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Theorem CD.3

Theorem CD.3

Theorem CD.3. If algebra A is nicely normed and alternative, then A is a
normed division algebra.

Proof. Recall that a normed division algebra is an algebra that is also a
normed vector space with ‖ab‖ = ‖a‖‖b‖ for all a, b ∈ A. If A is nicely
normed, then aa∗ = a∗a > 0 and the norm is given by ‖a‖ =

√
aa∗. Let

a, b ∈ A. Then the subalgebra generated by Im(a) and Im(b) is associative
(because A is alternative; see the definition of “alternative”) and includes
a, b, a∗, b∗.

We now have

‖ab‖2 = (ab)(ab)∗ by the definition of the norm

= (ab)(b∗a∗) by the definition of conjugation

= ((ab)b∗)a = (a(bb∗))a∗ by associativity

= (a‖b‖2)a∗ by the definition of the norm
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Theorem CD.3

Theorem CD.3 (continued)

Theorem CD.3. If ∗-algebra A is nicely normed and alternative, then A is
a normed division algebra.

Proof (continued). . . .

‖ab‖2 = (a‖b‖2)a∗ by the definition of the norm

= a(‖b‖2a∗) by associativity

= aa∗‖b‖2 since ‖b‖2 is real and so commutes with a∗

= ‖a‖2‖b‖2 by the definition of the norm.

Therefore ‖ab‖ = ‖a‖‖b‖ and so A is a normed division algebra, as
claimed.
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Proposition 1

Proposition 1

Proposition 1. Starting with any ∗-algebra A, the new ∗-algebra A′ that
results from the Cayley-Dickson Construction is not real.

Proof. Let a, b ∈ A and consider (a, b) ∈ A′. If (a, b) is real, then we
must have (a, b) = (a, b)∗ = (a∗,−b). But this implies that a = a∗ (so
that a must be real) and b = −b (so that b must be 0 ∈ A). We take A
to contain more than just 0, so that we do not have (a, b) = (a, b)∗ for all
a, b ∈ A. That is, A′ is not real, as claimed.
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Proposition 2

Proposition 2

Proposition 2. ∗-algebra A is real (and thus commutative) if and only if
Cayley-Dickson algebra A′ constructed from A is commutative.

Proof. First, suppose that ∗-algebra A is real (that is, a = a∗ for all
a ∈ A). Then for (a, b), (c , d) ∈ A′, we have the product:

(a, b)(c , d) = (ac − db∗, a∗d + cb) by definition of multiplication in A′

= (ca− bd∗, c∗b + ad) since A is real and commutative

= (c , d)(a, b).

Since (a, b) and (c , d) are arbitrary elements of A′, then A′ is
commutative as claimed.

Next, suppose A′ is commutative. Then for (a, b), (c , d) ∈ A′, we must
have (a, b)(c , d) = (c , d)(a, b); that is,
(ac − db∗, a∗d + cb) = (ca− bd∗, c∗b + ad). In particular, with
b = d = 0 we have for all a, c ∈ A that (ac, 0) = (ca, 0). That is, ac = ca
for all a, c ∈ A and so A is commutative, as claimed.
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Proposition 2

Proposition 2 (continued)

Proposition 2. ∗-algebra A is real (and thus commutative) if and only if
Cayley-Dickson algebra A′ constructed from A is commutative.

Proof (continued). With a = c = 0 we have for all b, d ∈ A that
(−db∗, 0) = (−bd∗, 0). That is, bd∗ = db∗ for all b, d ∈ A. Now by the
definition of conjugation,

(db∗)∗ = b∗∗d∗ = bd∗ = db∗

and so db∗ is real for all b, d ∈ A. With d = 1, we have b∗ is real for all
b ∈ A; that is, b∗ = b is real for all b ∈ A and so A is real, as claimed.
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Proposition 3

Proposition 3

Proposition 3. ∗-algebra A is commutative and associative if and only if
Cayley-Dickson algebra A′ constructed from A is associative.

