an orthonormal set and hence C is orthogonal. This

claim is the Fundamental Theorem of Real Symmetric Matrices; see my online Lin-

ear Algebra (MATH 2010) notes on Section 6.3. Orthogonal Matrices (see Theorem

6.8). According to Hogg, McKean, Craig, this is called the spectral decomposition

of A. In addition a real symmetric matrix is positive semidefinite (or nonnegative

definite) if and only if all of its eigenvalues are positive (see Theorem 3.8.14 in my

online notes for Theory of Matrices [MATH 5090] on Section 3.8. Eigenanalysis;

Canonical Factorizations).

Definition/Note 3.5.D. Let Σ be an n × n symmetric and positive semidef-

inite matrix. Then Σ has a spectral decomposition Σ = Γ′ΛΓ where Λ =

diag(λ1, λ2, . . . , λn) where λ1 ≥ λ2 ≥ · · ·λn ≥ 0 are the eigenvalues of Σ and

the columns of Γ′, say v1,v2, . . . ,vn, are the corresponding (unit) eigenvectors.

Then, by the Fundamental Theorem of real Symmetric Matrices described above,

matrix Γ is orthogonal; that is, Γ−1 = Γ′ so that ΓΓ′ = In. Then the spec-

https://faculty.etsu.edu/gardnerr/2010/c6s3.pdf
https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-8.pdf
https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-8.pdf
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tral decomposition of Σ is, as is to be shown in Exercise 3.5.19, Σ = Γ′ΛΓ =∑n
i=1 λiviv

′
i. Since the eigenvectors λi are nonnegative then we can define Λ1/2 =

diag(
√

λ1,
√

λ2, . . . ,
√

λn). Then, since Γ is orthogonal and ΓΓ′ = In, we have

Σ = Γ′ΛΓ = Γ′Λ1/2Λ1/2Γ = Γ′Λ1/2InΛ
1/2Γ

= Γ′Λ1/2(ΓΓ′)Λ1/2Γ = (Γ′Λ1/2Γ)(Γ′Λ1/2Γ).

Define the square root of (positive semidefinite) Σ as Σ1/2 = Γ′Σ1/2Γ. Notice that

Σ1/2 is symmetric since

(Σ1/2)′ = (Γ′Σ1/2Γ)′ = Γ′(Λ1/2)Γ′′ = Γ′Λ1/2Γ = σ1/2.

Also, Σ1/2 is positive definite since

det(Σ1/2 − λIn) = det(Γ′Λ1/2Γ− λΓ′Γ) = det(Γ′(Λ1/2 − λIn)Γ)

= det(Γ′)det(Λ1/2 − λIn)det(Γ) = det(Γ−1)det(Λ1/2 − λIn)det(Γ)

= det(Γ)−1det(Λ1/2 − λIn)det(Γ) = det(Λ1/2 − λIn)

and hence the eigenvalues of Σ1/2 and Λ1/2 = diag(
√

λ1,
√

λ2, . . . ,
√

λn) are the

same (and are nonnegative). If Σ is positive definite (so that the eigenvalues of Σ

are positive) then we can define

(Σ)−1/2 = (Σ1/2)−1 = Γ′(Λ1/2)−1Γ,

as is to be shown in Exercise 3.5.13.
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Note 3.5.E. For Z with a Nn(0, In) distribution and Σ a positive semidefinite

symmetric matrix and let µbe an n × 1 vector of constants, define the random

vector X as X = Σ1/2Z + µ. Since the mean of Z is 0, then the mean of X is µ.

Since Cov(Z) = In then, by Theorem 2.6.3,

Cov(X) = Cov(Σ1/2Z+µ) = Cov(Σ1/2Z) = Σ1/2Cov(Z)(Σ1/2)′ = Σ1/2InΣ
1/2 = Σ.

The moment generating function of X is

MX(t) = E[exp(t′X)] = E[exp(t′Σ1/2Z + t′µ)]

= E[exp(t′Σ1/2Z) exp(t′µ)] = exp(t′µ)E[exp((Σ1/2t)′Z)]

= exp(t′µ)E[exp((Σ1/2t)′Z)] since Σ1/2 is symmetric

= exp(t′µ) = MZ((Σ1/2t)Z)

= exp(t′µ) exp

(
1

2
(Σ1/2t)′(Σ1/2t)

)
by (3.5.7)

= exp(t′µ) exp

(
1

2
t′Σ1/2Σ1/2t

)
= exp(t′µ) exp

(
1

2
t′Σt

)
= exp

(
t′µ +

1

2
t′Σt

)
.

