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Section 5.2. Convergence in Distribution

Note. In this section we define convergence in distribution by considering the

limit of a sequence of cumulative distribution functions. We relate convergence in

probability and convergence in distribution (see Example 5.2.B and Theorem 5.2.1).

We state several theorems concerning convergence in distribution of sequences of

random variables. We define “bounded in probability” and show that convergence

in distribution implies bounded in probability (see Theorem 5.2.6). We consider a

sequence of moment generating functions (see Theorem 5.2.10, a proof of which is

“beyond the scope of this book”). After completing this material, we will have the

background to address the Central Limit Theorem in the next section.

Definition 5.2.1. Let (Xn) be a sequence of random variables and let X be a

random variable. Let FXn
and FX be, respectively, the cumulative distribution

functions of Xn and X. Let C(FX) denote the set of all points where FX is contin-

uous Then Xn converges in distribution to X if

lim
n→∞

Fn(x) = FX(x) for all x ∈ C(FX).

When this holds, we denote it as Xn
D→ X.

Note. Common terminology for convergence in distribution is to say that X is

the “asymptotic distribution” or “limiting distribution” of the sequence (of random

variables) (Xn). A common notation to represent Xn
D→ X where X is N(0, 1) is

to write “Xn
D→ N(0, 1)”; but this is subtly incorrect since N(0, 1) is not a random

variable but instead a distribution.
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Example 5.2.A. Notice that the definition of convergence in distribution only

involves limits for x values where FX is continuous (i.e., x ∈ C(FX)). We motivate

this by considering random variable Xn with all its mass at 1/n (for each n ∈ N)

and random variable X with all its mass at 0. Then the graph of FX is as given in

Figure 5.2.1 (for insight, see Theorem 1.5.1 and Figure 1.5.1 where the cumulative

distribution function associated with rolling a 6-sided die is given).

Figure 5.2.1. The Cumulative distribution of Xn.

Since FXn
(0) = 0 for all n ∈ N then limn→∞ FXn

(0) = 0 6= 1 = FX(0). But FX

is not continuous at x = 0. For any x 6= 0, we have limn→∞ Fx(x) = F (x) (since

F (x) = 0 if x < 0, and F (x) = 1 if x > 0), and so by definition we have Xn
D→ X.

Certainly this is the desired case for the sequence (Xn).

Example 5.2.B. Convergence in distribution does not imply convergence in prob-

ability, as we now show with an example. Consider X, a continuous random vari-

able with a probability density function fX(x) that is symmetric about x = 0 (i.e.,

fX(−x) = fX(x)). Then random variable −X also has probability density function

fX(x). So X and −X have thee same distributions. Define the sequence (Xn)
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where

Xn

 X if n is odd

−X if n is even.

Since fX(x) = f−X(x) then FXn
(x) = FX(x) so thatXn

D→ X. However, limn→∞Xn(x)

does not exist for any x ∈ R such that X(x) > 0, hence Xn does not converge to X

in probability. We’ll see in Theorem 5.2.1 that convergence of (Xn) in probability

implies convergence of (Xn) in distribution.

Example 5.2.2. Let discrete random variable Xn have probability mass function

pn(x) =

 1 for x = 2 + 1/n

0 elsewhere.

Notice that limn→∞ pn(x) = 0 for all x ∈ R. The cumulative distribution function

of Xn is (for insight, see Theorem 1.5.1 and Figure 1.5.1, as mentioned above)

Fn(x) =

 0 for x < 2 + 1/n

1 for x ≥ 2 + 1/n,
so lim

n→∞
Fn(x) =

 0 for x ≤ 2

1 for x > 2.

Notice that limn→∞ Fn(x) is not continuous from the right at x = 2 (that is,

limx→2+ Fn(x) = 2 6= 0 = F (2)), so by Theorem 1.5.1(d), limn→∞ Fn(x) is not

a cumulative distribution function. However,

F (x) =

 0 for x < 2

1 for x ≥ 2

is a cumulative distribution function and limn→∞ Fn(x) = F (x) for all x at which

F is continuous. So Xn
D→ X where X has cumulative distribution function F (x).

This example shows that we cannot determine limiting distributions form probabil-

ity mass functions. We now turn our attention to relationships between convergence

in probability and convergence in distribution. �
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Example 5.2.3. Let Tn have a t-distribution with n degrees of freedom where

n ∈ N = {1, 2, . . .}. Then, as seen in Section 3.6, the probability density function

is

fn(y) =

∫ t

−∞

Γ((n+ 1/2)√
πnΓ(n/2)

1

(1 + y2/n)(n+1)/2) dy

and so the cumulative density function is

Fn(t) =

∫ t

−∞
fn(y) dy =

∫ t

−∞

Γ((n+ 1/2)
√
πnΓ(n/2)

1

(1 + y2/n)(n+1)/2) dy.

