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Section 4.3. Confidence Intervals for Parameters of

Discrete Distributions

Note. We now consider a sample X1, X2, . . . , Xn on a discrete random variable X

with probability mass function p(x; θ), where θ ∈ Ω and Ω is an interval of real

numbers. We want a confidence interval for parameter θ.

Note 4.2.A/Definition. Let T = T (X1, X2, . . . , Xn) be an estimator of θ where

the cumulative distribution function of T is FT (t; θ). Assume that F (t; θ) is a

nonincreasing and continuous function of θ for every t in the support of T . For

a given realization x1, x2, . . . , xn of the sample, let t be the realized value of the

statistic T (so t = T (x1, x2, . . . , xn)). Let α1 > 0 and α2 > 0 be given such that

α = α1 + α2 < 0.50. Let θ and θ be the solutions of the equations

FT (t−; θ) = 1− α2 and FT (t; θ) = α1,

where T− is the statistic whose support lags by one value of T ’s support. That

is, if yi < ti+1 are consecutive support values of T , then T = ti+1 if and only if

T− = ti. The interval (θ, θ) is a confidence interval for θ with confidence coefficient

of at least 1− α.

Note. The proof that (θ, θ) has the level of claimed confidence will be discussed

at the end of this section.
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Example 4.3.1. We now illustrate the process of solving the two equations of

Note 4.2.A to determine θ and θ in the continuous case (of course, the “t−” stuff

does not apply in the continuous case). Let X1, X2, . . . , Xn be a random sample

from N(θ, σ2) distribution where σ2 is known. Let X be the sample mean and

x is realized value. As argued in Example 4.2.2 (which gives an approximate

(1−α)100% confidence interval, but have here we know σ2 so that there is no need

for approximation and the Central Limit Theorem), a (1 − α)1 − −% confidence

interval for mean θ is (x− zα/2(σ/
√

n), x + zα/2(σ/
√

n)). With θ as the true mean

and Φ(z) as the cumulative distribution function of a standard normal distribution,

we have the cumulative distribution function of X is FX;θ(t) = Φ((t− θ)/(σ/
√

n)).

Then equation FX;θ(t−; θ) = FX;θ(t; θ) = 1−α2 gives Φ((x−θ)/((σ/
√

n)) = 1−α/2

since we have the realization t = x, and α2 = α/2. This becomes (x−θ)/(σ/
√

n) =

Φ−1(1−α/2) = zα/2. Solving for θ we have θ = x−zα/2(σ/
√

n). Equation FT (t; θ) =

FX;θ(t; θ) = α1 gives Φ((x− θ)/(σ/
√

n)) = α/2 since we have the realization t = x,

and α1 = α/2. This becomes (x−X)/(σ/
√

n) = Φ(α/2) = −zα/2. Solving for θ we

have θ = x + zα/2(σ/
√

n). Therefore the (1− α)100% confidence interval for mean

θ is

(θ, θ) = (x− zα/2(σ/
√

n), x + zα/2(σ/
√

n)),

as expected.

Note. Solving the two equations of Note 4.2.A in the discrete case will often require

a numerical technique. Since FT (T ; θ) is, in practice, often strictly decreasing

and continuous in θ, we apply the simple bisection algorithm. This is covered in

Numerical Analysis (MATH 4257/5257); see my online notes for Numerical Analysis
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on Section 2.1. The Bisection Method. We briefly describe it here. Consider the

equation g(x) = d where g is continuous and strictly decreasing. Assume we know

that g(a) > d > g(b). Then by the Intermediate Value Theorem, g(x) = d has some

solution in the interval (a, b). Let c = (a + b)/2 be the midpoint of this interval.

We make the following conditional replacements:

if g(c) > d then replace a with c

if g(c) < d then replace b with c.

If the new value |a − b| < ε, where ε is some specified tolerance, then we set

x = (a + b)/2 so that x is within ε (actually, ε/2) of the exact solutions xe where

g(xe) = d. Otherwise, we iterate the process with the new values of a and b. We

illustrate the use of the bisection algorithm below.

Example 4.3.2. Let X have a Bernoulli distribution with θ as the probability of

success. let Ω = (0, 1) Suppose X1, X2, . . . , Xn is a random sample on X. Notice

that

X =
1

n

n∑
i=1

Xi =
# successes

n
= sample proportion.

So we use X as the estimator of θ. The cumulative density function of nX is the

binomial b(n, θ). So

FX(x; θ) = P (nX ≤ nm)

=
nx∑
j=0

(
n

j

)
θj(1− θ)n−1 (notice that nx is an integer)

= 1−
n∑

j=nx+1

(
n

j

)
θj(1− θ)n−j

https://faculty.etsu.edu/gardnerr/4257-Numerical-Analysis/Notes-NA/Numerical-Analysis-BFB10-2-1.pdf


4.3. Confidence Intervals for Parameters of Discrete Distributions 4

= 1−
∫ θ

0

n!

