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Chapter 5. Consistency and Limiting

Distributions

Note. The ETSU Graduate Catalog describes Mathematical Statistics 1 (STAT

4047/5047) as including probability distributions, random variables, distributions,

and the Central Limit Theorem. The topics of confidence intervals and hypothesis

testing (covered in Chapter 4) are to be covered in Mathematical Statistics 2 (STAT

4057/5057); Hogg, McKean, and Craig mention in the Preface that “the instructor

would have the option of interchanging the order of Chapters 4 and 5,” and we

follow that plan here. In Section 5.1 we very quickly review the topics of Chapter

4. In this chapter, we introduce two kinds of convergence related to sequences

of random variables: convergence in probability and convergence in distribution.

These ideas will justify our use of the normal distribution in, for example, confidence

intervals, as we’ll see in the Central Limit Theorem (Theorem 5.3.1).

Section 5.1. Convergence in Probability

Note. We saw in Example 3.1.4 that the relative frequency of a success (in a

sequence of repeated Bernoulli trials) approaches the probability p of a success (as

the trials are performed more and more times) and this limit holds with probability

1. This is an example of convergence in probability. We’ll formally define this

idea, rove the Weak Law of large Numbers (in Theorem, 5.1.1), and prove some

properties of convergence in probability. We also visit/revisit some ideas from

Chapter 4 concerning sampling, statistics, and estimates.
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Definition 5.1.1. Let {Xn} be a sequence of random variables and let X be a ran-

dom variable defined on a sample space. The sequence Xn converges in probability

to X is, for all ε > 0,

lim
n→∞

P (|Xn −X| ≥ ε) = 0 or equivalently lim
n→∞

P (|Xn −X| < ε) = 1.

When this holds, we denote it as Xn
P→ X.

Note. Often in statistics, random variable X is a constant X = a, in which case

we write X
P→ a. This is the case in Example 3.1.4 mentioned above in which case

X = p.

Note. A subtlety of convergence in probability is that it deals with convergence

of Xn to X where we measure distance using the function P . In Real Analysis

1 (MATH 5210), we consider the measure of sets of real numbers and we find

that a set of measure 0 need not be empty (in fact, it need not be finite or even

countable). A property (of a function, say) is said to hold “almost everywhere” if

it holds except on a set of measure 0. Similarly, when Xn
P→ X it is common to

say that Xn → X “almost surely” (that is, with probability 1; see my online notes

for Measure Theory Based Probability [not a formal ETSU class] on 4.6. Random

Variables). If we are dealing with infinite probability spaces (in particular, if we

have continuous random variables) then events of probability 0 are not necessarily

impossible (i.e., such events need not be empty sets). These ideas are addressed

in Graph Theory 2 (MATH 5450) where the concept of almost surely in a finite

probability space is used to prove the existence of certain properties of graphs

https://faculty.etsu.edu/gardnerr/Probability/notes/Prob-4-6.pdf
https://faculty.etsu.edu/gardnerr/Probability/notes/Prob-4-6.pdf
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(see my online notes for Graph Theory 2 on 13.3 Variance; notice Note 13.1.A).

In Graph Theory 2, as here, Chebychev’s Inequality (Theorem 1.10.3) is used to

prove convergence in probability.

Theorem 5.1.1. Weak Law of Large Numbers.

Let {Xn} be a sequence of independent and identically distributed (“iid”) ran-

dom variables having common mean µ < ∞ and variance σ2 < ∞. Let Xn =

(
∑n

i=1 Xi) /n (this is the sample mean). Then Xn
P→ µ.

Note. Dealing with the Strong Law of Large Numbers is “beyond the level of this

course!” It is normally addressed in a probability theory course which requires a

background in Lebesgue measure and integration (covered in ETSU’s Real Analysis

1 [MATH 5210]), abstract measure and integration (covered in ETSU’s Real Anal-

ysis 2 (MATH 5220), and functional analysis (covered in ETSU’s Fundamentals

of Functional Analysis [MATH 5740]). I have some preliminary notes posted for

Measure Theory Based Probability. Two statements of the Strong Law of Large

Numbers are given in this course (here based on the statement and numbering

scheme of Probability and Measure Theory 2nd Edition, by Robert B. Ash with

contributions from Catherine Doleans-Dade, Academic Press, 2000), as follows:

Theorem 6.2.2. Kolmogorov Strong Law of Large Numbers.

Let X1, X2, . . . be independent random variables, each with finite mean

and variance, and let {bn} be an increasing sequence of positive real

numbers with bn →∞. If

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-13-3.pdf
https://faculty.etsu.edu/gardnerr/5210/notes1.htm
https://faculty.etsu.edu/gardnerr/5210/notes1.htm
https://faculty.etsu.edu/gardnerr/5210/notes3.htm
https://faculty.etsu.edu/gardnerr/5210/notes3.htm
https://faculty.etsu.edu/gardnerr/Probability/notes.htm
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∞∑
n=1

Var(Xn)

b2
n

< ∞ and Sn = X1 + X2 + · · ·+ Xn,

then we have
Sn − E(Sn)

bn
→ 0 almost everywhere.

Theorem 6.8.3. Strong Law of Large Numbers, iid Case.

If X1, X2, . . . are independent and identically distributed (”iid”) random

variables with finite expectation m, and Sn = X1 +X2 + · · ·+Xn, then

Sn/n → m almost everywhere and in L1.