Proof. Suppose A is commutative and associative. Let
(a, b), (c , d), (e, f ) ∈ A′. Then(

(a, b)(c , d)
)
(e, f ) =

(
ac − cb∗, a∗d + cb

)
(e, f )

=
(
(ac − db∗)e − f (a∗d + cb)∗, (ac − db∗)∗f + e(a∗d + cd)

)
=

(
(ac)e − (db∗)e − f (d∗a + b∗c∗), (c∗a∗ − bd∗)f + e(a∗d) + e(cb)

)
=

(
((ac)e − (db∗)e − f (d∗c∗), (c∗a∗)f − (bd∗)fe(a

∗d) + e(cb)
)

=
(
(ac)e − f (d∗a)− f (b∗c∗)− (db∗)e,

(c∗a∗)f + e(a∗d) + e(cb)− (bd∗)f
)

=
(
a(ce)− (fd∗)a− (fb∗)c∗ − (db∗)e, (c∗a∗)f + (ea∗)d

+(ec)b − b(d∗f )
)

by associativity in A
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Proposition 3

Proposition 3 (continued 1)

Proposition 3. ∗-algebra A is commutative and associative if and only if
Cayley-Dickson algebra A′ constructed from A is associative.

Proof (continued). . . .
(
(a, b)(c , d)

)
(e, f ) =

=
(
a(ce)− a(fd∗)− c∗(fb∗)− e(db∗), (a∗c∗)f + (a∗e)d + (ce)b

−(fd∗)b
)

by commutativity in A (applied twice in the last product)

=
(
a(ce)− a(fd∗)− (c∗f )c∗ − (ed)b∗, a∗(c∗f ) + a∗(ed) + (ce)b

−(fd∗)b
)

by associativity in A

=
(
a(ce − fd∗)− (c∗f + ed)b∗, a∗(c∗f + ed) + (ce − fd∗)b

)
= (a, b)(ce − fd∗, c∗f + ed) = (a, b)

(
(c , d)(e, f )

)
.

That is,
(
(a, b)(c , d)

)
(e, f ) = (a, b)

(
(c , d)(e, f )

)
and A is associative, as

claimed.
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Proposition 3

Proposition 3 (continued 2)

Proposition 3. ∗-algebra A is commutative and associative if and only if
Cayley-Dickson algebra A′ constructed from A is associative.

Proof (continued). Suppose A′ is associative. Then as computed above,(
(a, c)e − f (d∗a)− f (b∗c∗)− (db∗)e, (c∗a∗)f + e(a∗d) + e(cb−(bd∗)f

)
=

(
a(ce)− a(fd∗)− (c∗f )b∗ − (ed)b∗, a∗(c∗f ) + a∗(ed) + (ce)b− (fd∗)b

)
for all a, b, c , d , e, f ∈ A.

With b = d = f = 0 this implies(
(ac)e, 0

)
=

(
a(ce), 0

)
and hence (ac)e = a(ce) for all a, c , e ∈ A; that is,

A is associative, as claimed. With b = c = e = 0 an dd = 1 we have
(−fa, 0) = (−af , 0) and hence −fa = −af or af = fa for all a, f ∈ A; that
is, A is commutative, as claimed.
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Proposition 4

Proposition 4

Proposition 4. ∗-algebra A is associative and nicely normed if and only if
Cayley-Dickson algebra A′ constructed from A is alternative and nicely
normed.

Proof. Suppose A is associative and nicely normed. Let (a, b), (c , d) ∈ A′.
Then (

(a, b)(a, b)
)
(c , d) = (aa− bb∗, a∗b + ab)(c , d)

=
(
(aa− bb∗)c − d(a∗b + ab)∗, (aa− bb∗)∗d + c(a∗b + ab)

)
=

(
(aa)c − (bb∗)c − d(b∗a + b∗a∗), (a∗a∗ − bb∗)d + c(a∗b + ab)

)
=

(
(aa)c − (bb∗)c − db∗(a + a∗), (a∗a∗)d − (bb∗)d + c(a∗ + a)b

)
=

(
(aa)c − c(bb∗)− (a + a∗)db∗, (a∗a∗)d − d(bb∗) + (a∗ + a)cb

)
since bb∗ and a + a∗ are real by the definition of nicely normed

=
(
(aa)c − a(db∗)− a∗(db∗)− c(bb∗), (a∗a∗)d + a∗(cb) + a(cb)

−d(b∗b)
)

since bb∗ = b∗b because A is nicely normed
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Proposition 4

Proposition 4 (continued 1)

Proposition 4. ∗-algebra A is associative and nicely normed if and only if
Cayley-Dickson algebra A′ constructed from A is alternative and nicely
normed.