(nx)!(n− (n− (nx + 1)!
znx(1− z)n−(nx+1) dz by Exercise 4.3.6.

So by the Fundamental Theorem of Calculus (Part 1) (see my online Calculus

1 [MATH 1910] on Section 5.4. The Fundamental Theorem of Calculus; notice

Theorem 5.4(a)), we have

d

dθ
[FX(x; θ)] =

d

dθ

[
1−

∫ θ

0

n!

(nx)!(n− (n− (nx + 1)!
znx(1− z)n−(nx+1) dz

]
=

−n!

(nx)!(n− (nx + 1)!
θnx(1− θ)n−(nx+1) < 0.

Since this derivative is negative then FX(x; θ) is a strictly decreasing function of θ

(for each x). Now let α1, α2 > 0 where α − 1 + α2 < 1/2 be given and let θ and θ

be solutions to the equations

FX(x−; θ) = 1− α2 and FX(x; θ) = α1.

Then, as described above, (θ, θ) is a confidence interval for θ with confidence coef-

ficient at least 1 − α where α = α1 + α2. We next illustrate a numerical solution

with specific numbers.

Example 4.3.2 (continued). Let X have a Bernoulli distribution with θ as the

probability of a success. Suppose a sample of size n = 30 is taken with realizes

sample mean x = 0.60 (so that nx = 18). Let α1 = α2 = 0.05. With nx = 18 we

have nx− = 17, the equations of Example 4.3.2 become

FX(x−; θ) =
17∑

j=0

(
30

j

)
θj(1− θ)n−j = 0.95

and

FX(x; θ) =
18∑

j=0

(
30

j

)
θ

j
(1− θ)n−j = 0.05.

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s4-14E.pdf
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We borrow some information from Hogg, McKean, and Craig and use the Binomial

Probability Calculator of StatTrek.com. With θ = 0.4 (as the text suggests) we

have FX(x−; θ) = 0.9788 > 0.95 (to four decimal places) and with θ = 0.45 (also

suggested by the text) we have FX(x−; θ) = 0.9286 < 0.95. So we must have θ

that yields FX(x−; θ) = 095 is between 0.40 and 0.45. We now apply the bisection

algorithm to find this θ.

STEP a b c = (a + b)/2 g(a) g(b) g(c)

1 0.4 0.45 0.425 0.9788 0.9286 0.9595

2 0.425 0.45 0.4375 0.9595 0.9286 0.9458

3 0.425 0.4375 0.4313 0.9595 0.9458 0.9530

4 0.4313 0.4375 0.4344 0.9530 0.9458 0.9495

5 0.4313 0.4344 0.4329 0.9530 0.9495 0.9512

6 0.4329 0.4344 0.4337 0.9512 0.9495 0.9503

7 0.4337 0.4344 0.4341 0.9603 0.9495 0.9498

8 0.4337 0.4341 0.4339 0.9503 0.9498 0.9499

9 0.4339 0.4341 0.4340 0.9501 0.9498 0.9499

10 0.4339 0.4340 — 0.9501 0.9499 —

So we take θ as 0.4339 or 0.4340 (we could keep up with more decimal places to get

a decision between these two); notice that Hogg, Mckean, and Craig give 0.4339417

(which is very much in agreement with our computations). To three decimal places

we have 0.434 (as does Hogg, McKean, and Craig). Similarly (again borrowing

from Hogg, Mckean, and Craig) with θ = 0.7 we have FX(x; θ) = 0.1593 > 0.05

and with θ = 0.8 we have FX(x; θ) = 0.0095 < 0.05. So we must have θ that

yields FX(x; θ) = 0.05 is between 0.7 and 0.8. The bisection method similarly (and

https://stattrek.com/online-calculator/binomial.aspx
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tediously, if done by hand) leads to θ = 0.750 (to three decimal places). So the

confidence interval for proportion θ is (θ, θ) = (0.434, 0.750), where the level of

confidence is at least (1− α)100% = 90%.

Example 4.3.3. Let X1, X2, . . . , Xn be a random sample on Poisson distributed

random variable X with mean θ. We take X = 1
n

∑n
i=1 Xi as the estimator of θ. As

in Example 4.3.2, nX has a Poisson distribution with mean nθ. The cumulative

distribution function of X is then

FX(x; θ) =
nx∑
j=0

e−nθ (nθ)j

j!
=

1

Γ(nx)

∫ ∞

nθ

xnxe−x dx by Exercise 4.3.7.