In this setting, events are measurable sets and random variables are measurable

functions. The term “almost everywhere” was mentioned above. The space L1

is a Banach space (a complete normed linear space) and the claim in the second

version of the Strong Law means that Sn/n → m with respect to the L1 norm. The

proof the Kolmogorov Strong Law is based (in part) on Kolmogorov’s Inequality (a

generalization of Chebychev’s Inequality). The proof of the Strong Law, iid Case

(as stated) is based on Martingale theory, though another proof is given which uses

the Borel-Cantelli Lemma, the Lebesgue Dominated Convergence Theorem, and

Kronecker’s Lemma. A proof along these lines is presented in N. Etemadi’s “An

Elementary Proof of the Strong Law of Large Numbers” Zeitschrift für Wahrschein-

lichkeitstheorie 55, 119–122 (1981), a copy of which is online at Yao Li’s webpage

at the University of Massachusetts, Amherst (accessed 1/9/2021). We only need

the Weak Law of Large Numbers, so we leave the Strong Law for another class.

Theorem 5.1.2. Suppose Xn
P→ X and Yn

P→ Y . Then Xn + Yn
P→ X + Y .

https://people.math.umass.edu/~yaoli/ptrl.pdf
https://people.math.umass.edu/~yaoli/ptrl.pdf


5.1. Convergence in Probability 5

Theorem 5.1.3. Suppose Xn
P→ X and a is a constant. Then aXn

P→ aX.

Note. We can combine the previous two result to deduce a “linearity” behavior of

convergence in probability (under the obvious hypotheses): aXn + bYn
P→ aX + bY .

Theorem 5.1.4. Suppose Xn
P→ a and the real function g is continuous at a.

Then g(Xn)
P→ g(a).

Note. We can deduce several things from Theorem 5.1.4, in particular we have

for Xn
P→ a (where a is constant) that X2

n
P→ a2, 1/Xn

P→ 1/a for a 6= 0, and
√

Xn
P→
√

a for a ≥ 0 (or, arguably, a ≥ 0). Hogg, McKean, and Craig mention

that if Xn
P→ X and g is a continuous function then g(Xn)

P→ g(X); they give as a

reference page 104 of H. G. Tucker’s A Graduate Course in Probability, New York:

Academic Press (1967). For our purposes, we really just need the following special

case of this result.

Theorem 5.1.A. Suppose Xn
P→ X. Then X2

n
P→ X2.

Theorem 5.1.5. Suppose Xn
P→ X and Yn

P→ Y . Then XnYn
P→ XY .
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Note. We now turn to some of the topics from Chapter 4, “Some Elementary Sta-

tistical Inference.” For a setting, we consider a random variable X with probability

density (or mass) function of the form f(x; θ) for an unknown parameter θ ∈ Ω.

For example, X might have a normal distribution, but a normal distribution has

the parameters µ and σ. In this case, Ω is the set Ω = {θ− (µ, σ2) | µ ∈ R, σ > 0}

and function f gives a normal distribution and then “parameter” θ determines the

specific normal distribution. The plan is to estimate θ based on a sample.

Definition. Let random variable V have probability density (or mass) function

f(x; θ) where θ ∈ Ω. A random sample X1, X2, . . . , Xn from the distribution of X is

a collection of n independent and identically distributed (“iid”) random variables

X1, X2, . . . , Xn with the common probability density/mass function f(x; θ). A

function T = T (X1, X2, . . . , Xn) of the sample is a statistics. When the sample

yields observed values x1, x2, . . . , xn, these are the realized values of the sample and

the realized statistic t = t(x1, x2, . . . , xn) is a point estimate of θ (that is, the sample

is used to estimate the unknown parameter θ which determines f(x; θ). The point

estimator T for θ is unbiased if E[T ] = θ.

Note. In Theorem 2.8.A, we saw that X and S2 are unbiased estimators of µ and

σ, respectively.

Definition 5.1.2. Let X be a random variable with cumulative distribution func-

tion F (x, θ) where θ ∈ Ω. Let X1, X2, . . . ,Xn be a sample from the distribution of

X and let Tn denote a statistic. Then Tn is a consistent estimator of θ if Tn
P→ θ.
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Note 5.1.A. The Weak Law of Large Numbers (Theorem 5.1.1) shows that, for

X1, X2, . . . ,Xn a random sample from a distribution with finite mean µ and finite

variance σ2, the sample mean Xn is a consistent estimator of µ. We now state the

book’s Example 5.1.1 as a theorem.

Theorem 5.1.B. Let X1, X2, . . . , Xn be a random sample from a distribution of

X with finite mean µ and finite variance σ2 where E[X4] is finite, then the sample

variance

S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)
2

(where Xn = 1
n

∑n
i=1 Xi) is a consistent estimator of σ2.

Note. We close this section by quoting the last paragraph in this section from the

text (see page 326):

“Consistency is a very important property for an estimator to have.

It is a poor estimator that does not approach its target as the sample

size gets large. Note that the same cannot be said for the property

of unbiasedness. For example, instead of using the sample variance

to estimate σ2, suppose we use V = n−1 ∑n
i=1(Xi − X)2. Then V is

consistent for σ2, but it is biased because E[V ] = (n − 1)σ2/n. Thus

the bias of V is −σ2/n, which vanishes as n →∞.”
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