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Theorem 7.2.1

Theorem 7.2.1

Theorem 7.2.1. (Wedderburn’s Little Theorem) A finite division ring
is necessarily a field.

Proof. Let K be a finite division ring and let
Z = {z ∈ K | zx = xz for allx ∈ K} be its center. Then Z is a
commutative division ring; i.e., Z is a field. Treat K as a vector space over
scalar field Z (here, linear combinations in Z are defined as other elements
of K ; K contains a 0 vector and all the needed distribution, associativity,
and commutativity rules apply so that we indeed have a vector space).

Every vector space has a basis by the Axiom of Choice (see my online
notes for Fundamentals of Functional Analysis [MATH 5740] on Section
5.1. Groups, Fields, and Vector Spaces; notice Theorem 5.1.4), so for
some v1, v2, . . . , vn ∈ K we have that every element of K has a unique
representation in the form α1v1 + α2v2 + · · · + αnvn where
α1, α2, . . . , αn ∈ Z . So the number of elements in K is determined by the
number of possible n-tuples (α1, α2, · · · , αn) of elements of Z .
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Theorem 7.2.1

Theorem 7.2.1 (continued 1)

Theorem 7.2.1. (Wedderburn’s Little Theorem) A finite division ring
is necessarily a field.

Proof (continued). Therefore, if Z has q elements, then K has qn

elements. We will show that n = 1 and hence Z = K so that K is a field.

For a ∈ K , define N(a) = {x ∈ K | xa = ax} (the elements of K that
commute with a). Then N(a) contains Z . Notice that for each a, N(z)
includes 0 and 1, and is closed under addition and multiplication so that
N(z) is a sub-division ring of K . As argued above, we can treat N(a) as a
vector space over field Z and so N(z) contains qn(a) elements for some
n(a) ∈ N.

Since K and N(a) are division rings, then their nonzero
elements form a group under multiplication (of orders qn − 1 and
qn(a) − 1, respectively). Since N(a) under multiplication is a subgroup of
K , then by Lagrange’s Theorem we have that qn(a) − 1 divides qn − 1.
This implies, by Problem 7.2.1, that n(a) divides n.
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Theorem 7.2.1

Theorem 7.2.1 (continued 2)

Theorem 7.2.1. (Wedderburn’s Little Theorem) A finite division ring
is necessarily a field.

Proof (continued). Recall that the normalizer of a in group K is the set
{x ∈ K | xa = ax} (see Section 2.11. Another Counting Principle). The
number of elements in K that are conjugate to a is the index of the
normalizer of a in the multiplicative group of nonzero elements of K by
Herstein’s Theorem 2.11.1; Hungerford calls the set {x ∈ K | xa = ax} the
centralizer of a, and Herstein’s Theorem 2.11.1 corresponds to
Hungerford’s Corollary II.4.4(i) (see Section II.4. The Action of a Group on
a Set). The group of nonzero elements of K has qn − 1 elements and the
nonzero elements of the centralizer of a has qn(a) − 1 elements. Again by
Lagrange’s Theorem the index is (qn − 1)/qn(a) − 1) so that this is the
number of conjugates of a in K . Now a ∈ Z (the center of K ) if and only
if a commutes with all elements of K so that a ∈ Z if and only if
qn(a) = qn (i.e., n(a) = n).
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Theorem 7.2.1

Theorem 7.2.1 (continued 3)

Proof (continued). By the class equation as applied to the groups of
nonzero elements of K and N(a) we have

(
Order of group of

nonzero elements of k

)
=
∑ (

Order of group of
nonzero elements of k)

)
(Order of the normalizer of a)

where the sum runs over one element a of each conjugacy class; this
follows from Herstein’s Corollary to Theorem 2.11.1, and from
Hungerford’s Corollary II.4.4(ii) and Lagrange’s Theorem. Since the
nonzero elements of Z form one conjugacy class of a (the class for which
n(a) = n), then the equation becomes

qn − 1 = (q − 1) +
∑

n(a)|n, n(a) 6=n

qn − 1

qn(a) − 1
(1)

where the sum runs over one element a of each conjugacy class, except for
the conjugacy class of the nonzero elements of Z .
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Theorem 7.2.1

Theorem 7.2.1 (continued 4)

Proof (continued). We will show that equation (1) has no integer
solution, except when n = 1 (s that the summation is not present).

Note. Wedderburn’s original paper followed the above approach up to this
point. He then used number theoretic results to conclude his proof. Very
much to Herstein’s credit, he gives an alternative argument so that all
steps can be justified.

We’ll show the existence of an integer which divides each
(qn − 1)/(qn(a) − 1) for all divisors n(a) of n except n(a) = n (and so
divides qn − 1 also) but does not divide q − 1. But no such integer can
exist, unless n = 1 and the sum is not present. We use the theory of
cyclotomic polynomials (covered in the problems at the end of Herstein’s
Section 5.6. The Elements of Galois Theory, in Fraleigh’s book in Section
IV..23. Factorizations of Polynomials over a Field and Section X.55.
Cyclotomic Extensions, and in Hungerford’s Section V.8. Cyclotomic
Extensions).

