Introduction to Modern Algebra

Supplement. The Cayley-Dickson Construction and Nonassociative Algebras—Proofs of Theorems

Introduction to Modern Algebra

November 10, 2022

Theorem CD.3

Theorem CD.3. If algebra A is nicely normed and alternative, then A is a normed division algebra.

Proof. Recall that a normed division algebra is an algebra that is also a normed vector space with ||ab|| = ||a|| ||b|| for all $a, b \in A$. If A is nicely normed, then $aa^* = a^*a > 0$ and the norm is given by $||a|| = \sqrt{aa^*}$. Let $a, b \in A$. Then the subalgebra generated by Im(a) and Im(b) is associative (because A is alternative; see the definition of "alternative") and includes a, b, a^*, b^* . We now have

$$||ab||^2 = (ab)(ab)^*$$
 by the definition of the norm
 $= (ab)(b^*a^*)$ by the definition of conjugation
 $= ((ab)b^*)a = (a(bb^*))a^*$ by associativity
 $= (a||b||^2)a^*$ by the definition of the norm

Introduction to Modern Algebra November 10, 2022

Theorem CD.3 (continued)

Theorem CD.3. If *-algebra A is nicely normed and alternative, then A is a normed division algebra.

Proof (continued). . . .

$$||ab||^2 = (a||b||^2)a^*$$
 by the definition of the norm

= $a(\|b\|^2a^*)$ by associativity

= $aa^*\|b\|^2$ since $\|b\|^2$ is real and so commutes with a^*

= $||a||^2 ||b||^2$ by the definition of the norm.

Therefore ||ab|| = ||a|| ||b|| and so A is a normed division algebra, as claimed.

Proposition 1

Proposition 1. Starting with any *-algebra A, the new *-algebra A' that results from the Cayley-Dickson Construction is not real.

Proof. Let $a, b \in A$ and consider $(a, b) \in A'$. If (a, b) is real, then we must have $(a, b) = (a, b)^* = (a^*, -b)$. But this implies that $a = a^*$ (so that a must be real) and b = -b (so that b must be $0 \in A$). We take A to contain more than just 0, so that we do not have $(a, b) = (a, b)^*$ for all $a, b \in A$. That is, A' is not real, as claimed.

November 10, 2022 Introduction to Modern Algebra November 10, 2022 5 / 19 Introduction to Modern Algebra

Proposition 2

Proposition 2. *-algebra A is real (and thus commutative) if and only if Cayley-Dickson algebra A' constructed from A is commutative.

Proof. First, suppose that *-algebra A is real (that is, $a = a^*$ for all $a \in A$). Then for $(a, b), (c, d) \in A'$, we have the product:

$$(a,b)(c,d) = (ac - db^*, a^*d + cb)$$
 by definition of multiplication in A'
= $(ca - bd^*, c^*b + ad)$ since A is real and commutative
= $(c,d)(a,b)$.

Since (a, b) and (c, d) are arbitrary elements of A', then A' is commutative as claimed.

Next, suppose A' is commutative. Then for $(a, b), (c, d) \in A'$, we must have (a, b)(c, d) = (c, d)(a, b); that is, $(ac - db^*, a^*d + cb) = (ca - bd^*, c^*b + ad)$. In particular, with b=d=0 we have for all $a,c\in A$ that (ac,0)=(ca,0). That is, ac=cafor all $a, c \in A$ and so A is commutative, as claimed.

Introduction to Modern Algebra

November 10, 2022

Introduction to Modern Algebra

November 10, 2022 7 / 19

Proposition 3

Proposition 3. *-algebra A is commutative and associative if and only if Cayley-Dickson algebra A' constructed from A is associative.

Proof. Suppose A is commutative and associative. Let $(a, b), (c, d), (e, f) \in A'$. Then

$$((a,b)(c,d))(e,f) = (ac - cb^*, a^*d + cb)(e,f)$$

$$= ((ac - db^*)e - f(a^*d + cb)^*, (ac - db^*)^*f + e(a^*d + cd))$$

$$= ((ac)e - (db^*)e - f(d^*a + b^*c^*), (c^*a^* - bd^*)f + e(a^*d) + e(cb))$$

$$= (((ac)e - (db^*)e - f(d^*c^*), (c^*a^*)f - (bd^*)f_e(a^*d) + e(cb))$$

$$= ((ac)e - f(d^*a) - f(b^*c^*) - (db^*)e,$$

$$(c^*a^*)f + e(a^*d) + e(cb) - (bd^*)f)$$

$$= (a(ce) - (fd^*)a - (fb^*)c^* - (db^*)e, (c^*a^*)f + (ea^*)d$$

$$+(ec)b - b(d^*f)) \text{ by associativity in } A$$

Proposition 2 (continued)

Proposition 2. *-algebra A is real (and thus commutative) if and only if Cayley-Dickson algebra A' constructed from A is commutative.

