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Chapter 4. Some Elementary Statistical

Inferences

Note. The ETSU Graduate Catalog describes Mathematical Statistics 1 (STAT

4047/5047) as including probability distributions, random variables, distributions,

and the Central Limit Theorem. Chapters 1, 2, 3, and 5 set up the mathematical

part of Mathematical Statistics; Chapter 4 introduces the statistics part. Hogg,

McKean, and Craig mention in the Preface that “the instructor would have the

option of interchanging the order of Chapters 4 and 5,” and we follow that plan

here.

Section 4.1. Sampling and Statistics

Note. In this section, we present the vocabulary of statistics and illustrate these

ideas with examples.

Note. In statistical problems, we consider random variable X and desire to find

the probability density (or mass) function. We may have no information about

the function, or we may know the type of distribution (such as knowing we have

a Poisson distribution but not knowing λ). We take a sample X1, X2, . . . , Xn from

the population; the actual values in the sample (called “realizations”) are often

denoted x1, x2, . . . , xn.
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Definition 4.1.1. If the random variables X1, X2, . . . , Xn are independent and

identically distributed (“iid”) then these random variables constitute a random

sample of size n from the common distribution.

Definition 4.1.2. Let X1, X2, . . . , Xn denote a sample on a random variable X.

Let T = T (X1, X2, . . . , Xn) be a function of the sample. Then T is a statistic. Once

the sample is drawn with the realizations x1, x2, . . . , xn, t = T (x1, x2, . . . , xn) is the

realization of the sample.

Definition. If X1, X2, . . . , Xn is a random sample on a random variable X with a

probability density function f(x; θ) (or mass function p(x; θ) in the discrete case)

where θ ∈ Ω for some given set Ω, then the statistic T is an estimator of θ (or a

“point estimator”) of θ. The realization t or T is an estimate of θ

Definition 4.1.3. Let X1, X2, . . . , Xn denote a sample of a random variable X

with probability density function f(x; θ), where θ ∈ Ω. Let T = T (X1, X2, . . . , Xn)

be a statistic. Then T is an unbiased estimator of θ is E(T ) = θ.

Definition. With x1, x2, . . . , xn as the realization of a sample of random variable

X with probability function f(x; θ), where θ ∈ Ω, the function

L(θ) = L(θ; x1, x2, . . . , xn) =
n∏

i=1

f(xi; θ)

is the likelihood function of the random sample. A value of θ for which L(θ) is

maximum, if the value if unique, is the maximum likelihood estimator of θ, denoted

θ̂.
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Note. Think of f(xn; θ) as the probability of Xi taking on the value xi given θ

(so this conditional probability is a function of θ). Then the probability of the

realized sample values x1, x2, . . . , xn is the likelihood function L(θ) = f(xi; θ). So

the maximum likelihood estimator θ̂ is the value of θ that maximizes the probability

of the observed sample. In practice, it may be easier to maximize `(θ) = log(L(θ)).

We start by setting `′(θ) =
d `(θ)

dθ
= 0. If θ is a vector of parameters then we

need to consider the system of equations
∂ `(θ)

∂θ
= 0 where “θ” ranges over the

components of the vector. Notice that Hogg, McKean, and Craig use the partial

notation, even when θ is not a vector.

Example 4.1.1. Suppose the common probability density function of the random

sample X1, X2, . . . , Xn is the Γ(1, θ) density function f(x) = θ−1 exp(−x/θ) with

support 0 < x < ∞. This gamma distribution is called the exponential distribution.

The logarithm of the likelihood functions is

`(θ) = log

(
n∏

i=1

θ−1e−xi/θ

)
= log

(
θ−n

n∏
i=1

e−xi/θ

)

= −n log θ +
n∑

i=1

(−xi/θ) = −n log θ − θ−1

(
n∑

i=1

xi

)
.

Now
d

dθ
[`(θ)] =

−n

θ
− (0θ−2)

n∑
i=1

xi = −nθ−1 + θ−2
n∑

i=1

xi.

