
5.3. Central Limit Theorem 1

Section 5.3. Central Limit Theorem

Note. In this section, we state the Central Limit Theorem and give a partial proof.

We consider several examples to illustrate the use of the Central Limit Theorem.

Note. In Corollary 3.4.1 we saw that if X1, X2, . . . , Xn are random samples from

a population with distribution N(µ, σ2), then Xn =
∑n

i=1 Xi/n has a N(µ, σ2/n)

distribution. Then
√

n Xn/σ has distribution

N((
√

n/σ)µ, (
√

n/σ)2(σ2/n)) = N(
√

nµ/σ, 1)

by Theorem 3.4.2, and so

√
n Xn

σ
−
√

nµ

σ
=

√
n(Xn − µ)

σ
has a N(0, 1) distribution.

The Central Limit Theorem states that if X1, X2, . . . , Xn are random samples from

a population with mean µ and variance σ2 and any distribution, then
√

n(Xn−µ)/σ

has a N(0, 1) distribution. The Central Limit Theorem then allows us to compute

confidence intervals, p-values, and so forth. Hence, it is of central (!) importance

in statistics.

Note. Next, we state the Central Limit Theorem. We present a “partial proof” by

assuming the existence of a moment generating function for the distribution of the

population from which the samples are taken. Recall that not every distribution has

a moment generating function; Example 1.9.5 gives an example of a discrete random

variable which does not have a moment generating function and Example 1.9.6

gives an example of a continuous random variable which does not have a moment

generating function (in both examples, divergence of E(etX) is the problem).
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Theorem 5.3.1. Central Limit Theorem.

Let X1, X2, . . . , Xn denote the observations of a random sample from a distri-

bution that has mean µ and positive variance σ2. Then the random variable

Yn = (
∑n

i=1 Xi − nµ)/(
√

nσ) =
√

n(Xn − µ)/σ converges in distribution to a

random variable that has a normal distribution with mean 0 and variance 1.

Note. We discussed the existence of characteristic functions in some detail in Sec-

tion 1.9. Some Special Expectations. In Robert B. Ash’s (with contributions from

Catherine Doleans-Dade) Probability and Measure Theory, 2nd Edition (Academic

Press, 2000), a proof of the following version of the Central Limit Theorem is given.

The proof is based on characteristic functions as defined in Ash (the definition is

stated in our Section 1.9 notes).

Theorem 5.3.A. A k-Dimensional Central Limit Theorem of Ash.

Let X1, X2, . . . be independent and identically distributed (“iid”) k-dimensional

random vectors with finite mean µ and covariance Σ. If Sn =
∑n

j=1 Xj then

random variable
Sn − nµ√

n
converges weakly to Y , where Y has a Gaussian [normal]

distribution with mean 0 and covariance Σ.

Note 5.3.A. We can also state the Central Limit Theorem as
√

n(X − µ)
D→

N(0, σ2) where X =
∑n

i=1 Xi/n. So when n is “large” (and fixed) then random

variable X as a distribution which is approximately a normal distribution with

mean µ and variance σ2/n (which is the statement of the Central Limit Theorem

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-9.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-9.pdf
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as given in Introduction to Probability and Statistics [MATH 1530]; see my online

notes for this class on Chapter 11. Sampling Distributions). We now consider

applications of the Central Limit Theorem.

Example 5.3.1. Large Sample Inference for µ.

Let X1, X2, . . . , Xn be a random sample from a distribution with mean µ and

positive variance σ2, where µ and σ2 are unknown. Let X and S be the sample

mean and sample standard deviation, respectively. By Theorem 5.1.B, S is a

consistent estimator of σ; that is, S
D→ σ. By Theorem 5.1.3 we have S/σ

P→ a,

and by Theorem 5.1.4 we have σ/S
P→ 1. Now

X − µ

σ/
√

n

D→ N(0, 1). So by Slutsky’s

Theorem (Theorem 5.3.1; take Bn = σ/S and Xn =
X − µ

σ/
√

n
in Sultsky’s Theorem)

we have
X − µ

S/
√

n

D→ (1)N(0, 1) = N(0, 1).

