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Section 5.4. Extensions to Multivariate Distributions

Note. In this section, we consider convergence in probability and distribution of

sequences of random vectors. The ideas are briefly discussed and some results are

stated without proof. Recall that random vectors were introduced in our Section

2.6. Extension to Several Random Variables.

Note. Recall that a norm ‖ · ‖ on Rp is a mapping ‖ · ‖ : Rp → R such that

(a) For all v ∈ Rp we have ‖v‖ ≥ 0, and ‖v‖ = 0 if and only if v = 0.

(b) For all v ∈ Rp and a ∈ R we have ‖av‖ = |a|‖v‖.

(c) For all v,u ∈ Rp, we have ‖u + v‖ ≤ ‖u‖+ ‖v‖ (the Triangle Inequality).

These ideas are covered in Linear Algebra (MATH 2010); see my online Linear

Algebra notes on Section 1.2. The Norm and Dot Product (notice “Theorem 1.2.

Properties of the Norm in Rn”). The Euclidean norm on Rn is given by

‖v‖ =

√√√√ p∑
i=1

v2
i ,

where v ∈ Rp is of the form v′ = (v1, v2, . . . , vp). Here, we treat vectors in Rp as

column vectors and we represent the transpose of v as v′ (a row vector); similarly,

the transpose of matrix A is A′.

Note. Recall that the standard basis vectors for Rp are the vectors e1, e2, . . . , ep

where for ei all components are 0 except the ith component which is 1. So for

v′ = (v1, v2, . . . , vp), we have v =
∑p

i=1 viei.

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-2-6.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-2-6.pdf
https://faculty.etsu.edu/gardnerr/2010/c1s2.pdf
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Lemma 5.4.1. Let v′ = (v1, v2, . . . , vp) ∈ Rp. Then |vj| ≤ ‖v‖ ≤
∑p

i=1 |vi| for all

j = 1, 2, . . . , p.

Definition 5.4.1. Let {Xn} be a sequence of p-dimensional vectors and let X be a

random vector, all defined on the same sample space. We say that {Xn} converges

in probability to X if limn→∞ P (‖Xn − X‖ ≥ ε) = 0, for all ε > 0. As in the

univariate case, we write Xn
P→ X.

Note. The next result shows that convergence in probability of vectors is equivalent

to componentwise convergence in probability (though this is only try for finite

dimensional vectors).

Theorem 5.4.1. Let {Xn} be a sequence of p-dimensional vectors and let X be a

random vector, all defined on the same sample space. Then

Xn
P→ X if and only if Xnj

P→ Xj for all j = 1, 2, . . . , p.

Note. Recall that a statistic Tn based on a sample X1, X2, . . . , Xn from the distri-

bution of random variable X is a consistent estimator of parameter θ is Tn
P→ θ. In

Section 5.1 we say that is X1, X2, . . . , Xn is a random sample from the distribution

of random variable X with mean µ and variance σ2, then Xn and S2
n are consistent

estimators of µ and σ2 (see Note 5.1.A and Theorem 5.1.B). So by Theorem 5.4.1,

the vector (Xn, S
2
n) is a consistent estimator of (µ, σ2).
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Note. Similar to the previous, but in the setting of random vectors, suppose {Xn}

is a sequence of identical in distribution random vectors with common mean vector

µ and variance-covariance matrix Σ. Let Xn be defined as Xn =
1

n

n∑
i=1

Xi. Then

Xn is the vector of sample means Xn = (X1, X2, . . . , Xp)
′. By the Weak Law of

Large Numbers (Theorem 5.1.1), Xj
P→ µj for each j = 1, 2, . . . , p. So by Theorem

5.4.1, Xn
P→ µ. With Xi = (Xi1, Xi2, . . . , Xip)

′, define the sample variances and

covariances

S2
n,j =

1

n− 1

n∑
i=1

(Xij −Xj)
2 for j = 1, 2, . . . , p

Sn,jk =
1

n− 1

n∑
i=1

(Xij −Xj)(Xik −Xk) for j, k = 1, 2, . . . , p where j 6= k.

