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Section 3.6. t- and F-Distributions

Note. In this section we give two more distributions, the Student’s ¢t-distribution

and the F-distribution. These play a role in statistical inference.

Note 3.6.A. Let W and V be independent random variables where W has a
standard normal distribution, N(0,1), and V has a x*(r) distribution. The joint
probability density function of W and V' by Definition 2.4.1, so that

w212l
h(w,v) =4 V2 L(r/2)27/2

0 elsewhere.

e U2 for —oo<w < 00,0 <v< 00

Define random variable T'= W/, /V/r. Asin Note 3.3.E and Example 3.3.6, we use
the “transformation technique” and the Jacobian to find the probability density

function g;(¢) of T'. Introduce u; and us as

w

Vo/r

and u = us(w,v) = v.

t=wu(w,v) =

We have
w =t\/v/r =t\/u/r =vi(t,u) and v = u = vy(t, u),

and the Jacobian
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J(w,v) = J(vi,v9) = =
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\/7 /r = /u/r #0 for 0 < u < c.
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So the transformation (w,v) — (¢,u) is one to one (injective; this is due to the
nonzero Jacobian) and maps set S = {(w,v) | —00 < w < 00,0 < v < 0o} one
to one and onto 7 = {(t,u) | —oo < t < 00,0 < u < oco}. As in Note 3.3.E,
the joint probability density function of 7" and U = V' can be obtained from the
joint probability density function of W and V by replacing w with tm and
replacing v with u, and introducing a factor of |.J(v,w)| = \/u/r. This gives the
joint probability density function of W and V on its support 7 as

1 2 1
¢ _ —(t\/u/r)?/2 -~ r/2—-1_—u/2
g(t, u) /—276 F(r/2)27“/2u e vu/r

_ 1 u(”l)/Q’le*%*%,
V2mrD(r/2)2r/?

and ¢g(t,u) = 0 elsewhere. The marginal probability function of T is then

0 (0.0} 1
t) = t,u) = U
no) = [ st = [ BT
[Let z = u(1+t*/r)/2 and dz = (1 +*/r) /2 du]
5 ) o, N\ (+D/2-1 5
ez
/0 V2mrD(r/2)2r/2 <1+t2/7“) L+¢2/r
_ \/§ /OO Z(r+1)/2—1e—z dz
V2rrT(r/2)(1 + 2 /r)(r+D/2 [,
I'((r+1)/2)
VarL(r/2)(1 + t2/r)(r+1)/2
That is, if W is N(0,1), V is x*(r), and W and V are independent, then T =

(r+1)/2—16—%(1+t2/7") du

for —oo <t < 0.

W/\/V/r has the probability function g¢;(¢). This distribution is the ¢-distribution.

Definition. A random variable T" with probability density function

_ L((r+1)/2)
VarD(r/2)(1 + ¢ /r) /2

(where r > 0) has a t-distribution with r degrees of freedom.

g(t) —00 < t < 00,
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Note. The only appearance of ¢ in the probability density function of a ¢t-distribution
only involves the term #2. So g(t) is symmetric about 0 and hence the median is 0.
Differentiation shows that g has a single maximum at ¢ = 0. We will show in Sec-
tion 5.2. Convergence in Distribution (using the Lebesgue Dominated Convergence
Theorem; see Example 5.2.3) that the limit as the degrees of freedom r — oo of

g(t) is the standard normal distribution N(0,1).

Note. William S. Gosset (June 13, 1876-October 16, 1937) attended New College
Oxford and received a mathematics degree in 1897 and a chemistry degree in 1899.
He started working as a chemist at Arthur Guinness Son and Company in 1899;
this is the Guinness brewery in Dublin, Ireland. Gosset was involved in statistical
analysis. He studied with Karl Pearson at University College in London in 1906-07.
The Guinness Board of Directors allowed its scientists to publish, as long as they
did not mention beer, Guinness, or their own surname. Gosset had record data
in a notebook with “The Student’s Science Notebook” printed on the front. As a
result, Gosset submitted his papers under the name “Student” (this story appears
in Stephen Ziliak’s “Guinnessometrics: The Economic Foundations of ‘Student’s’
t” Journal of Econometric Perspectives, 22(4), 199-216 (2008), a copy of which is
available on the American Economic Association webpage [Accessed 7/17/2021];
see page 203). He presented the t-distribution (or “Student’s ¢-distribution,” but
surprisingly not “Gossett’s t-distribution”) in “The Probable Error of a Mean,”
Biometrika 6(1), 1-25 (March 1908). The original paper is available online from
JSTOR. The t-distribution is useful in estimating the mean of a normally dis-