We now show that Tn
D→ N(0, 1). So we consider

lim
n→∞

Fn(t) = lim
n→∞

∫ t

−∞
fn(y) dy. (∗)

We need to pass the limit inside the integral. If we consider Riemann integrals,

then we need fn to converge uniformly to a limit function in order to pass the

limit inside the integral (see Theorem 8.3 of my online notes for Analysis 2 [MATH

4227/5227] on Section 8.1. Sequences of Functions). Alternatively, we can appeal to

Lebesgue integrals, as Hogg, McKean, and Craig do. By the Lebesgue Dominated

Convergence Theorem (see my online notes of Real Analysis 1 [MATH 5210] on

Section 4.4. The General Lebesgue Integral), if |fn| ≤ g on measurable set E and∫
E g <∞, then

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim
n→∞

fn

)
(here, all integrals are Lebesgue integrals, through Lebesgue and Riemann integrals

coincide when Riemann integrals exist; see Theorem 4.3 of my online notes for

Real Analysis 1 on Section 4.2. Lebesgue Integration of a Bounded Measurable

Function over a Set of Finite Measure). So we need an integrable function (that is,

a function for which the integral exists and is finite) that dominates each fn. We

https://faculty.etsu.edu/gardnerr/4217/notes/8-1.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/4-4.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/4-2.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/4-2.pdf
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have |fn(y)| = fn(y) ≤ 10f1(y) by Exercise 5.2.A.∫ t

−∞
10f1(y) dy = 10

∫ t

−∞

Γ(1)√
πΓ(1/2)

1

1 + y2 dy

=
10√
π

0!√
π

∫ t

−∞

1

1 + y2 dy since Γ(n) = (n− 1)! and Γ(1/2) =
√
π

=
10

π
lim

a→−∞

∫ t

1

1

1 + y2 dy =
10

π
lim
a→∞

(
tan−1(y)|t1

)
=

1

π
lim

a→−∞
(tan−1(y)− tan−1(a)) =

10

π
(tan−1(t)− (−π/2))

= 5 +
10

π
tan−1(t) <∞.

So we can apply the Lebesgue Dominated Convergence Theorem to (∗) to get

lim
n→∞

Fn(t) = lim
n→∞

∫ t

−∞
fn(y) dy

=

∫ t

−∞
lim
n→∞

fn(y) dy by the Lebesgue Dominated Convergence Theorem

=

∫ t

−∞
lim
n→∞

Γ((n+ 1/2)
√
πnΓ(n/2)

1

(1 + y2/n)(n+1)/2) dy

=

∫ t

−∞
lim
n→∞

Γ((n+ 1/2)
√
πnΓ(n/2)

lim
n→∞

1

(1 + y2/n)n/2) lim
n→∞

1√
2π

(
1 +

y2

n

)−n/2

dy

=

∫ t

−∞
(1)(1) lim

n→∞

1√
2π

(
1 +

y2

n

)−n/2

dy since the first limit is 1

and by Exercise 5.2.21 lim
n→∞

1

(1 + y2/n)1/2 = 1 for all y ∈ R

=

∫ t

−∞

1√
2π

(ey2

)−1/2 dy since lim
n→∞

(
1 +

y

n

)n

= ey and lim
n→∞

(
1 +

y2

n

)n

= ey2

=

∫ t

−∞
e−y2/2 dy.

Since the last integral is the cumulative distribution function of N(0, 1), then Tn
D→

N(0, 1). �
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Note. In “Remark 5.2.3,” Hogg, McKean, and Craig briefly review the ideas of

limit superior, lim, and limit inferior, lim, of a sequence of real numbers. These

ideas covered in Analysis 1 (MATH 4217/5217) in Section 2.3. Bolzano-Weierstrass

Theorem.

Theorem 5.2.1. If sequence of random variables (Xn) converges to X in proba-

bility, then (Xn) converges to X in distribution.

Note. We saw in Example 5.2.B that there is a sequence of random variables (Xn)

such that Xn
D→ X but Xn

P

6→ X. Therefore, the converse of Theorem 5.2.1 does

not (in general) hold. However, in some special cases, the converse does hold.