() Introduction to Modern Algebra January 12, 2023 7 / 16

https://faculty.etsu.edu/gardnerr/4127/notes/IV-23.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/IV-23.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/X-55.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/X-55.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/V-8.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/V-8.pdf


Theorem 7.2.1

Theorem 7.2.1 (continued 4)

Proof (continued). We will show that equation (1) has no integer
solution, except when n = 1 (s that the summation is not present).

Note. Wedderburn’s original paper followed the above approach up to this
point. He then used number theoretic results to conclude his proof. Very
much to Herstein’s credit, he gives an alternative argument so that all
steps can be justified.

We’ll show the existence of an integer which divides each
(qn − 1)/(qn(a) − 1) for all divisors n(a) of n except n(a) = n (and so
divides qn − 1 also) but does not divide q − 1. But no such integer can
exist, unless n = 1 and the sum is not present. We use the theory of
cyclotomic polynomials (covered in the problems at the end of Herstein’s
Section 5.6. The Elements of Galois Theory, in Fraleigh’s book in Section
IV..23. Factorizations of Polynomials over a Field and Section X.55.
Cyclotomic Extensions, and in Hungerford’s Section V.8. Cyclotomic
Extensions).

() Introduction to Modern Algebra January 12, 2023 7 / 16

https://faculty.etsu.edu/gardnerr/4127/notes/IV-23.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/IV-23.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/X-55.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/X-55.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/V-8.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/V-8.pdf


Theorem 7.2.1

Theorem 7.2.1 (continued 4)

Proof (continued). We will show that equation (1) has no integer
solution, except when n = 1 (s that the summation is not present).

Note. Wedderburn’s original paper followed the above approach up to this
point. He then used number theoretic results to conclude his proof. Very
much to Herstein’s credit, he gives an alternative argument so that all
steps can be justified.

We’ll show the existence of an integer which divides each
(qn − 1)/(qn(a) − 1) for all divisors n(a) of n except n(a) = n (and so
divides qn − 1 also) but does not divide q − 1. But no such integer can
exist, unless n = 1 and the sum is not present. We use the theory of
cyclotomic polynomials (covered in the problems at the end of Herstein’s
Section 5.6. The Elements of Galois Theory, in Fraleigh’s book in Section
IV..23. Factorizations of Polynomials over a Field and Section X.55.
Cyclotomic Extensions, and in Hungerford’s Section V.8. Cyclotomic
Extensions).

() Introduction to Modern Algebra January 12, 2023 7 / 16

https://faculty.etsu.edu/gardnerr/4127/notes/IV-23.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/IV-23.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/X-55.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/X-55.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/V-8.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/V-8.pdf


Theorem 7.2.1

Theorem 7.2.1 (continued 5)

Proof (continued). As observed in Notes 7.2.A, we have that the
cyclotomic polynomials Φn(x) and the polynomial xn − 1 ∈ C[x ] are
related as

xn − 1 =
∏
d |n

Φd(x), (3)

and that each Φn(x) is a monic polynomial with integer coefficients.

We now claim for any divisor d of n where d 6= n, that Φd(x) divides
(xn − 1)/(xd − 1) in the sense that the quotient is a polynomial with
integer coefficients. From equation (3) above we have

xd − 1 =
∏
k|d

Φ)k(x). Now every divisor of d is also a divisor of n, so from

the fact that xn − 1 =
∏
k|n

Φd(x) (from equation (3)), we see that we can

rearrange some of the Φd(x) to produce xd − 1.
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Theorem 7.2.1

Theorem 7.2.1 (continued 6)

Proof (continued). Explicitly, let K = {k1, k2, . . . , k`} where ki ∈ K if
and only if ki | d and we have

xn − 1 =
∏
d |n

Φd(x) =
∏
k|n

Φ(x) =
∏

k|n,k∈K

Φk(x)
∏

k|n,k 6∈K

Φk(x)

= Φn(x)
∏

k|n,k∈K

Φk(x)
∏

k|n,k 6∈K ,k 6=n

Φk(x) = Φn(x)(xd − 1)f (x)

where f (x) =
∏

k|n,k∈K ,k 6=n

Φk(x) =
∏

k|n,k-d

Φk(x). Hence Φd(x) divides

(xn − 1)/(xd − 1) and the quotient is f (x); since f (x) is a product of
cyclotomic polynomials then (by Note 7.2.A) f (x) has integer coefficients,
as claimed.

If t ∈ Z where t 6= 1 then Φn(x) ∈ Z and, as just argued, integer Φn(t)
divides (tn − 1)/(td − 1) (namely, f (t) times).
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Theorem 7.2.1

Theorem 7.2.1 (continued 7)

Theorem 7.2.1. (Wedderburn’s Little Theorem) A finite division ring
is necessarily a field.

