4.4. Order Statistics

Section 4.4. Order Statistics

Note. An order statistics is based on ordering a sample from lesser to greater values. In this section, we define quantiles and consider confidence intervals for quantiles.

Definition. Let $X_1, X_2, \ldots X_n$ be a random sample from a distribution of a continuous random variable X with probability density function f(x) that has support S = (a, b), where $-\infty \le a < b \le \infty$. Let Y_1 be the least of the S_i , let Y_2 be the next least X_i, \ldots and let Y_n be the greatest X_i . Then $Y_1 < Y_2 < \cdots < Y_n$ (since X_i is a continuous random variable then the probability of $X_i = X_j$ for $i \ne j$ is 0). We call Y_i for $i = 1, 2, \ldots, n$, the ith ith

Theorem 4.4.1. Let Y_1, Y_2, \ldots, Y_n denote the n order statistics based on a random sample X_1, X_2, \ldots, X_n from a continuous distribution with probability density function f(x) and support (a, b). The joint probability density function of Y_1, Y_2, \ldots, Y_n is given by

$$g(y_1, y_2, \dots, y_n) = \begin{cases} n! f(y_1) f(y_2) \cdots f(y_n) & \text{for } a < y_1 < y_2 < \dots < y_n b \\ 0 & \text{elsewhere.} \end{cases}$$

Revised: 8/11/2021