Assuming E(X4
i ) is finite for i = 1, 2, . . . , p, then by Theorem 5.1.B (which follows

from the Weak Law of Large Numbers), we have S2
n,j

P→ σ2
j for j = 1, 2, . . . , p and

S2
n,jk

P→ Cov(Xj, Xk) for j, k = 1, 2, . . . , p where j 6= k. If we define the p×p matrix

S to be the jth diagonal entry S2
n,j and the (j, k)th entry S2

n,jk, then S
P→ Σ by

Theorem 5.4.1.

Definition 5.4.2. Let (Xn) be a sequence of random vectors with Xn having

distribution function Fn(x) and X be a random vector with distribution function

F (x). Then (Xn) converges in distribution to X if limn→∞ Fn(x) = F (x) for all

points x at which F (x) is continuous. This is denoted Xn
D→ X.

Note. Since the definition of convergence in distribution here is virtually identical

to the case of a single variable (“univariate”), then several results from that setting
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(given in Section 5.2. Convergence in Distribution) carry over to this setting. So

we now state two theorems, but omit the proofs (the corresponding results from

Section 5.2 that have proofs “beyond the scope of this book”). The first is a

generalization of Theorem 5.2.10 (and includes a converse of Theorem 5.2.10).

Theorem 5.4.2. Let (Xn) be a sequence of random vectors that converges in

distribution to a random vector X and let g(X) be a function that is continuous

on the support of X. Then g(Xn) converges in distribution to g(X).

Note. Theorem 5.4.2 can by used to prove that convergence in distribution implies

“marginal convergence” (that is, convergence in distribution of each of the marginal

distributions).

Theorem 5.4.3. Let (xn) be a sequence of random vectors with Xn having dis-

tribution function Fn(x) and moment generating function Mn(t). Let X be a

random vector with distribution function f(x) and moment generating function

M(t). Then (Xn) converges in distribution to X if and only if, for some h > 0,

limn→∞ Mn(t) = M(t), for all t such that ‖t‖ < h.

Note. We now state and prove the main result of this section. It is really just a

corollary of the Central Limit Theorem (Theorem 5.3.1).

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-5-2.pdf


5.4. Extensions to Multivariate Distributions 5

Theorem 5.4.4. Multivariate Central Limit Theorem.

Let (Xn) be a sequence of independent and identically distributed (“iid”) random

vectors with common mean vector µ and variance-covariance matrix Σ which is

positive definite. Assume that the common moment generating function M(t)

exists in an open neighborhood of 0. Let

Yn =
1√
n

n∑
i=1

(Xi − µ) =
√

n(
√

X− µ).

Then Yn converges in distribution to a Np(0,Σ) distribution.

Note. We conclude by stating, without proof, results concerning convergence in

distribution. The first concerns a linear transformation of a random variable. The

second is a generalization of the ∆-method (see Theorem 5.2.9)

Theorem 5.4.5. Let (Xn) be a sequence of p-dimensional random vectors. Sup-

pose Xm
D→ N(µ,Σ). Let A be an m × p matrix of constants and let b be an

m-dimensional vector of constants. Then AXn + b
D→ N(Aµ + b,AΣA′).

Theorem 5.4.6. Let (Xn) be a sequence of p-dimensional random vectors. Sup-

pose
√

n(Xn − µ0)
D→ Np(0,Σ). Let g be a transformation

g(x) = (g1(x), g2(x), . . . , gk(x))′

such that 1 ≤ k ≤ p and the k × p matrix of partial derivatives,

B =

[
∂gi

∂µj

]
for i = 1, 2, . . . , k, j = 1, 2, . . . , p

are continuous and do not vanish in a neighborhood of µ0. Let B0 = B at µ0.

Then
√

n(g(Xn)− g(µ0))
D→ Nk(0,B0ΣB′

0).
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