Theorem 5.2.2. If sequence of random variables (Xn) converges to constant b in

distribution, then (Xn) converges to b in probability.

Note. The proof of the next theorem is similar to that of Theorem 5.2.2 and is to

be given in Exercise 5.2.13.

Theorem 5.2.3. Suppose sequence of random variables (Xn) converges to X in

distribution and sequence of random variables (Yn) converges in probability to 0.

Then Xn + Yn converges to X in distribution.

https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
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Note. Theorem 5.2.3 has the following application.

Lemma 5.2.A. Suppose sequence of random variables (Yn) converges to X in dis-

tribution and that sequence of random variables (Yn−Xn) converges in probability

to 0. Then (Xn) = (Yn + (Xn − Yn)) converges to X in distribution.

Note. A proof of the next theorem “can be found in a more advanced text. . . ” (see

Hogg, McKean, and Craig, page 332). A proof is given in Probability and Measure

Theory 2nd Edition, by Robert B. Ash with contributions from Catherine Doleans-

Dade (Academic Press, 2000); see “Theorem 7.7.3. Convergence of Transformed

Sequences” (see part (c)) in “Chapter 7. The Central Limit Theorem.” Notice that

the result also hold if convergence “in distribution” is replaced with convergence

“in probability” (see part (b)) or with convergence “almost everywhere” (see part

(a)). The proof uses Slutsky’s Theorem (Theorem 7.7.1 of Probability and Measure

Theory, to be stated below) and Skorokhod’s Theorem (Theorem 7.7.2 of Probability

and Measure Theory).

Theorem 5.2.4. Suppose sequence of random variables (Xn) converges to X in

distribution and g is a continuous function on the support of X. Then g(Xn)

converges to g(X) in distribution.

Note. The proof of the next result is similar to that of Theorem 5.2.1 and is to

be given in Exercise 5.2.B. A proof can also be found in Probability and Measure

Theory: see Theorem 7.7.1 in “Chapter 7. The Central Limit Theorem.”
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Theorem 5.2.5. Slutsky’s Theorem.

Let Xn, X, An, and Bn be random variables (where n ∈ N) and let a and b

constants. If Xn
D→ X, An

P→ a, and Bn
P→ b, then An +BnXn

D→ a+ bX.

Note. Evgeny Slutsky (April 19, 1880–March 10, 1948) was born in Russia and

grew up in Kiev in Ukraine. He attended the University of Kiev but, following

political turmoil, transfered to Munich Polytechnikum in 1902 and complete a

degree in engineering there. He did a degree in political economics at the University

of Kiev in 1911. From 1913 to 1926 he taught at the Kiev Institute of Commerce.

In 1926 he started working for the government statistics office in Moscow. He

worked in the foundations of probability theory, a safe topic in Stalin’s Soviet

Union. He joined the Central Institute of Meteorology in 1931 and later joined

the University of Moscow. In 1938 he started working for the USSR Academy

of Sciences. Slutsky was influenced by the work of Karl Pearson. His interests

included the mathematical foundations of statistical methods and applications of

statistics to economics and the natural sciences. This biographical information and

the image below are from the MacTutor History of Mathematics Archive on Evgeny

Slutsky.

Evgeny Evgenievich Slutsky (1880–1948)

https://mathshistory.st-andrews.ac.uk/Biographies/Slutsky/
https://mathshistory.st-andrews.ac.uk/Biographies/Slutsky/
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The theorem named for Slutsky appeared in “Über stochastische Asymptoten und

Grenzwerte,” Metron, 5(3), 3–89 (1925); for a review of the paper, see the Zentral-

blatt MATH page (the paper and review are both in German).

Note. Let X be any random variable X with cumulative distribution function

FX(x). Then limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1. So for any given ε > 0,

there are η1, η2 ∈ R such that FX(x) < ε/2 for x ≤ η1, and FX(x) > 1 − ε/2 for

x ≥ η2. Let η = max{|η1|, |η2|}. Then

P (|X| ≤ η) = P (−η ≤ X ≤ η) = P (X ≤ η)− P (X < −η)

= P (X ≤ η)− P (X ≤ −η) + P (X = −η) = FX(η)− FX(−η) + P (X = −η)

>
(
1− ε

2

)
−
(ε

2

)
+ 0 = 1− ε. (5.2.7)

So even if random variable X is unbounded then it is bounded in probability in

this sense. We now state a definition related to this idea, but in the setting of a

sequence of random variables.

