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Section 3.7. Mixture Distributions

Note. At the end of Section 3.4. The Normal Distribution we saw an example of a

linear combination of normal distributions (in the setting of cumulative distribution

functions). We follow up on this idea in this section by considering weighted sums

of probability density functions.

Definition. Let f1(x), f2(x), . . . , fk(x) be probability density functions with sup-

ports S1,S2, . . . ,Sk, with means µ1, µ2, . . . , µk, and standard deviations σ2
1, σ

2
2, . . . , σ

2
k,

respectively. Let positive probabilities p1, p2, . . . , pk satisfy p1 + p2 + · · · + pk = 1.

Let S = ∪k
i=1Si. The function

f(x) = p1f1(x) + p2f2(x) + · · ·+ pkfk(x) =
k∑

i=1

pifi(x) for x ∈ S

is a mixture distribution with mixing probabilities p1, p2, . . . , pk.

Note. By additivity of the integral, we clearly have
∫ ∞
−∞ f(x) dx = 1. Also with

Fi(x) as the cumulative density function corresponding to fi(x), then the cumula-

tive distribution function of f is F (x) =
∑k

i=1 piFi(x) for x ∈ S. The mean of X

is

E(X) =
k∑

i=1

pi

∫ ∞

−∞
xfi(x) dx =

k∑
i=1

piµi = µ,

and the variance is

var(X) =
k∑

i=1

pi

∫ ∞

−∞
(x− µ)2fi(x) dx

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-3-4.pdf
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=
k∑

i=1

pi

∫ ∞

−∞
((x− µi) + (µi − µ))2fi(x) dx

=
k∑

i=1

pi

∫ ∞

−∞
(x− µi)

2fi(x) dx +
k∑

i=1

2pi(µi − µ)

∫ ∞

−∞
(x− µi)fi(x) dx

+
k∑

i=1

pi(µi = µ)2
∫ ∞

−∞
fi(x) dx

=
k∑

i=1

pi

∫ ∞

−∞
(x− µi)

2fi(x) dx +
k∑

i=1

pi(µi = µ)2(1)

since

∫ ∞

−∞
(x− µi)fi(x) dx =

∫ ∞

−∞
xfi(x) dx− µi

∫ ∞

−∞
fi(x) dx

= µi − µi = 0

=
k∑

i=1

piσ
2
i +

k∑
i=1

pi(µi − µ)2.

Definition. Random variable X has a loggamma probability density function with

parameters α > 0 and β > 0 if it has probability density function

f(x) =

 1
Γ(α)βαx−(1+β)/β(log x)α−1 for x > 1

0 elsewhere.

We denote this distribution as log Γ(α, β).

Note. Here, “log” denotes the natural logarithm function. The mean of log Γ(α, β)

is (1− β)−α when β < 1, and variance (1− 2β)−α − (1− β)−2α when β < 1/2 (see

Vose Software’s loggamma webpage).

https://www.vosesoftware.com/riskwiki/LogGammadistribution.php
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Note. We can also consider a mixture of an infinite number of distributions. This

is accomplished by integrating instead of summing (and so involves an uncount-

able infinity of distributions; we get these distributions by varying a continuous

parameter in a class of distributions).

Example 3.7.2. Let Xθ be a Poisson random variable with parameter θ (so the

probability mass function of Xθ is θxe−θ/x! for x ∈ {0, 1, 2, . . .}). As opposed to

weighing by a probability pi, we introduce a weight function. We use a gamma dis-

tribution with parameters α and β (so, as a function of θ, we use
1

Γ(α)βα
θα−1e−θ/β

for 0 < θ < ∞). We then get the probability mass function

p(x) =

∫ ∞

0

(
1

Γ(α)βα
θα−1e−θ/β

) (
θxe−θ

x!

)
dθ

=
1

Γ(α)βαx!

∫ ∞

0
θα+x−1e−θ(1+β)/β dθ

=
Γ(α + x)βα+x

Γ(α)βαx!(1 + β)α+x
=

Γ(α + x)βx

Γ(α)x!(1 + β)α+x

since

∫ ∞

0

1

Γ(α + x)

(
β

1 + β

)α+x

θα+x−1e0θ(1+β)/β dθ = 1 because the

integrand is the probability density function of a gamma distribution

with parameters α + x > 0 and
β

1 + β
> 0.

