Section 4.5. Introduction to Hypothesis Testing Note. We now turn our attention from confidence intervals to hypothesis testing. Recall that, as shown in Sections 4.1 to 4.3, a $(1 - \alpha) \times 100\%$ confidence interval for a parameter θ of a population contains that parameter with a probability of $(1-\alpha)$ and does not contain the parameter θ with probability α . In this section we use these properties to state a hypothesis about the value of the parameter θ and then put a probability on that hypothesis. This is the nature of a hypothesis test, the associated probability puts a level of confidence on the hypothesis, and since these hypotheses have probabilities associated with them, then we can associate a probability with the possible errors for the hypotheses. **Note.** In practice, we take a sample $X_1, X_2, ..., X_n$ from the distribution and compute a probability that this parameter θ is in set ω_0 . This is a "hypothesis of equality" and, in practice, we desire to reject the hypothesis H_0 and, therefore, accept the alternative hypothesis H_1 . Since this decision is based on probabilities we can make errors. **Definition.** Let X be a random variable with density function $f(x; \theta)$ where $\theta \in \Omega$. Let ω_0 and ω_1 be disjoint subsets of Ω where $\omega_0 \cup \omega_1 = \Omega$. We introduce $$H_0: \theta \in \omega_0 \text{ and } H_1: \theta \in \omega_1.$$ The hypothesis H_0 is the *null hypothesis* and H_1 is the *alternative hypothesis*. 4.5. Introduction to Hypothesis Testing 2 **Definition.** If, based on a sample X_1, X_2, \ldots, X_n from the distribution of X, we decide that parameter $\theta \in \omega_1$ (where θ takes on values in Ω and $\Omega = \omega_0 \cup \omega_1$) when in fact $\theta \in \omega_0$, we have made a *Type I error*. If we decide $\theta \in \omega_0$ when in fact $\theta \in \omega_1$, we have made a *Type II error*. Revised: 10/4/2021