Definition 5.2.2. The sequence of random variables (Xn) is bounded in probability

if, for all ε > 0, there exists a constant Bε > 0 and Nε ∈ N such that

η ≥ Nε implies P (|Xn| ≤ Bε) ≥ 1− ε.

Note. The next Theorem shows that a sequence which converges in distribution

is bounded in probability.

https://zbmath.org/?format=complete&q=an:51.0380.03
https://zbmath.org/?format=complete&q=an:51.0380.03
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Theorem 5.2.6. Let (Xn) be a sequence of random variables and let X be a

random variable. If Xn → X in distribution, then (Xn) is bounded in probability.

Note. The converse of Theorem 5.2.6 does not hold, as we show in the following

example. That is, there exists a sequence (Xn) that is bounded in probability but

(Xn) does not converge in distribution.

Example 5.2.5. Let the sequence of random variables (Xn) be defined as Xn =

2+1/n for n even (with probability 1) and Xn = 1+1/(n+1) for n odd (with prob-

ability 1). The sequence (X2, X4, X6, . . .) converges in distribution to the random

variable Y = 2, and the sequence (X1, X3, X5, . . .) converges in distribution to the

random variable W = 1. Since Y 6= W then the sequence (Xn) does not converge in

distribution. Since all Xn lie in the interval [1, 5/2] then with Bε = 5/2 and Nε = 1,

we have for all ε > 0 that n ≥ Nε = 1 implies P (|Xn| ≤ Bε = 5/2) = 1 ≥ 1− ε. So

(Xn) is bounded in probability.

Theorem 5.2.7. Let (Xn) be a sequence of random variables which is bounded in

probability and let (Yn) be a sequence of random variables that converges to 0 in

probability. Then XnYn
P→ 0.

Note. We now turn our attention to the “∆ method” (given in Theorem 5.2.9

below). But first, we need to explore Taylor’s Theorem from the theory of power

series (Hogg, McKean, and Craig correctly refer to this as “the mean value the-
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orem with reminder” but mistakenly claim that it is sometimes called “Young’s

Theorem”; they give two references, “Hardy (1992)” and “Lehmann (1999),” but

both refer to this as Taylor’s Theorem). E. L. Lehmann, Elements of Large-Sample

Theory, NY: Springer-Verlag (1999) [accessed 5/28/2021] on page 85 states:

Theorem 2.5.1 of Lehmann. Suppose that f(x) has r derivatives at

the point a. Then

f(a+ b) = f(a) + bf ′(a) +
br

r!
f (r)(a) + o(br).

We describe the “little o” notation below. With f(x) = g(x), y = a+ b, x = a, and

r = 1 this implies

Theorem 5.2.A. A General Mean Value Theorem.

Suppose that g(x) is differentiable at x. Then

g(y) = g(x) + (y − x)g′(x) + o(y − x).

This is the statement that Hogg, McKean, and Craig give in (5.2.9). However,

Lehman does not give a proof and defers to G. H. Hardy, who states on page 320 of

A Course of Pure Mathematics, Third Edition, Cambridge University Press (1921):

Taylor’s or the General Mean Value Theorem.

If f(x) is a function of x which has derivatives of the first n orders

throughout the interval [a, b], then

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2!
f ′′(a) + · · ·

+
(b− a)n−1

(n− 1)!
f (n−1)(a) +

(b− a)n

n!
f (n)(ξ),

where a < ξ < b.

Notice that this version requires a level of differentiability on [a, b], whereas The-

orem 5.2.A only requires differentiability at a point. Hardy does gives a proof of

http://pointer.esalq.usp.br/departamentos/lce/arquivos/aulas/2011/LCE5866/Springer_-_E.L.Lehmann_-_Elements_of_Large-sample_Theory.pdf
http://pointer.esalq.usp.br/departamentos/lce/arquivos/aulas/2011/LCE5866/Springer_-_E.L.Lehmann_-_Elements_of_Large-sample_Theory.pdf
https://www.gutenberg.org/files/38769/38769-pdf.pdf
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“Taylor’s or the General Mean Value Theorem” (as we do in Analysis 2 [MATH

4227/5227]; see “Corollary 8.13(c). Taylor’s Law of the Mean” in my online Analy-

sis 2 notes on Section 8.3. Taylor Series in which differentiability on an open interval

containing [a, b] is required). You also see it in Calculus 2 (MATH 1920); see “The-

orem. Taylors Formula” in my online Calculus 2 notes on Section 10.9. Convergence

of Taylor Series; Error Estimates. Finally, Theorem 5.2.A is also given as Exercise

5.2.15(b) (where differentiability on an interval is required) in James R. Kirkwood’s

An Introduction to Analysis, Second Edition, Waveland Press (2002) (this is the

book I use in Analysis 1 and 2). So we take Lehmann’s Theorem 2.5.1 and Theorem

5.2.A as correct, though we have some lingering concerns about the set on which

we impose the differentiability hypothesis (this arises again in the ∆ method in

Theorem 5.2.9).