Proof (continued). . . .(
(a, b)(a, b)

)
(c , d) = (aa− bb∗, a∗b + ab)(c , d)

=
(
(aa)c − a(db∗)− a∗(db∗)− c(bb∗), (a∗a∗)d + a∗(cb) + a(cb)

−d(b∗b)
)

since bb∗ = b∗b because A is nicely normed

=
(
a(ac)− a(db∗)− (a∗d)b∗ − (cb)b∗, a∗(a∗d) + a∗(cb) + (ac)b

−(db∗)b
)

since A is associative

=
(
a(ac − db∗)− (a∗d + cb)b∗, a∗(a∗d + cb) + (ac − db∗)b

)
= (a, b)(ac − db∗, a∗d + cb) = (a, b)

(
(a, b)(c , d)

)
.

That is, (aa)b = a(ab) for all a, b ∈ A′.
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Proposition 4

Proposition 4 (continued 2)

Proposition 4. ∗-algebra A is associative and nicely normed if and only if
Cayley-Dickson algebra A′ constructed from A is alternative and nicely
normed.

Proof (continued). Next, let (a, b), (c , d) ∈ A′. Then(
(c , d)(a, b)

)
(a, b) = (ca− bd∗, c∗b + ad)(a, b)

=
(
(ca− bd∗)a− b(c∗b + ad)∗, (ca− bd∗)∗b + a(c∗b + ad)

)
=

(
(ca− bd∗)a− b(b∗c + d∗a∗), (a∗c∗ − db∗)b + a(c∗b + ad)

)
=

(
(ca)a− (bd∗)a− b(b∗c)− b(d∗a∗), (a∗c∗)b − (db∗)b

+a(c∗b) + a(ad)
)

=
(
c(aa)− (bb∗)c − (bd∗)a− (bd∗)a∗, a∗(c∗b) + a(c∗b)

+(aa)d − d(b∗b)
)

since A is associative

=
(
c(aa)− (bb∗)c − (bd∗)(a + a∗), (a∗ + a)(c∗b) + (aa)d − d(bb∗)

)
since b∗b = bb∗ because A is nicely normed
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Proposition 4

Proposition 4 (continued 3)

Proof (continued). . . .(
(c , d)(a, b)

)
(a, b) = (ca− bd∗, c∗b + ad)(a, b)

=
(
c(aa)− (bb∗)c − (bd∗)(a + a∗), (a∗ + a)(c∗b) + (aa)d − d(bb∗)

)
=

(
c(aa)− (bb∗)c − (bd∗)(a + a∗), ((a∗ + a)c∗)b + (aa)d − d(bb∗)

)
by the associativity of A

=
(
c(aa)− (bb∗)c − (a + a∗)(bd∗), (c∗(a∗ + a))b + (aa)d − d(bb∗)

)
since a + a∗ ∈ R and so commutes with elements of A

=
(
c(aa)− (bb∗)c − a(bd∗)− a∗(bd∗), (c∗a∗)b + (c∗a)b + (aa)d

−d(bb∗)
)

=
(
c(aa)− c(bb∗)− (a∗b)d∗ − (ab)d∗, c∗(a∗b) + c∗(ab) + (aa)d

−d(bb∗)
)

since bb∗ = b∗b because A is nicely normed

=
(
c(aa− bb∗)− (a∗b + ab)d∗, c∗(a∗b + ab) + (aa− bb∗)d

)
= (c , d)(aa− bb∗, a∗b + ab) = (c , d)

(
(a, b)(a, b)

)
.
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Proposition 4

Proposition 4 (continued 4)

Proposition 4. ∗-algebra A is associative and nicely normed if and only if
Cayley-Dickson algebra A′ constructed from A is alternative and nicely
normed.

Proof (continued). That is, (ba)a = b(aa) for all a, b ∈ A′. Therefore,
by Schafer’s Theorem 3.1, A′ is alternative, as claimed.

We now show that A′ is nicely normed. Since A is nicely normed then, by
definition, a + a∗ ∈ R and aa∗ = a∗a > 0 for all nonzero a ∈ A. Let
(a, b) ∈ A′. Then

(a, b) + (a, b)∗ = (a, b) + (a∗,−b) be equation (3)

= (a + a∗, b − b) = (a + a∗, 0)

and (a + a∗, 0)∗ = (a∗ + a∗∗, 0) = (a + a∗, 0) so that (a, b) + (a, b)∗ is real
for all (a, b) ∈ A′.
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Proposition 4

Proposition 4 (continued 5)

Proposition 4. ∗-algebra A is associative and nicely normed if and only if
Cayley-Dickson algebra A′ constructed from A is alternative and nicely
normed.