Setting
d

dθ
[`(θ)] = 0 gives the critical value −nθ−1 + θ−2∑n

i=1 xi = 0 or −nθ +∑n
i=1 xi = 0 or θ = 1

n

∑n
i=1 xi = x. Now

d2

dθ2 [`(θ)] = −n(−θ−2) + (−2θ−3)
n∑

i=1

xi = nθ−2 − 2θ−3(nx) = nθ−3(θ − 2x)
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and

`′′(θ)|θ=w = n(x)−1((x)− 2x) = −n(x)−2 < 0,

so that ` has a local maximum at θ = x by the Second Derivative Test. Since θ = x

is the only critical value of `, then it must be an absolute maximum of ` (notice

θ > 0 since it is a parameter of a Γ-distribution). So the statistic θ̂ = X is the

maximum likelihood estimator of θ. Now E(X) = (1)(θ) = θ (see Note 3.3.C), so

θ̂ is an unbiased estimator of θ.

Example 4.1.2. Consider a Bernoulli experiment and let random variable X be

1 ot 0, depending on the outcome of the experiment as a success or a failure,

respectively. Let θ, 0 < θ < 1, denote the probability of a success. The probability

mass function is (by definition of the Bernoulli distribution) p(x; θ) = θx(1− θ)1−x

where x ∈ {0, 1}. If X1, X2, . . . , Xn is a random sample on X with realization

x1, x2, . . . , xn then the likelihood function is

L(θ) =
n∏

i=1

p(xi; θ) =
n∏

i=1

θxi(1−θ)1−xi = θ(
∑n

i=1 xi)(1−θ)(n−
∑n

i=1 xi) where xi ∈ {0, 1}.

So

`(θ) = log(L(θ)) =

(
n∑

i=1

xi

)
log θ +

(
x−

n∑
i=1

xi

)
log(1− θ) where xi ∈ {0, 1}.

Now
d

dθ
[`(θ)] =

∑n
i=1 xi

θ
− n−

∑n
i=1 xi

1− θ
.

Setting
d

dθ
[`(θ)] = 0 gives (1−θ)

∑n
i=1 xi−θ (n−

∑n
i=1 xi) = 0 or

∑n
i=1 xi−θn = 0

or θ − 1
n

∑n
i=1 xi = x. Now

d2

dθ2 [`(θ)] =
−
∑n

i=1 xi

θ2 − n−
∑n

i=1 xi

(1− θ)2



4.1. Sampling and Statistics 5

= −

(
n∑

i=1

xi

)
(1− θ2) + θ2

θ2(1− θ2)
= −

n∑
i=1

xi
1

θ2(1− θ2)

and

`′′(θ)|θ=x = −(nx)
1

(x)2(1− (x)2)
< 0

since 0 < θ = x < 1. So ` has a local maximum at θ = x by the Second Derivative

Test. Since θ = x is the only critical value of `, then it must give an absolute

maximum likelihood estimator of θ. Now E(X) = (1)(θ) = θ (see Note 3.1.A; here

we have n = 1 and p = θ), so θ̂ is an unbiased estimator of θ.

Example 4.1.3. Let X have a N(µ, σ2) distribution with probability density

function

f(x) =
1√
2πσ

exp

(
−1

2

(
x− µ

σ

)2
)

for −∞ < x < ∞.

If X1, X2, . . . , Xn is a random sample on X with realization x1, x2, . . . , xn then the

logarithm of the likelihood function in terms of µ and σ (and so a function of the

vector (µ, σ)) is

`(µ, σ) = log

(
1√
2πσ

exp

(
−1

2

(
x1 − µ

σ

)2
)

1√
2πσ

exp

(
−1

2

(
x2 − µ

σ

)2
)

· · · 1√
2πσ

exp

(
−1

2

(
xn − µ

σ

)2
))

= −n log(
√

2πσ)− 1

2

n∑
i=1

(
xi − µ

σ

)2

.

