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Section 3.6. t- and F -Distributions

Note. In this section we give two more distributions, the Student’s t-distribution

and the F -distribution. These play a role in statistical inference.

Note 3.6.A. Let W and V be independent random variables where W has a

standard normal distribution, N(0, 1), and V has a χ2(r) distribution. The joint

probability density function of W and V by Definition 2.4.1, so that

h(w, v) =

 1√
2π

e−w2/2 1
Γ(r/2)2r/2v

r/2−1e−v/2 for −∞ < w < ∞, 0 < v < ∞

0 elsewhere.

Define random variable T = W/
√

V/r. As in Note 3.3.E and Example 3.3.6, we use

the “transformation technique” and the Jacobian to find the probability density

function g1(t) of T . Introduce u1 and u2 as

t = u1(w, v) =
w√
v/r

and u = u2(w, v) = v.

We have

w = t
√

v/r = t
√

u/r = v1(t, u) and v = u = v2(t, u),

and the Jacobian

J(w, v) = J(v1, v2) =

∣∣∣∣∣∣
∂v1

∂t
∂v1

∂u

∂v2

∂t
∂v2

∂t

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∂w
∂t

∂w
∂u

∂v
∂t

∂v
∂t

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
√

u/r t

2
√

u/r

0 1

∣∣∣∣∣∣∣ =
√

u/r 6= 0 for 0 < u < ∞.
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So the transformation (w, v) 7→ (t, u) is one to one (injective; this is due to the

nonzero Jacobian) and maps set S = {(w, v) | −∞ < w < ∞, 0 < v < ∞} one

to one and onto T = {(t, u) | −∞ < t < ∞, 0 < u < ∞}. As in Note 3.3.E,

the joint probability density function of T and U = V can be obtained from the

joint probability density function of W and V by replacing w with t
√

u/r and

replacing v with u, and introducing a factor of |J(v, w)| =
√

u/r. This gives the

joint probability density function of W and V on its support T as

g(t, u) =
1√
2π

e−(t
√

u/r)2/2 1

Γ(r/2)2r/2u
r/2−1e−u/2

√
u/r

=
1√

2πrΓ(r/2)2r/2
u(r+1)/2−1e−

u
2−

t2u
2r ,

and g(t, u) = 0 elsewhere. The marginal probability function of T is then

g1(t) =

∫ ∞

−∞
g(t, u) =

∫ ∞

0

1√
2πrΓ(r/2)2r/2

u(r+1)/2−1e−
u
2 (1+t2/r) du

[Let z = u(1 + t2/r)/2 and dz = (1 + t2/r)/2 du]

=

∫ ∞

0

1√
2πrΓ(r/2)2r/2

(
2z

1 + t2/r

)(r+1)/2−1

e−z 2

1 + t2/r
dz

=

√
2√

2πrΓ(r/2)(1 + t2/r)(r+1)/2

∫ ∞

0
z(r+1)/2−1e−z dz

=
Γ((r + 1)/2)√

πrΓ(r/2)(1 + t2/r)(r+1)/2 for −∞ < t < ∞.

That is, if W is N(0, 1), V is χ2(r), and W and V are independent, then T =

W/
√

V/r has the probability function g1(t). This distribution is the t-distribution.

Definition. A random variable T with probability density function

g(t) =
Γ((r + 1)/2)√

πrΓ(r/2)(1 + t2/r)(r+1)/2 , −∞ < t < ∞,

(where r > 0) has a t-distribution with r degrees of freedom.
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Note. The only appearance of t in the probability density function of a t-distribution

only involves the term t2. So g(t) is symmetric about 0 and hence the median is 0.

Differentiation shows that g has a single maximum at t = 0. We will show in Sec-

tion 5.2. Convergence in Distribution (using the Lebesgue Dominated Convergence

Theorem; see Example 5.2.3) that the limit as the degrees of freedom r → ∞ of

g(t) is the standard normal distribution N(0, 1).

Note. William S. Gosset (June 13, 1876–October 16, 1937) attended New College

Oxford and received a mathematics degree in 1897 and a chemistry degree in 1899.

He started working as a chemist at Arthur Guinness Son and Company in 1899;

this is the Guinness brewery in Dublin, Ireland. Gosset was involved in statistical

analysis. He studied with Karl Pearson at University College in London in 1906–07.

