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Section 4.2. Confidence Intervals

Note. This section is a continuation of Section 4.2. Sampling and Statistics. We

still want to approximate a density function f(x; θ) of random variable X where

θ is unknown. Now, based on a sample X1, X2, . . . , Xn, we estimate θ as θ̂ =

θ̂(X1, X2, . . . , Xn). We find confidence intervals for θ. In particular, we explore

confidence intervals for the mean of a normal distribution (in Example 4.2.1), for the

parameter p for a Bernoulli random variable (in Example 4.2.3), for the difference

of two means, and for the difference in two proportions in Bernoulli distributions.

Definition 4.2.1. Let X1, X2, . . . , Xn be a sample on a random variable X where

X has probability density function f(x; θ) where θ ∈ Ω. Let 0 < α < 1 be given.

Let L = L(X1, X2, . . . , Xn) and U = U(X1, X2, . . . , Xn) be two statistics. The open

interval (L, U) is a (1−α)100% confidence interval for θ if 1−α = Pθ(θ ∈ (L, U)).

That is, the probability that the interval includes θ is 1− α. The value of 1− α is

the confidence coefficient or confidence level of the interval.

Note. With the sample realized as x1, x2, . . . , xn, then L and U are estimated

as l and u. Then the interval (l, u) either includes θ or it does not. We can then

think of this as a Bernoulli trial with probability of success (where “success” means

θ ∈ (l, u)) of 1−α. If M independent 1−α level confidence intervals are considered,

we expect (1 − α)M of the intervals to include θ (since the mean of the binomial

distribution is the probability of success times the number of trials, by Note 3.1.A).

In this case, we have (1− α)100% confidence that θ lies in (l, u).
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Note/Definition. We may determine confidence intervals in different ways. The

efficiency of a confidence interval is its expected length. So for (L1, U1) and (L2, U2)

as two confidence intervals for θ that have the same confidence coefficient, (L−1, U1)

is more efficient that (L2, U2) if Eθ(u1 − l1) ≤ Eθ(u1 − l2) for all θ ∈ Ω.

Note. We now give some examples of procedures for finding confidence intervals.

In this section, we consider a “pivot random variable” which is a function of θ and

x and the distribution of the pivot is known. Finding confidence intervals without

the use of distributions is considered in Section 4.4. Order Statistics.

Example 4.2.1. In this example, we consider a random sample X1, X2, . . . , Xn

from a distribution which is known to be (some) normal distribution N(µ, σ2).

We want a confidence interval for µ. Let X and X2 be the sample mean and

sample variance (computed using “n − 1”). As shown in Example 4.1.3, µ is the

maximum likelihood estimator of X and ((n− 1)/n)S2 is the maximum likelihood

estimates of σ2. By Theorem 3.6.1(d) (Student’s Theorem), random variable T =

(X−µ)/(S/
√

n) has a Student’s t-distribution with n−1 degrees of freedom. Here,

T is the “pivot variable.” For given 0 < α < 1, let tα/2,n−1 be the α/2 critical point

of the t-distribution with n− 1 degrees of freedom so that α/2 = P (T > tα/2,n−1).

Since the t-distribution is symmetric about the y-axis then we have

1− α = P (−tα/2,n−1 < T < tα/2,n−1) = P

(
−tα/2,n−1 <

X − µ

S/
√

n
< tα/2,n−1

)
= P (−tα/2,n−1S/

√
n < X − µ < tα/2,n−1S/

√
n)

= P (−X − tα/2,n−1S/
√

n < −µ < −X + tα/2,n−1S/
√

n)
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= P (X − tα/2,n−1S/
√

n < µ < X + tα/2,n−1S/
√

n).

Let x and s denote the realized values of X and S based on the realized sample.

Then a (1− α)100% confidence interval for µ is

(x− tα/2,n−1s/
√

n, x + tα/2,n−1x/
√

n).

This is called the (1 − α)100% t-interval for µ and s/
√

n is the standard error of

X.

Exercise 4.2.1. Let the observed value of the mean X and the sample variance of

a ransom sample of size 20 from a distribution that is N(µ, σ2) be 81.2 and 25.6,

respectively. First, the 90%, 95%, and 99% confidence intervals for µ. Not how the

lengths of the confidence intervals increase as the confidence increases.

Note. The confidence intervals above require that the samples are normally dis-

tributed. However, even if the sampled population is not normally distributed,

the samples are approximately normal distributed by the Central Limit Theorem

(Theorem 5.3.1). We restate the Central Limit Theorem here (or state it for the

first time if you are going through the chapters in order; in Chapter 5 it is stated

in terms of convergence in measure but is stated here simply in terms of limits).
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Theorem 4.2.1. Central Limit Theorem.

Let X1, X2, . . . , Xn denote the observations of a random sample from a distribution

that has more µ and finite variance σ2. Then the distribution function of the

random variable Wn = (X − µ)/(σ/
√

n) converges to Φ, the standard normal

distribution N(0, 1), as n→∞.