Definition 3.5.1. An n-dimensional random vector X has a multivariate normal

distribution if its moment generating function is

MX(t) = exp(t′µ + (1/2)t′Σt) for all t ∈ Rn,

where Σ is a symmetric, positive semi-definite matrix and µ ∈ Rn. We say that X

has a Nn(µ,Σ) distribution.
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Note 3.5.F. If Σ is positive definite, then Σ−1/2 is defined as given above (and as

given in Exercise 3.5.13). Since we X = Σ1/2(X − µ), then in this case we have

Z = Σ−1/2(X−µ). In Exercise 3.5.A it is to be shown that the probability density

function of X is

fF(x) =
1

(2π)n/2|Σ|1/2 exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
for x ∈ Rn. (3.5.16)

Note. If we set fX(x) or (3.5.16) equal to a positive constant to find the contours

of fX(x). This corresponds to the condition (X−µ)′Σ−1(X−µ) = c2. This implies

(x1 − µ1, x2 − µ2, . . . , xn − µn)


1/λ1 0 · · · 0

0 1/λ2 · · · 0

...
... . . . ...

0 0 · · · 1/λn




x1 − µ1

x2 − µ2

...

xn − µn



= (x1 − µ1, x2 − µ2, . . . , xn − µn)


(x1 − µ1)/λ1

(x2 − µ2)/λ2

...

(xn − µn)/λn


=

(x1 − µ1)
2

λ1
+

(x2 − µ2)
2

λ2
+ · · ·+ (xn − µn)

2

λn
= c2

(notice that (X− µ)′Σ−1(X− µ) is in fact positive) or

=
(x1 − µ1)

2

c2λ1
+

(x2 − µ2)
2

c2λ2
+ · · ·+ (xn − µn)

2

c2λn
= 1.

So the contours of fX(x) are ellipsoids in n-dimensional space with center (µ1, µ2, . . . , µn).

In the event that Σ1/2 = In and µ = 0 and X = Z) then we see that the contours

are spheres of radius c > 0 centered at the origin.
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Theorem 3.5.1. Suppose X has a Nn(µ,Σ) distribution, where Σ is positive

definite. Then the random variable Y = (X−µ)′Σ(X−µ) has a χ2(n) distribution.

(Notice that Y is a single random variable and not a random vector.)

Note. The next theorem shows that a linear transformation of a multivariate

normal random vector has, itself, a multivariate normal distribution.

Theorem 3.5.2. Suppose X has a Nn(µ,Σ) distribution. Let Y = AX+b, where

A is an m×n matrix and b ∈ Rm. Then Y has a Nm(Aµ+b,AΣA′) distribution.

Note. For X with a Nn(µ,Σ) distribution, let X1 be any subvector of X of dimen-

sion, say, m < n. We can rearrange the components of X (and correspondingly, of

µ and Σ) so that we have X =

 X1

X2

 where X2 is of dimension p = n−m. This

then leads to the partitioning of µ and Σ as µ =

 µ1

µ2

 and Σ =

 Σ11 Σ12

Σ21 Σ22


(where Σ11 is m×m, Σ22 is p×p, etc.). These decompositions can be done without

loss of generality since the order of he random variables Xi in X is not relevant.

For details on partitioned matrices, see my online notes for Theorem of Matrices

(MATH 5090) on Section 3.2. Multiplication of Matrices and Multiplication of

Vectors and Matrices.

https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-2.pdf
https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-2.pdf
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Corollary 3.5.1. Suppose X has a Nn(µ,Σ) distribution partitioned as

X =

 X1

X2

 , µ =

 µ1

µ2

 , and Σ =

 Σ11 Σ12

Σ21 Σ22


where X1 and µ1 are m dimensional and Σ11 is m×m. Then X1 has a Nm(µ1,Σ11)

distribution.

Note. We define marginal probability density functions in the setting of two

variables in Section 2.1. Distributions of Two Random Variables (see Note 2.1.C).

Similarly, we see that Corollary 3.5.1 implies that any marginal distribution of

normal random vector X is itself normal. Also, the mean and covariance of the

marginal distribution are those associated with the partial vector X1.

Note. In Section 2.5. The Correlation Coefficient we see that if two random vari-

ables X and Y are independent, then Cov(X, Y ) = 0 (see Theorem 3.5.2). In the

setting of two random variables, the converse does not hold (see Example 2.5.3).

The next result shows in the multivariate normal setting, X1 and X2 are inde-

pendent if and only if the covariance satisfies Σ12 = 0. Notice this implies in the

two random variable setting when X and Y are both normally distributed and

Cov(X, Y ) = 0, then X and Y are independent.

Theorem 3.5.3. Suppose X has a Nn(µ,Σ) distribution, partitioned as

X =

 X1

X2

 , µ =

 µ1

µ2

 , and Σ =

 Σ11 Σ12

Σ21 Σ22

 .

Then X1 and X2 are independent if and only if the covariance satisfies Σ12 = 0.

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-2-1.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-2-5.pdf
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Note. In Corollary 3.5.1 we saw that a marginal distribution of a multivariate

normal random vector is itself normal. The next result shows that this also holds

for conditional distributions.