Note. Recall from Calculus 2 (MATH 1920) that: A function f is of smaller

order than g as x → a (where a ∈ R ∪ {±∞}) if limx→a f(x)/g(x) = 0, denoted

f = o(g) (read “f is little-oh of g”). Notice that lim
b−a→0

(b− a)n

n!
f (n)(ξ) = 0 so that

“Taylor’s of the General Mean Value Theorem” implies Theorem 5.2.A. Also, f is of

at most the order of g as x→ a (where a ∈ R ∪ {±∞}) if there is a neighborhood

of a for which f(x)/g(x) ≤ M , denoted f = O(g). See my online Calculus 2

notes on Section 7.4. Relative Rates of Growth (where the definitions are given

for a = ∞ only). We now define a similar concept concerning convergence-in and

boundedness-in probability.

https://faculty.etsu.edu/gardnerr/4217/notes/8-3.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c10s9.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c10s9.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c7s4.pdf
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Definition. Consider two sequences of random variables, (Xn) and (Yn). Sequence

(Yn) is little-op of (Xn), denoted Yn = op(Xn), if Yn/Xn
P→ 0 as n → ∞. Sequence

(Yn) is big-Op of (Xn), denoted Yn = Op(Xn), if sequence (Yn/Xn) is bounded in

probability as n→∞.

Theorem 5.2.8. Suppose sequence of random variables (Yn) is bounded in prob-

ability. Suppose Xn = op(Yn). Then Xn
P→ 0 as n→∞.

Note. The result in the next theorem is called the “∆ method.” Notice that we

hypothesize the differentiability of g at a single point (and still have concerns over

this hypothesis, as mentioned above).

Theorem 5.2.9. (The ∆ Method). Let (Xn) be a sequence of random variables

which that
√
n(Xn − θ)

D→ N(0, σ2). Suppose the function g(x) is differentiable at

θ and g′(θ) 6= 0. Then

√
n(g(Xn)− g(θ))

D→ N(0, σ2(g′(θ))2).

Note. To show that Xn
D→ X using the definition, we need the cumulative dis-

tribution functions FXn
and FX . The next theorem shows that we can conclude

Xn
D→ X based on the use of moment generating functions MXn

and M , instead of

cumulative distribution functions.
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Theorem 5.2.10. Let (Xn) be a sequence of random variables with moment

generating function MXn
(t) that exists for −h < t < h for all n ∈ N. Let X

be a random variable with moment generating function M(t), which exists for

|t| ≤ h1 ≤ h. If limn→∞Mn(t) = M(t) for |t| ≤ h1, then Xn
D→ X.

Note. The proof of Theorem 5.2.10 is “beyond the scope of this book,” and Hogg,

McKean, and Craig mention Leo Breiman’s Probability (London: Addison-Wesley,

1968) page 171 as a reference. My preferred reference on measure theory based

probability, Robert B. Ash’s (with contributions from Catherine Doleans-Dade)

Probability and Measure Theory 2nd Edition (Academic Press, 2000), addresses

convergence in distribution in “Chapter 7. The Central Limit Theorem” but it

does not seem to specifically address Theorem 5.2.10. We need the following limit

result in some of our convergence exercises and examples.

Theorem 5.2.B. Let b, c ∈ R and suppose limn→∞ ψ(n) = 0. Then

lim
n→∞

(
1 +

b

n
+
ψ(n)

n

)cn

= lim
n→∞

(
1 +

b

n

)
= ebc.