Now we consider the two first partials

∂

∂µ
[`(µ, σ)] =

−1

2

n∑
i=1

2

(
xi − µ

σ

)(
−1

σ

)
=

1

σ2 (nx− nµ) =
n

σ2 (x− µ),

∂

∂σ
[`(µ, σ)] = −n

(
1√
2πσ

)
(
√

2π)− 1

2

n∑
i=1

(xi−µ)2(−2σ−3) =
−n

σ
+

1

σ3

n∑
i=1

(xi−µ)2.
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Setting both first partials equal to 0 gives

n

σ2 (x− µ) = 0 and
−n

σ
+

1

σ3

n∑
i=1

(xi − µ)2 = 0

or n(x− µ) = 0 and − nσ2 +
n∑

i=1

(xi − µ)2 = 0

or µ = x and − nσ2 +
n∑

i=1

(xi = x)2 = 0

or µ = x and σ2 =
1

n

n∑
i=1

(xi − x)2.

Since
∂`

∂µ
=

n

σ2 (x − µ), then
∂2`

∂µ2 =
−n

σ2 and
∂2`

∂µ ∂σ
=
−2n

σ3 (x − µ). Since
∂`

∂σ
=

−n

σ
+

1

σ3

n∑
i=1

(xi − µ)2 then
∂2`

∂σ2 =
n

σ2 −
3

σ4

n∑
i=1

(xi − µ)2. Notice that

∂2`

∂σ ∂µ
=

1

σ3

n∑
i=1

(−2(xi − µ)) =
−2n

σ3

n∑
i=1

(xi

n
− µ

n

)
=
−2n

σ3 (x− µ) =
∂2`

∂µ ∂σ
,

as expected. So at the critical value (µ, σ) =

x,

(
1

n

n∑
i=1

(xi − x2

)1/2
 we have

∂2`

∂µ2

∣∣∣∣
σ2= 1

n

∑n
i=1(xi−x)2

=
−n

σ2

∣∣∣∣
σ2= 1

n

∑n
i=1(xi−x)2

=
−n

1
n

∑n
i=1(xi − x)2

< 0

and ((
∂2`

∂µ2

)(
∂2`

∂σ2

)
−
(

∂2`

∂µ ∂σ

)2
)∣∣∣∣∣

(µ,σ)=
(
x,( 1

n

∑n
i=1(xi−x)2)

1/2
)

=

((
−n

σ2

)(
n

σ2 −
3

σ4

n∑
i=1

(xi = µ)2

)
−
(
−2n

σ3 (x− µ)

)2
)∣∣∣∣∣

(µ,σ)=
(
x,( 1

n

∑n
i=1(xi−x)2)

1/2
)

=

(
−n2

σ4 +
3n

σ6

n∑
i=1

(xi − µ)2

)∣∣∣∣∣
(µ,σ)=

(
x,( 1

n

∑n
i=1(xi−x)2)

1/2
)
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=
−n2( 1

n

∑n
i=1(xi − x)2

)2 +
3n( 1

n

∑n
i=1(xi − x)2

)3 n∑
i=1

(xi − x)2

=
−n4

(
∑n

i=1(xi − x)2)
2 +

3n4

(
∑n

i=1(xi − x)2)
2 =

2n4

(
∑n

i=1(xi − x)2)
2 > 0.

So by the Second Derivative Test for Local Extreme Values (see Theorem 11 in

my online notes for Calculus 3 [MATH 2110] on Section 14.7. Extreme Values and

Saddle Points), ` has a local maximum at (µ, σ) =

x,

(
1

n

n∑
i=1

(xi − x)2

)1/2
 .

Since ` has only one critical value, then it must give an absolute maximum of `.