Theorem 3.5.4. Suppose X has a Nn(µ,Σ) distribution, partitioned as

X =

 X1

X2

 , µ =

 µ1

µ2

 , and Σ =

 Σ11 Σ12

Σ21 Σ22

 .

Assume that Σ is positive definite. Then the conditional distribution of X1 | X2 is

Nm(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21).

Example 3.5.A. Continuation of the Bivariate Normal Distribution.

Suppose X =

 X

Y

 and has a N2(µ,Σ) distribution where µ =

 µ1

µ2

 and

Σ =

 σ2
1 σ12

σ21 σ2
2

 . By Definition 2.5.2, the correlation coefficient between X and

Y is ρ =
Σ12

σ1σ2
=

Σ21

σ1σ2
or Σ12 = Σ21 = ρσ1σ2. So

det(Σ) = |Σ| =

∣∣∣∣∣∣ σ2
1 σ12

σ21 σ2
2

∣∣∣∣∣∣ =

∣∣∣∣∣∣ σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

∣∣∣∣∣∣ = σ2
1σ

2
2 − ρ2σ2

1σ
2
2 = σ2

1σ
2
2(1− ρ2).

Recall that −1 ≤ ρ ≤ 1. If ρ = ±1 then Y = ±X (respectively) and we then

effectively have a single variable. So we now assume ρ2 6= 1. We also have that X

and Y are not constant (a constant random variable is not normally distributed)
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and so σ1 6= 0 6= σ2. So det(Σ) 6= 0 and hence Σ is 2× 2, then

Σ−1 =
1

det(Σ)

 σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

 =
1

σ2
1σ

2
2(1− ρ2)

 σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1


(see my online notes for Linear Algebra [MATH 2010] on Section 4.3. Computation

of Determinants and Cramer’s Rule; see the example based on exercise 4.3.18). By

equation (3.5.16) in Note 3.5.F, with n = 2 we have that the probability density

function of X is

fX(x) =
1

(2π)(2)/2(σ2
1σ

2
2(1− ρ2))1/2 exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
=

1

2πσ1σ2
√

1− ρ2
exp

(
−1

2
[x− µ1, y − µ2]

1

σ2
1σ

2
2(1− ρ2)

×

 σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

 x− µ1

x− µ2


=

1

2πσ1σ2
√

1− ρ2
exp

(
−1

2σ2
1σ

2
2(1− ρ2)

×[(x− µ1)σ
2
2 + (y − µ2)(−ρσ1σ2), (x− µ1)(−ρσ1σ2) + (y − µ2)σ

2
1]

 x− µ1

x− µ2


=

1

2πσ1σ2
√

1− ρ2
exp

(
−1

2σ2
1σ

2
2(1− ρ2)

((x− µ1)
2σ2

2

−(y − µ2)ρσ1σ2(x− µ1)− (x− µ1)ρσ1σ2(y − µ2) + (y − µ2)2σ
2
1
)

=
1

2πσ1σ2
√

1− ρ2
exp

(
−1

2(1− ρ2)

(
(x− µ1)

2

σ2
1

− 2ρ
(x− µ1)(y − µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

))
=

1

2πσ1σ2
√

1− ρ2
e−q/2

where

q =
1

1− ρ2

((
x− µ1

σ1

)2

− 2ρ

(
x− µ1

σ1

)(
y − µ2

σ2

)
+

(
y − µ2

σ2

)2
)

.

https://faculty.etsu.edu/gardnerr/2010/c4s3.pdf
https://faculty.etsu.edu/gardnerr/2010/c4s3.pdf
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That is, the multivariate normal distribution reduces to the bivariate normal dis-

tribution when n = 2 (compare to the first definition in this section).

Example 3.5.A Continued. As above we take X = (Y,X)′ to have a N2(µ,Σ)

(with the entries of µ and Σ permuted as appropriate to correspond to the entries

of X) we have by Theorem 3.5.4 that conditional distribution of Y given X = x

is N(µ1 + ρσ2/σ1(x − µ1), σ
2
2(1 − ρ2)) since Σ12 = ρσ1σ2 (as shown above) and

Σ−1
22 = 1/σ2

1 so that Σ12Σ
−1
22 = ρσ1/σ2, and Σ11 = σ2

2 so that

Σ11 −Σ12Σ
−1
22 Σ21 = σ2

2 − (ρσ1σ2)(1/σ
2
1)(ρσ1σ2) = σ2

2(1− ρ2).

