Introduction to Modern Algebra #### **Section 7.3. A Theorem of Frobenius**—Proofs of Theorems Introduction to Modern Algebra October 23, 2022 #### Lemma 7.3.1 **Lemma 7.3.1.** Let \mathbb{C} be the field of complex numbers and suppose that the division ring D is algebraic over \mathbb{C} . Then $D = \mathbb{C}$. **Proof.** Let $a \in D$. Since D is algebraic over \mathbb{C} , then by definition $a^n + \alpha_1 a^{n-1} + \cdots + \alpha_{n-1} a + \alpha_n = 0$ for some $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{C}$ (we an take the leading coefficient $\alpha_0 = 1$ without loss of generality). Now the polynomial $p(x) = x^n + \alpha_1 x^{n-1} + \cdots + \alpha_{n-1} x + \alpha_n \in \mathbb{C}[x]$ can be factored in $\mathbb{C}[x]$ into a product of linear factors by Fact 1 and the Factor Theorem (see my online notes for Introduction to Modern Algebra [MATH 4127/5127] on Section IV.23. Factorizations of Polynomials; notice Corollary 23.3, "The Factor Theorem"). Therefore, $p(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n)$ where $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$. Since \mathbb{C} is in the center of D then every element of $\mathbb C$ commutes with a, and hence $$p(a) = (a - \lambda_1)(a - \lambda_2) \cdots (a - \lambda_n) = a^n + \alpha_1 a^{n-1} + \cdots + \alpha_{n-1} a + \alpha_n = 0.$$ Introduction to Modern Algebra October 23, 2022 3 / 16 #### Lemma 7.3.1 (continued) **Lemma 7.3.1.** Let \mathbb{C} be the field of complex numbers and suppose that the division ring D is algebraic over \mathbb{C} . Then $D = \mathbb{C}$. **Proof (continued).** A division ring has no zero divisors (see my Introduction to Modern Algebra notes on Section IV.19. Integral Domains; see Note 19.A), so we must have $a = \lambda_k$ for some $1 \le k \le n$. Since $a = \lambda_k \in \mathbb{C}$ and a is an arbitrary element of D, then we have $D \subseteq \mathbb{C}$. Since \mathbb{C} is in the center of D then $\mathbb{C} \subseteq D$. Therefore $D = \mathbb{C}$, as claimed. #### Lemma 7.3.A **Lemma 7.3.A.** Let division ring D be algebraic over \mathbb{R} and let the center of D contain a copy of \mathbb{C} . Then $D = \mathbb{C}$. **Proof.** Since *D* is algebraic over \mathbb{R} , then for every $a \in D$ we have $a^n + \alpha_1 a^{n-1} + \cdots + \alpha_{n-1} a + \alpha_n = 0$ for some $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R} \subseteq \mathbb{C}$. As in the proof of Lemma 7.3.1, by Fact 1 we have $$p(x) = x^{n} + \alpha_{1}x^{n-1} + \dots + \alpha_{n-1}x + \alpha_{n} = (x - \lambda_{1})(x - \lambda_{2}) \cdots (x - \lambda_{n})$$ where $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$. Since \mathbb{C} is in the center of D then every element of \mathbb{C} commutes with a, and hence $$p(a) = a^n + \alpha_1 a^{n-1} + \dots + \alpha_{n-1} a + \alpha_n = (a - \lambda_1)(a - \lambda_2) \cdots (a - \lambda_n) = 0.$$ Again as in the proof of Lemma 7.3.1, we have $a = \lambda_k \in \mathbb{C}$ for some $1 \le k \le n$. So $a \in \mathbb{C}$ and since a is an arbitrary element of D, then $D\subseteq\mathbb{C}$. Since \mathbb{C} is in the center of D, then $\mathbb{C}\subseteq D$ and hence $D=\mathbb{C}$, as claimed. # Theorem 7.3.1 (Frobenius) **Theorem 7.3.1.** (Frobenius) Let D be a division ring algebraic over field \mathbb{R} , the field of real numbers. Then D is isomorphic to one of: the field of real numbers \mathbb{R} , the field of complex numbers \mathbb{C} , or the division ring of real quaternions \mathbb{H} . **Proof.** Suppose that $D \neq \mathbb{R}$ and that $a \in D \setminus \mathbb{R}$. Since division ring D is algebraic over \mathbb{R} by hypothesis, then there is some polynomial in $p(x) \in \mathbb{R}[x]$ such that p(a) = 0; without loss of generality we can take p(x) to be irreducible in $\mathbb{R}[x]$; this follows from the fact that division ring D has no zero divisors and from Theorem 23.20 of my online notes for Introduction to Modern Algebra on Section IV.23. Factorizations of Polynomials. By Fact 2, the irreducible polynomials over \mathbb{R} are of degree 1 or 2. If p(x) is of degree 1, then p(a) = 0 implies that $a \in \mathbb{R}$, contrary to our choice of $a \in D \setminus \mathbb{R}$. So we may assume that $a^2 - 2\alpha a + \beta = 0$ for some $\alpha, \beta \in \mathbb{R}$. Introduction to Modern Algebra October 23, 2022 #### Theorem 7.3.1 (Frobenius, continued 1) **Proof (continued).