tributed population when sample size is small and when the population standard


https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-5-2.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-5-2.pdf
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.22.4.199
https://www.jstor.org/stable/2331554?seq=1#metadata_info_tab_contents
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deviation is unknown. Gosset published 21 papers and collaborated with Fisher,

Neyman, and Pearson.

Gossett image from MacTutor History of Mathematics Archive Gossett biography

webpage and Guinness image from E-Bay.

This biographical information is from MacTutor History of Mathematics Archive

Gossett biography webpage and the Wikipedia page on Gosset.

Example 3.6.1. Let random variable T" have a t-distribution with r degrees of
freedom. As shown in Note 3.6.A, T = W (V/r)~'/? where W has a standard
normal, N(0,1), distribution, and V has a x*(r) distribution and W and V are
independent. If k < r (and so (—k/2) > —r/2) then

()]
)

= E(Wk)mE(Vkﬂ) by the linearity of expectation, Theorem 1.8.2

E(TY = E

= E(WHE by Theorem 2.4.4, since W and V' are independent



https://mathshistory.st-andrews.ac.uk/Biographies/Gosset/
https://mathshistory.st-andrews.ac.uk/Biographies/Gosset/
https://www.ebay.com/
https://mathshistory.st-andrews.ac.uk/Biographies/Gosset/
https://mathshistory.st-andrews.ac.uk/Biographies/Gosset/
https://en.wikipedia.org/wiki/William_Sealy_Gosset
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1 27F20(r — k/2)
r—k/2 ['(r/2)
(with & of Theorem 3.3.2 replaced with —k/2 here)
27 K21 (r /2 — k/2)

L(r/2)r—k/?2
Since E(W) = 0 then E(T) = 0 (from the inequality with k£ = 1), as long as r > 1.

= E(WH by Theorem 3.3.2

it k<.

= E(WH

With k& = 2 in this inequality, since F(W?) = 1 by Example 3.3.4 (with j = 2), we

have
Var(T) = E((T' = E(T))") = E(T) = <1>2rf£;§>2r1”
r[(r/2 —1) _ B
2072 = )2 — 1) Snee M) = (@ = 1a = 1) fora >0

2(r/2—-1) r—2
where I'(a) = (o« — 1)['(a — 1) for a > 0 is given in Thomas’ Calculus, Farly
Transcendentals, 14th Edition, “Chapter 8, Techniques of Integration,” “Additional

and Advanced Exercises” Number 43. That is, a t-distribution with r > 2 degree

of freedom has a mean of 0 and a variance of r/(r — 2).

Note 3.6.B. To introduce the F-distribution, consider two independent chi-square
variables U and V with r; and ry degrees of freedom, respectively. Since U and V'
are independent, then by Definition 2.4.1, the joint probability density function of

U and V is a product of two chi-square probability density functions:

L r1/2=1,7r2/2=1 —(u+v)/2
h(u,v) = T(r1/2)0 (rp 2)20 72072 & v e where 0 < u,v, < 00
V) =

0 elsewhere.
U / (&}

V/’l“g
function g;(w) of W. As above, for the ¢-distribution (and as in Note 3.3.E and

Define random variable W = . We now find the marginal probability density
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Example 3.3.6) we use the “transformation technique.” Introduce u; and us as

u/m
v/1r9

w = uy(u,v) = and z = us(u,v) = v.
We have

u = (r1/ro)vw = (r1/r9)zw = v1(w, 2) and v = z = va(w, 2),

and the Jacobian

0 0
7 _ B S Bt B g—:f) % B (r1/r2)z (r1/r2)w
(U7U)_ (UI’U2)_ Ovy  Ovg - ov  Ov -

o0 0 e 0 1

= (r1/r9)z # 0 for 0 < z < 0.