Proof (continued). With a = c = 0 we have for all $b, d \in A$ that $(-db^*,0)=(-bd^*,0)$. That is, $bd^*=db^*$ for all $b,d\in A$. Now by the definition of conjugation,

$$(db^*)^* = b^{**}d^* = bd^* = db^*$$

and so db^* is real for all $b, d \in A$. With d = 1, we have b^* is real for all $b \in A$; that is, $b^* = b$ is real for all $b \in A$ and so A is real, as claimed. \square

Proposition 3 (continued 1)

Proposition 3. *-algebra A is commutative and associative if and only if Cayley-Dickson algebra A' constructed from A is associative.

Proof (continued). ...
$$((a,b)(c,d))(e,f) =$$

- $= (a(ce) a(fd^*) c^*(fb^*) e(db^*), (a^*c^*)f + (a^*e)d + (ce)b$ $-(fd^*)b$) by commutativity in A (applied twice in the last product)
- $= (a(ce) a(fd^*) (c^*f)c^* (ed)b^*, a^*(c^*f) + a^*(ed) + (ce)b$ $-(fd^*)b$) by associativity in A
- $= (a(ce fd^*) (c^*f + ed)b^*, a^*(c^*f + ed) + (ce fd^*)b)$
- $= (a,b)(ce-fd^*,c^*f+ed) = (a,b)((c,d)(e,f)).$

That is, ((a,b)(c,d))(e,f) = (a,b)((c,d)(e,f)) and A is associative, as claimed.

Proposition 3 (continued 2)

Proposition 3. *-algebra A is commutative and associative if and only if Cayley-Dickson algebra A' constructed from A is associative.

Proof (continued). Suppose A' is associative. Then as computed above,

$$((a,c)e-f(d^*a)-f(b^*c^*)-(db^*)e,(c^*a^*)f+e(a^*d)+e(cb_-(bd^*)f)$$

$$=(a(ce)-a(fd^*)-(c^*f)b^*-(ed)b^*,a^*(c^*f)+a^*(ed)+(ce)b-(fd^*)b)$$
for all $a,b,c,d,e,f\in A$. With $b=d=f=0$ this implies
$$((ac)e,0)=(a(ce),0) \text{ and hence } (ac)e=a(ce) \text{ for all } a,c,e\in A; \text{ that is, } A \text{ is associative, as claimed. With } b=c=e=0 \text{ an } dd=1 \text{ we have } (-fa,0)=(-af,0) \text{ and hence } -fa=-af \text{ or } af=fa \text{ for all } a,f\in A; \text{ that is, } A \text{ is commutative, as claimed.}$$

Introduction to Modern Algebra

November 10, 2022

Introduction to Modern Algebra

November 10, 2022

Proposition 4 (continued 1)

Proposition 4. *-algebra A is associative and nicely normed if and only if Cayley-Dickson algebra A' constructed from A is alternative and nicely normed.

Proof (continued). ...

$$((a,b)(a,b))(c,d) = (aa - bb^*, a^*b + ab)(c,d)$$

$$= ((aa)c - a(db^*) - a^*(db^*) - c(bb^*), (a^*a^*)d + a^*(cb) + a(cb)$$

$$-d(b^*b)) \text{ since } bb^* = b^*b \text{ because } A \text{ is nicely normed}$$

$$= (a(ac) - a(db^*) - (a^*d)b^* - (cb)b^*, a^*(a^*d) + a^*(cb) + (ac)b$$

$$-(db^*)b) \text{ since } A \text{ is associative}$$

$$= (a(ac - db^*) - (a^*d + cb)b^*, a^*(a^*d + cb) + (ac - db^*)b)$$

$$= (a,b)(ac - db^*, a^*d + cb) = (a,b)((a,b)(c,d)).$$

That is, (aa)b = a(ab) for all $a, b \in A'$.

Proposition 4

Proposition 4. *-algebra A is associative and nicely normed if and only if Cayley-Dickson algebra A' constructed from A is alternative and nicely normed.