So we have the statistics µ̂ = X and σ̂2 =
1

n

n∑
i=1

(Xi − X)2. By Theorem 2.8.A,

E[X] = µ so that X is an unbiased estimator of µ. However, with

S2 =

(∑n
i=1 X2

i

)
− nX

2

n− 1
=

1

n− 1

n∑
i=1

(Xi −X)2

we have by Theorem 2.8.A that E[S2] = σ2. Since E is linear (by Theorem 1.8.2),

then

E[σ̂2] = E

[
1

n

n∑
i=1

(Xi −X)2

]
= E

[
n

n− 1
S2
]

=
n

n− 1
ES2] =

n

n− 1
σ2 6= σ2.

So σ̂2 is a biased estimator of σ2. However, for n “large” we have
n

n− 1
σ2 ≈ σ2.

Hogg, McKean, and Craig state: “In practice, however, S2 is the preferred estimator

for σ2.” See page 229. Presumably this is because S2 is unbiased (i.e., E[S2] = σ2).

Note. We now consider a random sample X1, X2, . . . , Xn on a random variable X

with a cumulative distribution function F (x). We use realized samples to create

histograms, which estimate the probability density (mass) function f(x) (p(x)).

We do not assume any form of the distribution (that is, we do not assume a

https://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s7.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s7.pdf
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particular function or “parametric” form). For this reason, the histogram is called

a nonparametric estimator. In Chapter 10, we consider “Nonparametric and Robust

Statistics.”

Example. Let X be s discrete random variable with probability mass function

p(x). Let X1, X2, . . . , Xn be a random sample on X. We consider two settings;

first we suppose that the sample space of X is finite, say D = {a1, a2, . . . , am}. For

j = 1, 2, . . . ,m define

Ij(Xi) =

 1 if Xi = aj

0 if Xi 6= aj.

Then the sample average gives the statistic p̂(aj) =
1

n

n∑
i=1

Ij(Xi). Then {p̂(a1), p̂(a2),

. . . , p̂(am)} are the nonparametric estimates of the probability mass function p(x).

Then Ij(Xi) has a Bernoulli distribution (with Xi = 1 as a “success”) and p(aj) as

the probability of a success. Now

E[p̂(aj)] =
1

n

n∑
i=1

E[Ij(Xi)[=
1

n
p(aij) = p(aj).

So p̂(aj) is an unbiased estimator of p(aj). Second, suppose that the sample space

of X is infinite (but countable), say D = {a1, a2, . . .}. In what follows we con-

sider histograms and so we need a finite number of categories. So we define the

“groupings”

{a1}, {a2}, . . . , {am}, am+1 = {am+1, am+2, . . .}.

Then the estimates {p̂(a1), p̂(a2), . . . , p̂(am), p̂(am+1)} give estimates of p(x). The

“rule of thumb” is to include enough categories so that the frequency of category

am exceeds twice the combined frequencies of am+1, am+2, . . ..
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Definition. A histogram of p̂(aj) versus aj is a boxplot. If the values of aj represent

qualitative categories (that is, aj is a categorical variable) then the histogram is

a barchart. If the values in sample space D are ordinal (i.e., the natural ordering

a1, a2, . . . is numerically meaningful) then the histogram is given as a bar chart of

abutting categories with height p̂(aj) that are plotted in the natural order of the

aj’s.

Example 4.1.5. The following data gives the hair color of n = 22,361 Scottish

school children from the early 1990s. So discrete random variable aj is a categorical

variable with values Fair, Red, Medium, Dark, and Brown.

Fair Red Medium Dark Black

Count 5789 1319 9418 5678 157

p̂(aj) 0.259 0.059 0.421 0.254 0.007

A barchart for this information is given in Figure 4.1.1.

Figure 4.1.1
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Example 4.1.6. The following 30 data points are simulated values generated from

a Poisson distribution with mean λ = 2.

2 1 1 1 1 5 1 1 3 0 2 1 1 3 4

2 1 2 2 6 5 2 3 2 4 1 3 1 3 0

The nonparametric estimate of the probability mass function is:

j 0 1 2 3 4 5 ≥ 6

p̂(j) 0.067 0.367 0.233 0.167 0.067 0.067 0.033

The histogram for this data is given in Figure 4.1.2.