In the event that we take α = r ∈ N and β = (1 − p)/p where 0 < p < 1 then

probability density function p(x) becomes

p(x) =
Γ(r + x)((1− p)/p)x

Γ(r)x!(1/p)r+x
=

(r + x− 1)!

(r − 1)!

pr1− p)x

x!
for x ∈ {0, 1, 2, . . .}.

This is related to Bernoulli trials. It gives the probability of r “successes” in the

performance of r + x trials; so variable x represents the “number of excess trials
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needed to obtain r successes in a sequence of independent [Bernoulli] trials.” (See

Hogg, McKean, and Craig page 220.) This one form of the “negative binomial

distribution.”

Note. In the previous example, we have every right to express concern over whether

or not p(x) actually sums to 1. We resolve this by considering X = Xθ as a

conditional distribution given θ, so that we have Xθ(x) = f(x | θ). Then the

weighting function is treated as a probability density function for θ, say g(θ). The

joint probability density function of θ and x is g(θ)f(x | θ). The mixture (or

“compound”) probability density function can then be thought of as the marginal

(or “unconditional”) probability density function of X, h(x) =
∫

θ g(θ)f(x | θ) dθ.

In the event that θ has a discrete distribution, the integral is replaced with a sum

(or series).

Example 3.7.4. Suppose X has a conditional gamma probability density function

with parameters α = k and β = θ−1, so that

X = Xθ(x) =
1

Γ(k)(θ−1)k
xk−1e−x/(θ−1) =

θkxk−1e−θx

Γ(k)
.

Take the weighting function of θ as a gamma probability density function with

parameters α and β, so it is
1

Γ(α)βα
θα−1e−θ/β. Then the unconditional (compound)

probability density function of X is

h(x) =

∫ ∞

0

(
θα−1e−θ/β

Γ(α)βα

) (
θkxk−1e−θx

Γ(k)

)
dθ

=

∫ ∞

0

xk−1θα+k−1

βαΓ(α)Γ(k)
e−θ(1+βx)/β dθ
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=
xk−1Γ(α + k)(β/(1 + βx))α+k

βαΓ(α)Γ(k)

×
∫ ∞

0

1

Γ(α + k)(β/(1 + βx))α+k
θ(α+k)−1e−θ(1+βx)/β dθ

=
Γ(α + k)βkxk−1

Γ(α)Γ(k)(1 + βx)α+k
(1) since the integrand above is the pdf

for a Γ distribution with parameters α + k and β/(1 + βx)

=
Γ(α + k)βkxk−1

Γ(α)Γ(k)(1 + βx)α+k
for 0 < x < ∞.

This probability density function is the generalized Pareto distribution. With k = 1

we have

h(x) = αβ(1 + βx)−(α+1) for 0 < x < ∞,

known as the Pareto distribution. The Pareto probability density functions have

“thicker tails” than the gamma distributions which act as the conditional distribu-

tion (Hogg, McKean, and Craig claim; see page 222).

Note. The cumulative distribution function of the Pareto probability density func-

tion is

H(x) =

∫ x

0
αβ(1 + βt)−(α+1) dt =

αβ

(−α)(β)
(1 + βt)−α

∣∣∣∣x
0

= −(1 + βx)−α + 1 = 1− (1 + βx)−α for 0 ≤ x < ∞.

If we let X = Y r where r > 0 in the Pareto probability density function then the

cumulative distribution function of Y is

G(y) = P (Y ≤ y) = P (X1/r ≤ y) = P (X ≤ yr)

= H(yr) = 1− (1 + βyr)−α for 0 < y < ∞
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and so the probability density function of y is, by Note 1.7.A,

g(y) = G′(y) = −(−α)(βryr−1)(1 + βyr)−α−1 =
αβryr−1

(1 + βyr)α+1 for 0 < y < ∞.

The associated distribution with this probability density function is the transformed

Pareto distribution or the Burr distribution.
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