Proof. Suppose A is associative and nicely normed. Let $(a, b), (c, d) \in A'$. Then

$$((a,b)(a,b))(c,d) = (aa - bb^*, a^*b + ab)(c,d)$$

$$= ((aa - bb^*)c - d(a^*b + ab)^*, (aa - bb^*)^*d + c(a^*b + ab))$$

$$= ((aa)c - (bb^*)c - d(b^*a + b^*a^*), (a^*a^* - bb^*)d + c(a^*b + ab))$$

$$= ((aa)c - (bb^*)c - db^*(a + a^*), (a^*a^*)d - (bb^*)d + c(a^* + a)b)$$

$$= ((aa)c - c(bb^*) - (a + a^*)db^*, (a^*a^*)d - d(bb^*) + (a^* + a)cb)$$
since bb^* and $a + a^*$ are real by the definition of nicely normed
$$= ((aa)c - a(db^*) - a^*(db^*) - c(bb^*), (a^*a^*)d + a^*(cb) + a(cb)$$

$$-d(b^*b))$$
 since $bb^* = b^*b$ because A is nicely normed

Proposition 4 (continued 2)

Proposition 4. *-algebra A is associative and nicely normed if and only if Cayley-Dickson algebra A' constructed from A is alternative and nicely normed.

Proof (continued). Next, let $(a, b), (c, d) \in A'$. Then

$$((c,d)(a,b))(a,b) = (ca - bd^*, c^*b + ad)(a,b)$$

$$= ((ca - bd^*)a - b(c^*b + ad)^*, (ca - bd^*)^*b + a(c^*b + ad))$$

$$= ((ca - bd^*)a - b(b^*c + d^*a^*), (a^*c^* - db^*)b + a(c^*b + ad))$$

$$= ((ca)a - (bd^*)a - b(b^*c) - b(d^*a^*), (a^*c^*)b - (db^*)b + a(c^*b) + a(ad))$$

$$= (c(aa) - (bb^*)c - (bd^*)a - (bd^*)a^*, a^*(c^*b) + a(c^*b) + (aa)d - d(b^*b))$$
since $b^*b = bb^*$ because A is nicely normed

Proposition 4 (continued 3)

Proof (continued). ...

$$((c,d)(a,b))(a,b) = (ca - bd^*, c^*b + ad)(a,b)$$

$$= (c(aa) - (bb^*)c - (bd^*)(a + a^*), (a^* + a)(c^*b) + (aa)d - d(bb^*))$$

$$= (c(aa) - (bb^*)c - (bd^*)(a + a^*), ((a^* + a)c^*)b + (aa)d - d(bb^*))$$
by the associativity of A

$$= (c(aa) - (bb^*)c - (a + a^*)(bd^*), (c^*(a^* + a))b + (aa)d - d(bb^*))$$
since $a + a^* \in \mathbb{R}$ and so commutes with elements of A

$$= (c(aa) - (bb^*)c - a(bd^*) - a^*(bd^*), (c^*a^*)b + (c^*a)b + (aa)d - d(bb^*))$$

$$= (c(aa) - c(bb^*) - (a^*b)d^* - (ab)d^*, c^*(a^*b) + c^*(ab) + (aa)d - d(bb^*))$$
since $bb^* = b^*b$ because A is nicely normed
$$= (c(aa - bb^*) - (a^*b + ab)d^*, c^*(a^*b + ab) + (aa - bb^*)d)$$

$$= (c, d)(aa - bb^*, a^*b + ab) = (c, d)((a, b)(a, b)).$$
Introduction to Modern Algebra November 10, 2022 14 / 15

Proposition 4 (continued 5)

Proposition 4. *-algebra A is associative and nicely normed if and only if Cayley-Dickson algebra A' constructed from A is alternative and nicely normed.

Proof (continued). Also, for nonzero $(a, b) \in A'$, we have

$$(a,b)(a,b)^* = (a,b)(a^*,-b) = (aa^* - (-b)b^*, a^* - b) + a^*b)$$

$$= (aa^* + bb^*, -a^*b + a^*b) = (\|a\|^2 + \|b\|^2, 0)$$

$$= (a^*a + bb^*, ab - ab) = (a^*a - b(-b^*), ab + a(-b))$$

$$= (a^*,-b)(a,b) = (a,b)^*(a,b) > 0.$$

So, be definition, A' is nicely normed as claimed.