So the transformation (u,v) +— (w, z) is one to one (injective; this is due to the
nonzero Jacobian) and maps set S = {(u,v) | 0 < u < 00,0 < v < 0o} onto the
set 7 = {(w,2) | 0 < w < 00,0 <z < oo}. As in Note 3.3.E, the joint probability
density function of W and Z = V can be obtained from the joint probability
density function of U and V' by replacing u with (1 /79)zw, replacing v with z, and
introducing a factor of |J (v, w)| = (r1/r2)z. This gives the joint probability density
function of W and Z on its support 7 as

(w, z) = 1 new) " e ()
T 2 D J2) T (ra)2)20 2 \ 1y r

and g(wmz) = 0 elsewhere. The marginal probability density function of W is then

8

g(w) = g(w, z) dz

88

_ / (r1/ro)" 2w 271 (ritra)/2-1,75 (%
0 F T1/2

+1)
(rg/2)2(ritr2)/2 4

1
[l —(w—Fl) anddy:—(ﬂ%—l) dz]
2 T2

1w
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(Tl/TQ)Tl/Q 7“1/2 1 /OO 2y (7“1+7’2)/2—1 . 2 d
—_— e —_—
T(r1/2)T (ra/2) 20722 /s + 1 rwfrs+1) Y
)
(

r r T1 22 2 o0
(ry/rg) 1/ 2p71/271 ( 2 >( 22/ / /21 g
[(r1/2)T(r9/2)201472)/2 \ riw/ry + 1 0

D((ritra)/2)(rra)" 2 /21
(T’ 1/2)F(T2/2) (1+T1’LU/’I"2)(T1+7’2)/2

for 0 < w < o0

0 elsewhere.

That is, if U and V are independent chi-square variables with r1 and ry degrees of
freedom, respectively, then W = (U/r1)/(V/rs) has the probability density function

g1(w). This distribution is an F-distribution.

Definition. A random variable W with probability density function

D((r1+12)/2)(r1 /72)71/? wr1/2-1

=13 (a/2) (TimwjryeFare 101 0 <w < 00

g(w) =
0 elsewhere

(where r1,79 > 0) has an F'-distribution.

Example 3.6.2. Let F' have an F-distribution with r1 and ro degrees of freedom.
As shown in Note 3.6.B, we have F' = (r3/r1)(U/V') where U and V' are independent
y? random variables with r; and ry degrees of freedom, respectively. Since U and

V' are independent, the by Theorem 2.4.4

E(F*) =E ((:—j%)k> = <:—j)kE(Uk)E(V"“),

provided E(U*) and E(V~F) exists. Since k > —(r1/2) (because & € N and r; >
0), then by Theorem 3.3.2, E(U*) exists. Also by Theorem 3.3.2, E(V ) exists
provided —k > —ry/2 (or 2k < re). If this holds, then by Theorem 3.3.2 with
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k =1, the mean of F is

E(F) = ZEWU)EV™Y)

1
ry 2710(ry/2 —1) | :
= 2 th fx?
- | T(ra/2) since the mean of x*(r) is r

o D) F(TQ/Q — 1) . o
= 22— DI (ra/2 =T since I'(a) = (e — 1)I'(a — 1) for all & > 0

()

7“2—2.

Notice that for ry large then E(F') is near 1.

Theorem 3.6.1. Student’s Theorem.
Let X1, X5, ..., X, beidentical in distribution (“iid”) random variables each having

a normal distribution with mean p and variance 0. Define the random variables

n

n—1
i=1 i=1

Then
(a) X has a N(u,0?/n) distribution.
(b) X and S? are independent.

(c) (n —1)S?/0? has a x*(n — 1) distribution.
X —p

(d) The random variable T" = NG

has a Student t¢-distribution with n — 1

degrees of freedom.
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