Example 4.2.2. Consider a random sample X1, X2, . . . , Xn on a random variable

X with mean µ and variance σ2 where the distribution of X is not normal or is

unknown. Since the distribution of Zn = (X−µ)/(S/
√

n) is approximately N(0, 1)

(with the approximation “good” for n “large,” as described above), then

1− α ≈ P

(
−xα/2 <

X − µ

S/
√

n
< zα/2

)
= P

(
X − zα/2S/

√
n < µ < X + zα/2S/

√
n
)
.

This is the large sample confidence interval for µ.

Note. For the same α, the confidence intervals based on the t-distribution and

tα/2,n−1 are larger than those based on the standard normal distribution and zα/2.

So the t0interval is more conservative than the large sample confidence interval.

Example 4.2.3. Consider a random sample X1, X2, . . . , Xn on a Bernoulli random

variable X with probability of success p (where X = 1 is a success and X = 0 is

a failure). The sample average is X = 1
n

∑n
i=1 Xi and we take this as p̂ = X. The

sample variance is Var(p̂) = σ2/n = p(1− p)/n. So by the Central Limit Theorem

we have that random variable Z = (p̂− p)/
√

p(1− p)/n is approximately N(0, 1)

for n “large.” Estimating σ2 with S2 = p̂(1−p̂), we have the (1−α)100% confidence
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interval for p as (
r̂ − zα/2

√
p̂(1− p̂)/n, r̂ + zα/2

√
p̂(1− p̂)/n

)
.

here,
√

p̂(1− p̂)/n is called the standard error of p̂.

Exercise 4.2.A. (From William Navadi’s Statistics for Engineers and Scientists,

3rd Edition, McGraw-Hill [2011]). In a simple random sample of 70 automobiles

registered in a certain state, 28 or them were found to have emission levels that

exceed a state standard. Find 95% and 98% confidence intervals for the proportion

of automobiles in the state whose emission levels exceed the standard.

Note. We now consider the comparison of the means of two random variables

X and Y . We do so using samples and confidence intervals for the difference of

the means. Let µ1 and µ2 be the means of X and Y , respectively, and define

∆ = µ1 − µ2. Assume the variances of X and Y are finite and let their variances

σ2
1 = Var(X) and σ2

2 = Var(Y ), respectively. Let X1, X2, . . . , Xn1
be a random

sample on X and let Y1, Y2, . . . , Yn2
be a random sample on Y . Assume the samples

were gathered independently. Let X = 1
n

∑n1

i=1 Xi and Y = 1
n

∑n2

i=1 Yi be the sample

means. Let ∆̂ = X − Y . Since X is an unbiased estimator for µ1 and Y is an

unbaised estimator of µ2 (by Theorem 2.8.A) then ∆̂ is an unbiased estimator

of ∆. We take ∆̂ − ∆ as the “pivot random variable.” Since the samples are

independent,

Var(∆̂) = Var(X − Y = E((X − Y )2)− (µ1 − µ2)
2 by Note 1.9.A

= E(X
2 − 2XY + Y

2
)− µ2

1 + µ1µ2 − µ2
2
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=
(
E(x2)− µ2

1
)

+
(
E(Y

2
)− µ2

2

)
− 2E(XY ) + 2µ1µ2

= Var(X) + Var(Y )− 2(E(XY )− µ1µ2) by Note 1.9.A

= Var(X) + Var(Y )− 2E(X)E(Y )− µ1µ2) by Theorem 2.4.4,

since X and Y are independent

= Var(X) + Var(Y )− 2(µ1µ2 − µ2µ2)

= Var(X) + Var(Y ) =
σ2

1

n1
+

σ2
2

n2
by Theorem 2.8.A.

Let S1 =
1

n1 − 1

n1∑
i=1

(Xi−X)2 and S2 =
1

n2 − 1

n2∑
i=1

(Yi−Y )2 be the sample variances.

Estimating the population variances with these sample variances, gives the random

variable Z =
∆̂−∆√

s2
1

n1
+ s2

2

n2

. By the Central Limit Theorem (Theorem 4.2.1), A has

an approximate standard normal distribution. So the approximate (1 − α)100%

confidence interval for ∆ = µ1 − µ2 is(x− y)− zα/2

√
s2
1

n1
+

s2
2

n2
, (x− y) + zα/2

√
s2
1

n1
+

s2
2

n2

 .

This is the large sample (1 − α)100% confidence interval for µ1 − µ2. Quantity√
s2
1/n1 + s2

2/n2 is the standard error of X = Y .

Note. Similar to the previous note, we now consider random variables A and Y

which are both normally distributed and with the same variance (so σ2
1 = σ2

2 = σ2).