Finally, suppose A' is alternative and nicely normed. Then for all $a, b \in A$ we have $(a, b) + (a, b)^* = (a + a^*, 0)$ is real. That is,

$$(a + a^*, 0)^* = ((a + a^*)^*, 0) = (a^* + a^{**}, 0) = (a + a^*, 0).$$

Hence, $(a + a^*)^* = a + a^*$ (i.e., a is real) for all $a \in A$.

Proposition 4 (continued 4)

Proposition 4. *-algebra A is associative and nicely normed if and only if Cayley-Dickson algebra A' constructed from A is alternative and nicely normed.

Proof (continued). That is, (ba)a = b(aa) for all $a, b \in A'$. Therefore, by Schafer's Theorem 3.1, A' is alternative, as claimed.

We now show that A' is nicely normed. Since A is nicely normed then, by definition, $a + a^* \in \mathbb{R}$ and $aa^* = a^*a > 0$ for all nonzero $a \in A$. Let $(a,b) \in A'$. Then

$$(a,b) + (a,b)^* = (a,b) + (a^*,-b)$$
 be equation (3)
= $(a+a^*,b-b) = (a+a^*,0)$

and $(a + a^*, 0)^* = (a^* + a^{**}, 0) = (a + a^*, 0)$ so that $(a, b) + (a, b)^*$ is real for all $(a, b) \in A'$.

Introduction to Modern Algebra

November 10, 2022

Proposition 4 (continued 6)

Proof (continued). Also, for nonzero $a \in A$ and for all $b \in A$ we have (as shown above)

$$(a,b)(a,b)^* = (a,b)^*(a,b) = (\|a\|^2 + \|b\|^2, 0) > 0.$$

In particular, with b=0 we have that $aa^*=a^*a=\|a\|^2>0$. That is, A is nicely normed.

Since A' is alternative then, by Schafer's Theorem 3.1, we have for all $a, b, c, d \in A$ that ((a, b)(a, b))(c, d) = (a, b)((a, b)(c, d)). As computed at the beginning of the proof (under the assumption that A is nicely normed), we have

$$((a,b)(a,b))(c,d) = ((aa)c - a(db^*) - a^*(db^*) - c(bb^*),$$

 $(a^*a^*)d + a^*(cb) + a(cb) - d(b^*b)$. By direct computation (also at the beginning of the proof) we have

$$(a,b)((a,b)(c,d)) = (a(ac) - a(db^*) - a^*d)b^* - (cb)b^*, a^*(a^*d) + a^*(cb) + (ac)b - (db^*)b).$$

Proposition 4 (continued 7)

Proposition 4. *-algebra A is associative and nicely normed if and only if Cayley-Dickson algebra A' constructed from A is alternative and nicely normed.

Proof (continued). So we must have

$$(a^*a^*)d + a^*(cb) + a(cb) - d(b^*b) = a^*(a^*d) + a^*(cb) + (ac)b - (db^*)b$$
 (*)

Since A' is alternative then so is A (since it is isomorphic to a subalgebra of A'), and so $(a^*a^*)d = a^*(a^*d)$ and $d(b^*b) = (db^*)b$. So from (*) we have a(cb) = (ac)b for all $a, b, c \in A$, and hence A is associative as claimed.

Proposition 5

Proposition 5. *-algebra A is nicely normed if and only if Cayley-Dickson algebra A' constructed from A is nicely normed.

Proof. In Proposition 4, it is shown that if A' is nicely normed then A is nicely normed.

Suppose A is nicely normed. Then for all nonzero $a \in A$ we have $a + a^* \in \mathbb{R}$ and $aa^* = a^*a > 0$. Let $(a,b) \in A'$. Then $(a,b) + (a,b)^* = (a,b) + (a^*,-b) = (a+a^*,0)$ and since $(a+a^*,0)^* = ((a+a^*)^*,-0) = (a+a^*,0)$ then $(a,b) + (a,b)^*$ is real. Also, for nonzero $(a,b) \in A'$ we have $(a,b)(a,b)^* = (a,b)(a^*,-b) = (aa^* - (-b)b^*,a^*(-b) + a^*b) = (aa^* + bb^*,0) = (\|a\|^2 + \|b\|^2,0) > 0$ and $(a,b)^*(a,b) = (a^*,-b)(a,b) = (a^*a-b(-b^*),a^{**}b+a(-b)) = (aa^*+bb^*,ab-ab) = (\|a\|^2 + \|b\|^2,0) = (a,b)(a,b)^*$. Therefore A' is nicely normed, as claimed.