Figure 4.1.2

Note. Now suppose X1, X2, . . . , Xn is a random sample from a continuous random

variable X with continuous probability density function f(t). For some fixed x

and a given h > 0, we consider the interval (x − h, x + h). By the Mean Value

Theorem for Integrals (see my online notes for Calculus 1 [MATH 1910] on 5.4.

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s4-14E.pdf
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The Fundamental Theorem of Calculus; see Theorem 5.3), there is some ξ with

ξ ∈ (x− h, x + h) such that

P (x− h < X < x + h) =

∫ x+h

x−h

f(t) dt = 2hf(ξ)

and this is approximately 2hf(x) (with the approximation “good” for h “small”).

No we expect P (X − h < X < x + h) to be the proportion of the random sample

in (s − h, x + h). So we take the (nonparametric) estimate of f(x) at the given x

value as

f̂(x) =
#{x− h < X < x + h}

2hn
=
|{s− x < X < x + h}|

2hn
.

Similar to the discrete case, we define

Ii(x) =

 1 if x− h < Xi < x + h

0 otherwise
for i = 1, 2, . . . , n,

and the nonparametric estimate of f(x) is

f̂(x) =
1

2hn

n∑
i=1

Ii(x).

Now E[Ii(x)] = 2hf(ξ) where ξ is as introduced above. Since the samples are

identically distributed then

E[f̂(x)] = E

[
1

2hn

n∑
i=1

Ii(x)

]

=
1

2hn

n∑
i=1

E[Ii(x)] since E is linear by Theorem 1.8.2

=
1

2hn
(n)(2hf(ξ)) = f(ξ),

and (since f is continuous) limh→0+ f(ξ) = f(x). So f̂(x) is approximately an un-

biased estimator of f(x). The indicator function Ii is called a rectangular kernel

with bandwidth 2h.

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s4-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s4-14E.pdf
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Note. If x1, x2, . . . , xn are the realized values of a random sample on a continuous

random variable X with probability density function f(x). A histogram approxi-

mation of f can be created by choosing m ∈ N, h > 0, and a < min1≤i≤n{xi} so

that the disjoint intervals

(a− h, a + h], (a + h, a + 3h], (a + 3h, 1 + 5h], . . . , (a + (2m− 3)h, a + (2m− 1)h]

cover the range of the realized sample interval [min1≤i≤n{xi}, max1≤i≤n{xi}]. We

then define the classes

Aj(a + (2j − 3)h, a + (2j − 1)h] for j = 1, 2, . . . ,m.

Define f̂h(x) as

f̂h(x) =
#{xi ∈ Aj}

2hn
=
|{xi ∈ Aj}|

2hn
for x ∈ Aj.

Notice that∫ ∞

−∞
f̂h(x) dx =

∫ a+(2m−1)h

1−h

f̂h(x) dx =
m∑

j=1

∫
Aj

#{xi ∈ Aj}
2hn

dx

=
1

2hn

m∑
j=1

#{xi ∈ Aj} (2h) =
1

n
(n) = 1,

as desired. Now how to best choose m and h is not addressed in Hogg, McKean, and

Craig. They state that “most statistical packages. . . are current on recent research

for selection of classes.” See page 232.

Example 4.1.7. In Example 4.1.3, the following 24 data points are presented for

the concentration of sulfur dioxide in a damaged Bavarian forest:
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33.4 38.6 41.7 43.9 44.4 45.3 46.1 47.6 50.0 52.4 52.7 53.9

54.3 55.1 56.4 56.5 60.7 61.8 62.2 63.4 65.5 66.6 70.0 71.5

The mean of this data is 53.91 and the (sample) standard deviation is 10.07. Soft-

ware package R produces the histogram given in Figure 4.1.3 along with the solid

curve that approximates the histogram. The dashed curve is a normal distribution

with mean and standard deviation equal to those of the sample. Notice that the

normal approximation appears to be a poorer fit to the data.

Figure 4.1.3
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