The Guinness Board of Directors allowed its scientists to publish, as long as they

did not mention beer, Guinness, or their own surname. Gosset had record data

in a notebook with “The Student’s Science Notebook” printed on the front. As a

result, Gosset submitted his papers under the name “Student” (this story appears

in Stephen Ziliak’s “Guinnessometrics: The Economic Foundations of ‘Student’s’

t” Journal of Econometric Perspectives, 22(4), 199–216 (2008), a copy of which is

available on the American Economic Association webpage [Accessed 7/17/2021];

see page 203). He presented the t-distribution (or “Student’s t-distribution,” but

surprisingly not “Gossett’s t-distribution”) in “The Probable Error of a Mean,”

Biometrika 6(1), 1-25 (March 1908). The original paper is available online from

JSTOR. The t-distribution is useful in estimating the mean of a normally dis-

tributed population when sample size is small and when the population standard

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-5-2.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-5-2.pdf
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.22.4.199
https://www.jstor.org/stable/2331554?seq=1#metadata_info_tab_contents
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deviation is unknown. Gosset published 21 papers and collaborated with Fisher,

Neyman, and Pearson.

Gossett image from MacTutor History of Mathematics Archive Gossett biography

webpage and Guinness image from E-Bay.

This biographical information is from MacTutor History of Mathematics Archive

Gossett biography webpage and the Wikipedia page on Gosset.

Example 3.6.1. Let random variable T have a t-distribution with r degrees of

freedom. As shown in Note 3.6.A, T = W (V/r)−1/2 where W has a standard

normal, N(0, 1), distribution, and V has a χ2(r) distribution and W and V are

independent. If k < r (and so (−k/2) > −r/2) then

E(T k) = E

[
W k

(
V

r

)−k/2
]

= E(W k)E

[(
V

r

)−k/2
]

by Theorem 2.4.4, since W and V are independent

= E(W k)
1

r−k/2E(V −k/2) by the linearity of expectation, Theorem 1.8.2

https://mathshistory.st-andrews.ac.uk/Biographies/Gosset/
https://mathshistory.st-andrews.ac.uk/Biographies/Gosset/
https://www.ebay.com/
https://mathshistory.st-andrews.ac.uk/Biographies/Gosset/
https://mathshistory.st-andrews.ac.uk/Biographies/Gosset/
https://en.wikipedia.org/wiki/William_Sealy_Gosset
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= E(W k)
1

r−k/2

2−k/2Γ(r − k/2)

Γ(r/2)
by Theorem 3.3.2

(with k of Theorem 3.3.2 replaced with −k/2 here)

= E(W k)
2−k/2Γ(r/2− k/2)

Γ(r/2)r−k/2 if k < r.

Since E(W ) = 0 then E(T ) = 0 (from the inequality with k = 1), as long as r > 1.

With k = 2 in this inequality, since E(W 2) = 1 by Example 3.3.4 (with j = 2), we

have

Var(T ) = E((T − E(T ))2) = E(T 2) = (1)
2−1Γ(r/2− 1)

Γ(r/2)r−1

=
rΓ(r/2− 1)

2(r/2− 1)Γ(r/2− 1)
since Γ(α) = (α− 1)Γ(α− 1) for α > 0

=
r

2(r/2− 1)
=

r

r − 2
,

where Γ(α) = (α − 1)Γ(α − 1) for α > 0 is given in Thomas’ Calculus, Early

Transcendentals, 14th Edition, “Chapter 8, Techniques of Integration,” “Additional

and Advanced Exercises” Number 43. That is, a t-distribution with r > 2 degree

of freedom has a mean of 0 and a variance of r/(r − 2).

Note 3.6.B. To introduce the F -distribution, consider two independent chi-square

variables U and V with r1 and r2 degrees of freedom, respectively. Since U and V

are independent, then by Definition 2.4.1, the joint probability density function of

U and V is a product of two chi-square probability density functions:

h(u, v) =

 1
Γ(r1/2)Γ(r2/2)2(r1+r2)/2u

r1/2−1vr2/2−1e−(u+v)/2 where 0 < u, v,< ∞

0 elsewhere.

Define random variable W =
U/r1

V/r2
. We now find the marginal probability density

function g1(w) of W . As above, for the t-distribution (and as in Note 3.3.E and
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Example 3.3.6) we use the “transformation technique.” Introduce u1 and u2 as

w = u1(u, v) =
u/r1

v/r2
and z = u2(u, v) = v.

We have

u = (r1/r2)vw = (r1/r2)zw = v1(w, z) and v = z = v2(w, z),

and the Jacobian

J(u, v) = J(v1, v2) =

∣∣∣∣∣∣
∂v1

∂w
∂v1

∂z

∂v2

∂w
∂v2

∂z

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∂u
∂w

∂u
∂z

∂v
∂w

∂v
∂z

∣∣∣∣∣∣ =

∣∣∣∣∣∣ (r1/r2)z (r1/r2)w

0 1

∣∣∣∣∣∣
= (r1/r2)z 6= 0 for 0 < z < ∞.