Proof (continued). Also, for nonzero (a, b) ∈ A′, we have

(a, b)(a, b)∗ = (a, b)(a∗,−b) = (aa∗ − (−b)b∗, a∗ − b) + a∗b)

= (aa∗ + bb∗,−a∗b + a∗b) = (‖a‖2 + ‖b‖2, 0)

= (a∗a + bb∗, ab − ab) = (a∗a− b(−b∗), ab + a(−b))

= (a∗,−b)(a, b) = (a, b)∗(a, b) > 0.

So, be definition, A′ is nicely normed as claimed.

Finally, suppose A′ is alternative and nicely normed. Then for all a, b ∈ A
we have (a, b) + (a, b)∗ = (a + a∗, 0) is real. That is,

(a + a∗, 0)∗ = ((a + a∗)∗, 0) = (a∗ + a∗∗, 0) = (a + a∗, 0).

Hence, (a + a∗)∗ = a + a∗ (i.e., a is real) for all a ∈ A.
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Proposition 4

Proposition 4 (continued 6)

Proof (continued). Also, for nonzero a ∈ A and for all b ∈ A we have (as
shown above)

(a, b)(a, b)∗ = (a, b)∗(a, b) = (‖a‖2 + ‖b‖2, 0) > 0.

In particular, with b = 0 we have that aa∗ = a∗a = ‖a‖2 > 0. That is, A is
nicely normed.

Since A′ is alternative then, by Schafer’s Theorem 3.1, we have for all
a, b, c , d ∈ A that

(
(a, b)(a, b)

)
(c , d) = (a, b)

(
(a, b)(c , d)

)
. As computed

at the beginning of the proof (under the assumption that A is nicely
normed), we have(
(a, b)(a, b)

)
(c , d) =

(
(aa)c − a(db∗)− a∗(db∗)− c(bb∗),

(a∗a∗)d + a∗(cb) + a(cb)− d(b∗b)
)
. By direct computation (also at the

beginning of the proof) we have
(a, b)

(
(a, b)(c , d)

)
= (a(ac)− a(db∗)− a∗d)b∗ − (cb)b∗,

a∗(a∗d) + a∗(cb) + (ac)b − (db∗)b
)
.
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Proposition 4

Proposition 4 (continued 7)

Proposition 4. ∗-algebra A is associative and nicely normed if and only if
Cayley-Dickson algebra A′ constructed from A is alternative and nicely
normed.

Proof (continued). So we must have

(a∗a∗)d+a∗(cb)+a(cb)−d(b∗b) = a∗(a∗d)+a∗(cb)+(ac)b−(db∗)b (∗)

Since A′ is alternative then so is A (since it is isomorphic to a subalgebra
of A′), and so (a∗a∗)d = a∗(a∗d) and d(b∗b) = (db∗)b. So from (∗) we
have a(cb) = (ac)b for all a, b, c ∈ A, and hence A is associative as
claimed.

() Introduction to Modern Algebra November 10, 2022 18 / 19



Proposition 5

Proposition 5

Proposition 5. ∗-algebra A is nicely normed if and only if Cayley-Dickson
algebra A′ constructed from A is nicely normed.

Proof. In Proposition 4, it is shown that if A′ is nicely normed then A is
nicely normed.

Suppose A is nicely normed. Then for all nonzero a ∈ A we have
a + a∗ ∈ R and aa∗ = a∗a > 0. Let (a, b) ∈ A′. Then
(a, b) + (a, b)∗ = (a, b) + (a∗,−b) = (a + a∗, 0) and since
(a + a∗, 0)∗ = ((a + a∗)∗,−0) = (a + a∗, 0) then (a, b) + (a, b)∗ is real.
Also, for nonzero (a, b) ∈ A′ we have (a, b)(a, b)∗ = (a, b)(a∗,−b) =
(aa∗ − (−b)b∗, a∗(−b) + a∗b) = (aa∗ + bb∗, 0) = (‖a‖2 + ‖b‖2, 0) > 0
and (a, b)∗(a, b) = (a∗,−b)(a, b) = (a∗a− b(−b∗), a∗∗b + a(−b)) =
(aa∗ + bb∗, ab − ab) = (‖a‖2 + ‖b‖2, 0) = (a, b)(a, b)∗. Therefore A′ is
nicely normed, as claimed.
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