Note. We take Theorem 5.2.B as given (from Advanced Calculus, as Hogg, McK-

ean, and Craig say). However, if we add the hypotheses that ψ(x) and ψ′(x) are

defined for all x ∈ R sufficiently large, limx→∞ ψ(x) = 0, and limx→∞ xψ
′(x) = 0,

then we can prove Theorem 5.2.B using L’Hôpital’s Rule as is to be done in Exercise

5.2.C.
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Example 5.2.7. Let Zn be χ2(n). Then the moment generating function is

(1 − 2t)−n/2 for t < 1/2 (by definition). The mean and variance are n and 2n,

respectively (as explained in Section 3.3). Consider the sequence of ransom vari-

ables Yn = (Zn − n)/
√

2n. By defining the moment generating function of Yn

is

MYn
(t) = E

(
exp

(
t
Zn − n√

2n

))
= E(exp(tZn/

√
2n) exp(−tn/

√
2n))

= exp(−tn/
√

2n)E(exp(tZn/
√

2n)) since expectation is linear

= exp(−tn/
√

2n)

(
1− 2

t√
2n

)−n/2

for t <

√
2n

2

since E(tZn) = (1− 2t)−n/2 for t < 1/2 implies

E

(
t√
2n
Zn

)
=

(
1− 2

t√
2n

)−n/2

(replacing t with t/
√

2n)

for
t√
2n

<
1

2
or t <

√
2n

2

= exp

(
−t
√

2

n

n

2

)(
1− 2

t√
2n

)−n/2

for t <

√
2n

2

= (et
√

2/n)−n/2
(

1− 2
t√
2n

)−n/2

for t <

√
2n

2

=

(
et
√

2/n

(
1− 2

t√
2n

))−n/2

for t <

√
2n

2

=

(
et
√

2/n −
√

2

n
tet
√

2/n

)−n/2

for t <

√
2n

2
. (∗)

Applying “Taylor’s or the General Mean Value Theorem” (stated after Theorem

5.2.A) applied to f(x) = ex with n = 3 implies that

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2!
f ′′(a) +

(b− a)3

3!
f ′′′(ξ)
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for some ξ ∈ (a, b). With b = t
√

2/n and a = 0 this gives

et
√

2/n = 1 + t

√
2

n
+

1

2

(
t

√
2

n

)2

+
1

6

(
t

√
2

n

)3

eξ(n)

for some ξ(n) ∈ (0, t
√

2/n). Substituting this into (∗) gives

MYn
(t) =

(
et
√

2/n −
√

2

n
tet
√

2/n

)−n/2

=

(
1 + t

√
2

n
+
t2

n
+

√
2t3eξ(n)

2n
√
n

−
√

2

n
t

(
1 + t

√
2

n
+
t2

n
+

√
2t3eξ(n)

3n
√
n

))−n/2

=

(
1− t2

n
+

√
2t3eξ(n)

3n
√
n

−
√

2t3

n
√
n
− 2t4eξ(n)

3n2

)−n/2

=

(
1− t2

n
+
ψ(n)

n

)−n/2

where ψ(n) =

√
2t3eξ(n)

2
√
n

−
√

2t3√
n
− 2t4eξ(n)

3n
.

Since 0 < ξ(n) < t
√

2/n then limn→∞ ξ(n) = 0 and so limn→∞ ψ(n) = 0. So by

Theorem 5.2.B, we have

MY (t) = lim
n→∞

MYn
(t) = lim

n→∞

(
1− t2

n
+
ψ(n)

n

)−n/2

= e−t2/n.

By Note 3.4.A, the moment generating function of N(0, 1) is et2/2, so we can con-

clude from Theorem 5.2.10 that Yn
D→ N(0, 1). This is illustrated in Figure 5.2.2

(below) in which histograms of random samples of size 1000 from χ2(n) distribu-

tions are given for n = 5, 10, 20, 50. A standard normal distribution is also given in

each case. Notice that as n increases, the histograms better approximate N(0, 1).
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Figure 5.2.2. (Corrected)

Example 5.2.8 (Example 5.2.7 continued). In the previous example, we showed

that for Zn = χ2(n), we have

Yn = (Zn − n)/
√

2n =
√
n

(
1√
2n
Zn −

1√
2

)
D→ N(0, 1).

We now illustrate the ∆ model by letting g(t) =
√
t and let Wn = g(Zn/

√
2n) =

(Zn/
√

2n)1/2. Now g(1/
√

2) = 1/21/4 and

g′(1/
√

2) =
1

2

1√
1/
√

2
= 1/23/4 = 2−3/4.
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By Theorem 5.2.9 (“the ∆ method”) we have
√
n(g(Xn)−g(θ))

D→ N(0, σ2(g′(θ))2)

where g(Xn) = g(Zn/
√

2n) = Wn, g(θ) = g(1/
√

2) = 1/21/4, σ2 = 1, and g′(θ) =

g′(1/
√

2) = 2−3/4, or
√
n(Wn − 1/21/4)

D→ N(0, 2−3/2).
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