Proof (continued). Recall equation (1) (where q is the number of
elements in the center of the finite division ring):

qn − 1 = (q − 1) +
∑

n(a)|n, n(a) 6=n

qn − 1

qn(a) − 1
(1)

where n(a) is the number of elements in N(a) (the elements of the division
ring that commute with a). For n(a) which divide n (the n(a) over which
we sum in equation (1)) we have that Φn(q) divides (qn − 1)/(qn(a) − 1)
(taking t = q and d = n(a) above).

ASSUME n > 1. We have Φn(q) =
∏

)q − θ) where θ runs over all
primitive nth roots of 1. But for all θ an nth primitive root of 1 (notice 1
is not itself a primitive nth root)we have |q − θ| > q − 1 by Exercise
7.2.10. Whence |Φn(q)| =

∏
|q − θ| > q − 1.
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Theorem 7.2.1

Theorem 7.2.1 (continued 8)

Theorem 7.2.1. (Wedderburn’s Little Theorem) A finite division ring
is necessarily a field.

Proof (continued). But then we cannot have Φn(q) as a divisor of q − 1,
a CONTRADICTION. So the assumption that n > 1 is false, and hence
n = 1. As described above, with n = 1 we have that finite division ring K
equals its center Z so that K is a commutative division ring. That is, K is
a field, as claimed.
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Lemma 7.2.1

Lemma 7.2.1

Lemma 7.2.1. Let R be a ring and let a ∈ R. Let Ta be the mapping of
R into itself defined by xTa = xa − xa (so xTa is the commutator of x and
a. Then iterating Ta m times gives

aTm
a = xam − maxam−1 +

m(m − 1)

2
a2xam−2

−m(m − 1)(m − 2)

3!
a3xam−3 + · · · + (−1)m−1mam−1xa

+(−1)mamx =
m∑

k=0

(
m

k

)
(−1)kakxam−k .

Proof. We give an inductive proof. For the base case m = 1 we have

xT 1
a =

1∑
k=0

(
1

k

)
(−1)kakxa1−k = xa − ax .
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Lemma 7.2.1

Lemma 7.2.1 (continued 1)

Proof (continued). Also notice that for m = 2 we have

xT 2
a = (xa − ax)Ta = (xa − ax)a − a(xa − ax)

= xa2 − 2axa + a2x =
2∑

k=0

(
2

k

)
(−1)kakxa2−k .

For the induction hypothesis, suppose m = n and

xT n
a =

n∑
k=0

(
n

k

)
(−1)kakxan−k

and consider m = n + 1. We have

xT n+1
a = (xT n

a )Ta =

(
n∑

k=0

(
n

k

)
(−1)kakxan−k

)
Ta
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Lemma 7.2.1

Lemma 7.2.1 (continued 2)

Proof (continued). . . .

xT n+1
a =

(
n∑

k=0

(
n

k

)
(−1)kakxan−k

)
a − a

(
n∑

k=0

(
n

k

)
(−1)kakxan−k

)

=
n∑

k=0

(
n

k

)
(−1)kakxan−k+1 −

n∑
k=0

(
n

k

)
(−1)kak+1xan−k

=
n∑

k=0

(
n

k

)
(−1)kakxan−k+1 −

n∑
k=1

(
n

k − 1

)
(−1)k−1akxan−k+1

−(−1)nan+1x

= xan+1 +
n∑

k=1

(
n

k

)
(−1)kakxan−k+1

−
n∑

k=1

(
n

k − 1

)
(−1)k−1akxan−k+1 − (−1)nan+1x
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Lemma 7.2.1

Lemma 7.2.1 (continued 3)

Proof (continued). . . .

xT n+1
a = xan+1 +

n∑
k=1

((
n

k

)
+

(
n

n − 1

))
(−1)kakxan−k+1

−(−1)nan+1x

= xan+1 +
n∑

k=1

((
n + 1

k

)
+

(
n

n − 1

))
(−1)kakxan−k+1

−(−1)nan+1x since

(
n

k − 1

)
+

(
n

k

)
=

(
n + 1

k

)
=

n∑
k=0

(
n + 1

k

)
(−1)kakxa(n+1)−k .

So the result holds for m = n + 1, establishing the induction step.
Therefore the equation holds for all m ∈ N, as claimed.
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Corollary 7.2.A

Corollary 7.2.A

Corollary 7.2.A. If R is a ring in which px = 0 for all x ∈ R, where p is a
prime number, then xT pm

a = xapm − apm
x .

Proof. First, consider the prime p = 2. By Lemma 7.2.1 we have
xT 2

a = xa2 + 2axa− a2x = xa2 − a2x since 2axa = 0. If p is an odd prime,
Lemma 7.2.1 gives

xT p
a =

p∑
k=0

(
p

k

)
(−1)kakxap−k .

Since p divides

(
p

k

)
=

p(p − 1) · · · (p − k + 1)

k!
for all 1 ≤ k ≤ p, then all

terms equal zero except for the first and last so that xT p
a = xap − apx . We

give an inductive proof and take these equalities as the base case m = 1.

For the induction hypothesis, suppose the result holds for m = k and

xT pk

a = xapk − apk
x . ...
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