So the transformation (u, v) 7→ (w, z) is one to one (injective; this is due to the

nonzero Jacobian) and maps set S = {(u, v) | 0 < u < ∞, 0 < v < ∞} onto the

set T = {(w, z) | 0 < w < ∞, 0 < z < ∞}. As in Note 3.3.E, the joint probability

density function of W and Z = V can be obtained from the joint probability

density function of U and V by replacing u with (r1/r2)zw, replacing v with z, and

introducing a factor of |J(v, w)| = (r1/r2)z. This gives the joint probability density

function of W and Z on its support T as

g(w, z) =
1

Γ(r1/2)Γ(r2/2)2(r1+r2)/2

(
r1zw

r2

)(r1−2)/2

z(r2−2)/2e
−
(

r1zw
r2

+z
)
/2r1z

r2

and g(wmz) = 0 elsewhere. The marginal probability density function of W is then

g1(w) =

∫ ∞

−∞
g(w, z) dz

=

∫ ∞

0

(r1/r2)
r1/2wr1/2−1

Γ(r1/2)Γ(r2/2)2(r1+r2)/2z
(r1+r2)/2−1e

− z
2

(
r1w
r2

+1
)
dz[

let t =
z

2

(
r1w

r2
+ 1

)
and dy =

1

2

(
r1w

r2
+ 1

)
dz

]
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=
(r1/r2)

r1/2wr1/2−1

Γ(r1/2)Γ(r2/2)2(r1+r2)/2

∫ ∞

0

(
2y

r1w/r2 + 1

)(r1+r2)/2−1

ey

(
2

r1w/r2 + 1

)
dy

=
(r1/r2)

r1/2wr1/2−1

Γ(r1/2)Γ(r2/2)2(r1+r2)/2

(
2

r1w/r2 + 1

)(r1+22)/2 ∫ ∞

0
y(r1+r2)/2−1e−y dy

=


Γ((r1+r2)/2)(r1/r2)r1/2

Γ(r−1/2)Γ(r2/2)
wr1/2−1

(1+r1w/r2)(r1+r2)/2 for 0 < w < ∞

0 elsewhere.

That is, if U and V are independent chi-square variables with r1 and r2 degrees of

freedom, respectively, then W = (U/r1)/(V/r2) has the probability density function

g1(w). This distribution is an F -distribution.

Definition. A random variable W with probability density function

g(w) =


Γ((r1+r2)/2)(r1/r2)r1/2

Γ(r−1/2)Γ(r2/2)
wr1/2−1

(1+r1w/r2)(r1+r2)/2 for 0 < w < ∞

0 elsewhere

(where r1, r2 > 0) has an F -distribution.

Example 3.6.2. Let F have an F -distribution with r1 and r2 degrees of freedom.

As shown in Note 3.6.B, we have F = (r2/r1)(U/V ) where U and V are independent

χ2 random variables with r1 and r2 degrees of freedom, respectively. Since U and

V are independent, the by Theorem 2.4.4

E(F k) = E

((
r2

r1

U

V

)k
)

=

(
r2

r1

)k

E(Uk)E(V −k),

provided E(Uk) and E(V −k) exists. Since k > −(r1/2) (because k ∈ N and r1 >

0), then by Theorem 3.3.2, E(Uk) exists. Also by Theorem 3.3.2, E(V −k) exists

provided −k > −r2/2 (or 2k < r2). If this holds, then by Theorem 3.3.2 with
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k = 1, the mean of F is

E(F ) =
r2

r1
E(U)E(V −1)

=
r2

r1
r1

2−1Γ(r2/2− 1)

Γ(r2/2)
since the mean of χ2(r) is r

=
r2

2

Γ(r2/2− 1)

(r2/2− 1)Γ(r2/2− 1)
since Γ(α) = (α− 1)Γ(α− 1) for all α > 0

=
r2

r2 − 2
.

Notice that for r2 large then E(F ) is near 1.

Theorem 3.6.1. Student’s Theorem.

Let X1, X2, . . . , Xn be identical in distribution (“iid”) random variables each having

a normal distribution with mean µ and variance σ2. Define the random variables

X =
1

n

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(Xi −X)2.

Then

(a) X has a N(µ, σ2/n) distribution.

(b) X and S2 are independent.

(c) (n− 1)S2/σ2 has a χ2(n− 1) distribution.

(d) The random variable T =
X − µ

S/
√

n
has a Student t-distribution with n − 1

degrees of freedom.
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