By the Fundamental Theorem of Calculus (Part 1),

d

dθ
[FX(x; θ)] =

d

dθ

[
1

Γ(mx)

∫ ∞

nθ

xnxe−x dx

]
=

1

Γ(nx)

d

dθ

[
−

∫ nθ

∞
xnxe−x dx

]
=

−1

Γ(nx)
(nθ)nxe−(nθ)[n] =

−n

Γ(nx)
(nθ)nxe−nθ < 0.

Therefore FX(x; θ) is a strictly decreasing function of θ for every given x. With x

realized from the sample, for α1, α2 > 0 such that α1 + α2 < 1/2, the confidence

interval for θ is (θ, θ) where

FX(x−; θ) =
nx−1∑
j=0

e−nθ (nθ)j

j!
= 1− α2

and

FX(x; θ) =
nx∑
j=1

e−nθ (nθ)j

j!
= α1.

The confidence is at least 1−α = 1−(α1+α2). We again give a numerical solution.
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Example 4.3.3 (continued). Suppose now that a sample is taken from a Poisson

distributed random variable X with (unknown) mean θ. Let the sample size be

n = 25 and let the realized value of X be x = 5. Then nx = 125. Let α1 = α2 = 0.5.

Then the equation of Example 4.3.3 are

124∑
j=0

e−nθ (nθ)j

j!
= 0.95 and

125∑
j=0

e−nθ (nθ)j

j!
= 0.05.

We borrow some information from Hogg, Mckean, and Craig and using the Poisson

Distribution Calculator of StatTrek.com. With θ = 4.0, nθ = (25)(4) = 100, and

nx = (25)(5) = 125 we have

FX(x−; θ) =
124∑
j=0

e−100 (100)j

j!
= 0.9912 > 0.95

(there is an error in Hogg, McKean, and Craig; they give a value of 0.9932, which

is based on summing to 125 not 124), and with θ = 4.4, nθ = (25)(4.4) = 110, and

nx = 125 we have

FX(x−; θ) =
124∑
j=0

e−110 (110)j

j!
= 0.9145 < 0.95.

So we must have θ that yields FX(x−; θ) = 0.95 is between 4.0 and 4.4. We

now apply the bisection algorithm to find this θ (see below). Based on these

computations, we take θ as 4.2878. Similarly (again borrowing from Hogg, McKean,

and Craig) with θ = 5.5 we have FX(x; θ) = 0.1528 > 0.5 and with θ = 6.0 we have

FX(x; θ) = 0.0204 < 0. So we must have θ that yields FX(x; θ) = 0/05 is between

5.5 and .0. The bisection method similarly leads to θ = 5.8006. So the confidence

interval for proportion θ is (θ, θ) = (4.287, 5.800), where the level of confidence is

at least (1− α)100% = 90%.

https://stattrek.com/online-calculator/poisson.aspx
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STEP a b c = (a + b)/2 g(a) g(b) g(c)

1 4.0 4.4 4.2 0.9912 0.9145 0.9688

2 4.2 4.4 4.3 0.9688 0.9145 0.9468

3 4.2 4.3 4.25 0.9688 0.9468 0/9590

4 4.25 4.3 4.275 0.9590 0.9468 0.9532

5 4.275 4.3 4.2875 0.9532 0.9468 0.9501

6 4.2875 4.3 4.2938 0.9501 0.9468 0.9485

7 4.2875 4.2938 4.2907 09501 0.9485 0.9493

8 4.2875 4.2907 4.2891 0.9501 0.9493 0.9497

9 4.2875 4.2891 4.2883 0.9501 0.9497 0.9499

10 4.2875 4.2883 4.2879 0.9501 0.9499 0.9500

11 4.2875 4.2879 4.2877 0.9501 0.9500 0.9500

12 4.2877 4.2879 4.2878 0.9500 0.9500 09500

Note. We now formalize the results of this section in a theorem and offer a “brief

sketch” of the proof.

Theorem 4.2.A. Consider a sample X1, X2, . . . , Xn on a discrete random variable

X with probability mass function p(x; θ), where θ ∈ Ω and Ω is an interval of real

numbers. Let T = T (X1, X2, . . . , Xn) be an estimator of θ where the cumulative

distribution function of T is FT (t; θ). Suppose that F (t; θ) is a nonincreasing and

continuous function of θ for every t in the support of T . For a given realization

x1, x2, . . . , xn of the sample, let t be the realized value of the statistic T (so t =
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T (x1, x2, . . . , xn)). Let α1 > 0 and α2 > 0 be given such that α = α1 + α2 < 0.50.

Let θ and θ be the solutions of the equations

FT (t−; θ) = 1− α2 and FT (t; θ) = α1,

where T− is the statistic whose support lags by one value of T ’s support. The

interval (θ, θ) is a confidence interval for θ with confidence coefficient of at least

1− α.
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