Example 5.3.3. Normal Approximation to the Binomial Distribution.

Let X1, X2, . . . , Xn be a random sample from a binomial distribution b(1, p). As

seen in our Section 3.1. The Binomial and Related Distributions, µ = p, σ2 =

p(1−p), and the moment generating function is (by Note 3.1.A) M(t) = (1−p+pet)n

for t ∈ R. If Yn = X1 + X2 + · · · + Xn then by Theorem 3.1.1 Yn had binomial

distribution b(n, p) which has mean np and variance np(1− p). Now

Yn − np√
np(1− p)

=
nXn − np√
np(1− p)

=

√
n(Xn − p)√
p(1− p)

=

√
n(Xn − µ)

σ
.

https://faculty.etsu.edu/gardnerr/1530/Chapter11.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-3-1.pdf
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So by the Central Limit Theorem (Theorem 5.3.1),

Yn − np√
np(1− p)

=

√
n(Xn − µ

σ

D→ N(0, 1).

So we can approximate a binomial distribution with a normal distribution (Yn itself

approximately has a distribution of N(np, np(1−p))). This is done in Introduction

to Probability and Statistics (MATH 1530) in Chapter 13. Binomial Distributions

where the “rule of thumb” is to require np ≥ 10 and n(1 − p) ≥ 10 for a good

approximation. Hogg, McKean, and Craig observe that for n as small as 10 with

p = 1/2 (so np = 5), the approximation can still be rather good as is shown

in Figure 5.3.1 where b(n, p) = b(10, 1/2) as compared to N(np, np(1 − p)) =

N(5, 5/2).

Figure 5.3.1. The binomial distribution b(10, 1/2) and the normal distribution

N(5, 5/2).

Example 5.3.4. Consider the binomial distribution b(n, p) = b(100, 1/2). Notice

np = n(1 − p) = 50. We approximate P (Y = 48, 49, 50, 51, 52) using the approxi-

mation of Example 5.3.3. Since Y is a discrete integer-valued random variable then

https://faculty.etsu.edu/gardnerr/1530/Chapter13.pdf
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the events {Y = 48, 49, 50, 51, 52} and {47.5 < Y < 52.5} are equivalent events.

Now

P (47.5 < Y < 52.5) = P

(
47.5− 50

5
<

Y − 50

5
<

52.5− 50

5

)
= P

(
−0.5 <

Y − 50

5
< 0/5

)
.

Since (Y − 50)/5 has distribution N(0, 1), then the probability is P (−0.5 < Z <

0.5) ≈ 0.3829. Notice Figure 5.3.1 again. The binomial distribution involves sum-

ming areas of rectangles of width 1 (and heights which reflect probabilities) whereas

the normal approximation involves an area under a continuous function. The dif-

ference in these areas is called the continuous correction.

Example 5.3.5. Large Sample Inference for Proportions.

Let X1, X2, . . . , Xn be a random sample from a Bernoulli distribution with p as the

probability of success. Let p̂ be the sample proportion of success. Then p̂ = X =∑n
i=1 Xi/n. Hence, by Exercise 5.3.13,

p̂− p√
p̂(1− p̂)/n

D→ N(0, 1). This idea will be

used in Chapter 4 to get confidence intervals for parameter p.

Example 5.3.6. Large Sample Inference for χ2-Tests.

As in Example 5.3.3, let random variable Yn have binomial distribution b(n, p).

Again (as in Example 5.3.3)
p̂− p√

p̂(1− p̂)/n

D→ N(0, 1). By Theorem 3.4.1, the square

of a normally distributed random variable has distribution χ2(1), and by Theorem

5.2.4 if (Xn)
D→ X and g is continuous on the support of X then g(Xn)

D→ g(X).

So with g(x) = x2 we have

(
p̂− p√

p̂(1− p̂)/n

)2
D→ χ2(1).
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