We now have that the conditional mean of Y given X = x is E(Y | x) = µ2 +

(ρσ2/σ1)(x − µ1); notice that this is a linear function of x (unless ρ = 0). Notice

that the variance is σ2
2(1−ρ2) and is independent of x. It follows that “most” of the

probability distribution of X and Y lies “close” to the line y = µ2+(ρσ2/σ1)(x−µ1)

(provided the standard deviation of Y , σ2
√

1− ρ2, is “small”). We can interchange

X and Y to get that the conditional distribution of X given Y = y is N2(µ1 +

(ρσ1/σ2)(y − µ2), σ
2
1(1− ρ2)), and that similar conclusions as above can be drawn.

Exercise 3.5.8. Let X and Y have a bivariate normal distribution with parameters

µ1 = 20, µ2 = 40, σ2
1 = 9, σ2

2 = 4, and ρ = 0.6. Find the shortest interval for which

0.90 is the conditional probability that Y is in the interval, given that x = 22.
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Note. Let the random vectors X have the multivariate distribution Nn(µ,Σ) where

where Σ is positive definite (and symmetric since cov(Xi, Xj) = Cov(Xj, Xi)).

Then by Note 3.5.D, Σ = Γ′ΛΓ where Λ = diag(λ1, λ2, . . . , λn) where λ1 ≥ λ2 ≥

· · · ≥ λn > 0 are the eigenvalues of Σ and the columns of Γ′ are the unit eigenvectors

v1,v2, . . . ,vn corresponding to the eigenvalues. Recall that Γ is an orthogonal

matrix, so that Γ′ = Γ−1. So Λ = ΓΣΓ′. Define random vector Y = Γ(X − µ).

By Theorem 3.5.2, Y has a Nn(0,Λ) distribution. Since Λ is a diagonal matrix

then cov(Yi, Yj) = 0 and it follows from Theorem 3.5.3 that Y1, Y2, . . . , Yn are

independent random variables. Also, for i = 1, 2, . . . , n random variables Yi has a

N(0, λi) distribution.

Definition. Let random vector X have the multivariate normal distribution Nn(µ,Σ)

where Σ is positive definite. With Σ = Γ′ΛΓ as the “spectral decomposition” (or

orthogonal diagonalization) of Σ, the random vector Y = Γ(X − µ) is the vector

of principal components of X.

Definition. The total variation (“TV”) of (any) random vector is the sum of the

variances of its components.

Note. Consider random vector X with the multivariate normal distribution Nn(µ,Σ)

and Y = Γ(X− µ) described above. Then

TV(X) =
n∑

i=1

σ2
i by definition

= tr(Σ) since the trace of a matrix is the sum of the diagonal entries
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= tr(Γ′ΛΓ) since Σ = Γ′ΛΓ

= tr(Γ′(ΛΓ)) = tr((ΛΓ)Γ′) since tr(AB) = tr(BA) for appropriate

sized matrices (this follows from the definition of trace and

matrix product)

= tr(ΛIn) since Γ is an orthogonal matrix, so Γ−1 = Γ′

= tr(Λ) =
n∑

i=1

λi

= TV(Y since Y has a Nn(0,Λ) distribution.

Therefore X and Y = Γ(X− µ) have the same total variance.

Lemma 3.5.B. Consider random vector X with multivariate normal distribution

Nn(µ,Σ) and Y = Γ(X − µ) where Γ is an orthogonal positive definite matrix.

Then for any a ∈ Rn with ‖a‖ = 1, we have Var(a′X) ≤ Var(Y1). That is, Y1 has

the maximum variance of any linear combination a′(X−µ) where ‖a‖ = ‖a′‖ = 1.

Definition. For random vector X with multivariate normal distribution Nn(µ,Σ)

and Y = Γ(X − µ) where Γ is an orthogonal positive definite matrix, random

variable Y1 (the first component of Y as described in Lemma 3.5.A) is the first

principal component of X.

Note. The next result is a generalization of Lemma 3.5.A. The proof is similar to

that of the lemma and is to be given in Exercise 3.5.20.
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Theorem 3.5.5. Consider random vector X with multivariate normal distribution

Nn(µ,Σ) and Y = Γ(X − µ) where Γ is an orthogonal positive definite matrix.

For j = 1, 2, . . . , n we have Var(a′X) ≤ λj = Var(Yj) for all vectors a such that

a ⊥ vi for i = 1, 2, . . . , j − 1 and ‖a‖ = 1.

Definition. Consider random vector X with multivariate normal distribution

Nn(µ,Σ) and Y = Γ(X − µ) where Γ is an orthogonal positive definite ma-

trix. The components Y1, Y2, . . . , Yn are the second, third, through the nth principal

components of X, respectively.

Note. “Principal Component Analysis” (“PCA”) is an area of study in multivari-

ate statistical analysis. It involves reducing the number of dimensions of obser-

vational data, or the weighting of components of a random vector in producing a

standardized linear combination (“SLC”) of the components. See my online notes

(in preparation) for Applied Multivariate Statistical Analysis (STAT 5730); see

“Chapter 11. Principal Components Analysis.”
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