So the distributions of X and Y are the same shape; they only differ in mean. This

is called a location model. So we consider X with a N(µ1, σ) distribution, Y with a

N(µ2, σ) distribution, X1, X2, . . . , Xn1
a random sample on X, and Y1, Y2, . . . , Yn2

a

random sample on Y , where the samples are independent. Let n = n1 +n2. Again,
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we take ∆̂ = X − Y . Norm X is distributed N(µ1, σ
2/n1) and Y is distribution

N(µ2, σ
2/n2) by Theorem 2.8.A. By Theorem 3.4.2, X − Y has mean µ1 − µ2 and

variance σ2/n1 +σ2/n2. Therefore
(X − Y )− (µ1 − µ2)

σ
√

1
n1

+ 1
n2

has a N(0, 1) distribution.

Let

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

(n1 − 1) + (n2 − 1)
=

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

Since E[S2
1 ] = E[S2

2 ] = σ2 by Theorem 2.8.A, then E[S2
p ] = σ2, so S2

p is an unbiased

estimation of σ2. S2
p is called the pooled estimator of σ2. By Theorem 3.6.1(c)

(Student’s Theorem), (n1−1)S2
1/σ

2 had a χ2(n1−1) distribution and (n2−1)S2
2/σ

2

has a χ2(n2−1) distribution. Since S2
1 and S2

2 are independent (since X and Y are)

then by Corollary 3.3.1, (n−2)S2
p/σ

2 has a χ2(n−2) distribution. By Exercise 3.5.B,

X and S2
1 and X are independent. In Note 3.6.A, we showed that for independent

random variables X and V where W is N(0, 1) and V is χ2(r), the random variable

T = W/
√

V/r has a t-distribution with r degrees of freedom. Taking

W =
(X − Y )− (µ1 − µ2)

σ
√

1
n1

+ 1
n2

and V = (n− 2)
S2

p

σ2

where r = 2, we have

T =
((x− Y )− (µ1 − µ2))/(σ

√
n−1

1 + n−1
2 )√

((n− 2)S2
p/σ

2)/(n− 2)
=

(X − Y )− (µ1 − µ2)

Sp

√
1
n1

+ 1
n2

has a t-distribution with r = 2 degrees of freedom. So the (1− α)100% confidence

interval for ∆ = µ1 − µ2 in this case is(
(x− y)− tα/2,n−2sp

√
1

n1
+

1

n2
, (x− y) + tα/2,n−2sp

√
1

n1
+

1

n2

)
.

In Exercise 4.2.23, the problem of finding a confidence interval for the difference
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µ1 − µ2 between two means of two normal distributions if the variances σ2
1 and σ2

2

are known but not necessarily equal, is to be discussed.

Note. Let X and Y be two independent random variables with Bernoulli distri-

butions where the probability of success for X is p1 and the probability of success

for Y is p2 (that is, X and Y have the binomial distribution b(1, p1) and b(1, p2),

respectively). Let X1, X2, . . . , Xn1
be a random sample on X and let Y1, Y2, . . . , Yn2

be a random sample on Y . Assume the samples are independent of one another

and let n = n1 +n2 be the total sample size. We approximate the propositions with

the sample proportions p̂1 and p̂2, and approximate the variances with the sample

variances σ̂2
1 = p̂1(1− p̂1) and σ̂2

2 = p̂2(1− p̂2). Then an approximate (1− α)100%

confidence interval for p1 − p2 is(p̂1 − p̂2)− zα/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
, (p̂1 − p̂2)− zα/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

 ,

similar to above.

Example 4.2.5. In the original clinical study of the Jonas Salk polio vaccine in

1954, a group of children were randomly assigned to two categories. A group of

200,745 children received the vaccine (“Treated”) and a group of 201,229 children

did not receive the vaccine but instead got a placebo (“Control”). Let pC and pT de-

note the proportions of polio cases for the control and treated groups, respectively.

The data is:
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Group # Children # Polio Cases Sample Proportion

Treated 200,745 57 0.000284

Control 201,229 199 0.00989

(Notice that Hogg, McKean, and Craig have a typographical error in the Control

sample proportion.) So 0.000989 = p̂C > p̂T = 0.00284. For a 95% confidence

interval, we take α = 0.05 and zα/2 = z0.025 = 1.96. This gives the interval for

pC − pT :(
(0.000989− 0.000284)− 1.96

√
0.000989(1− 0.000989)

201,229
+

0.000284(1− 0.00284)

200,745
,

(0.000989− 0.000284) + 1.96

√
0.000989(1− 0.000989)

201,229
+

0.000284(1− 0.00284)

200,745

)
= (0.000549, 0.000861).

Here, we have carried computations to three significant digits. Notice that Hogg,

McKean, and Craig give the interval (0.00054, 0.00087), a larger interval than the

one computed here. The reason for this difference is unclear. . . it may simply be

roundoff error but it also could have something to do with the software used by

the textbook authors (or there may be other typographical errors in the data pre-

sented). Since 0 6∈ (0.000549, 0.000861), then we are 95% confident that pC > pT

and that the vaccine reduces the incidence of polio. This foreshadows how we will

use confidence intervals in hypothesis testing Section 4.5. Introduction to Hypoth-

esis Testing.
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