** Next, $a^2 - 2\alpha a + \beta = 0$ implies $(a-\alpha)^2 = a^2 - 2\alpha a + \alpha^2 = \alpha^2 - \beta$. Notice that the quadratic equation allows us to solve for a in the equation $a^2 - 2\alpha a + \beta = 0$ to get $a=\frac{2\alpha\pm\sqrt{4\alpha^2-4\beta}}{2}=\alpha\pm\sqrt{\alpha^2-\beta}.$ If $\alpha^2-\beta\geq 0$ then we have that $a \in \mathbb{R}$, contrary to our choice of $a \in D \setminus \mathbb{R}$. So it must be that $\alpha^2 - \beta < 0$, say $\alpha^2 - \beta = -\gamma^2$ where $\gamma \in \mathbb{R}$. Then $(a-\alpha)^2 = \alpha^2 - \beta = -\gamma^2$, whence $[(a-\alpha)/\gamma]^2 = -1$. Thus: if $$a \in D \setminus \mathbb{R}$$ then $[(a - \alpha)/\gamma]^2 = -1$ for some $\alpha, \gamma \in \mathbb{R}$. We now consider three steps: (1) the case where D is commutative, (2) D is not commutative and we can construct a copy of the quaternions in D. and (3) D is not commutative and we show that D contains only the quaternions. > Introduction to Modern Algebra October 23, 2022 7 / 16 # Theorem 7.3.1 (Frobenius, continued 2) **Proof (continued).** Suppose D is commutative and let $a \in D \setminus \mathbb{R}$ (so we are assuming that $D \neq \mathbb{R}$ here). As shown above, there are $\alpha, \gamma \in \mathbb{R}$ such that $[(a-\alpha)/\gamma]^2 = -1$. Denote $i = (a-\alpha)/\gamma$ so that $i^2 = -1$. Since D is commutative and contains \mathbb{R} and $i \in D$, then D contains the extension field $\mathbb{R}[i]$: $\mathbb{R}[i] \subseteq D$ (this is where commutativity is used). Now $\mathbb{R}[i]$ is isomorphic (as a field) to \mathbb{C} , so D contains an isomorphic copy of \mathbb{C} . Since D is algebraic over $F = \mathbb{R}$, then by Lemma 7.3.1 we have $D \cong \mathbb{C}$. Hence, if D is commutative then either $D \cong \mathbb{R}$ (in which case there is no $a \in D \setminus \mathbb{R}$) or $D \cong \mathbb{C}$ (when $a \in D \setminus \mathbb{R}$ exists). This completes step (1). Next, suppose that D is not commutative. ASSUME that there is a in the center of D where $a \notin \mathbb{R}$. As shown above, for some $\alpha, \gamma \in \mathbb{R}$ we have $[(a-\alpha)/\gamma]^2=-1$. But then the center of D contains $\mathbb R$ and contains $(a-\alpha)/\gamma$ so that the center of D contains an isomorphic copy of $\mathbb C$ (namely, $\mathbb{R}[(a-\alpha)/\gamma] \cong \mathbb{R}[i]$). Since a is an arbitrary non-real element of the center of D, then the center of D contains an isomorphic copy of \mathbb{C} . # Theorem 7.3.1 (Frobenius, continued 3) **Proof (continued).** By Lemma 7.3.A, we have $D \cong \mathbb{C}$ (since D has an isomorphic copy of $\mathbb C$ and does not necessarily contain $\mathbb C$ itself, we cannot draw a conclusion of equality as given in Lemma 7.3.A, but only a conclusion of isomorphic). But if $D \cong \mathbb{C}$, then D is commutative, a CONTRADICTION to the fact that we are considering the case where D is not commutative. So the assumption that a is a non-real element of the center is false, and hence the center of D includes all of \mathbb{R} . We now show that noncommutative D satisfying the hypotheses contains an isomorphic copy of the quaternions. Let $a \in D \setminus \mathbb{R}$. As shown above, for some $\alpha, \gamma \in \mathbb{R}$ we have $i = (a - \alpha)/\gamma$ satisfies $i^2 = -1$. Since $i \notin \mathbb{R}$, then *i* is not in the center of \mathbb{R} as argued above. Therefore there is $b \in D$ such that $c = bi - ib \neq 0$. We then have $$ic + ci = i(bi - ib) + (bi - ib)i = ibi - i^2b + bi^2 - ibi$$ = $ibi - (-1)b + b(-1) - ibi = 0$. # Theorem 7.3.1 (Frobenius, continued 4) **Proof (continued).** Thus ic=-ci, form which we have $ic^2=(ic)c=(-ci)c=-c(ic)=-c(-ci)=c^2i$, and so c^2 commutes with i. Since D is algebraic over $\mathbb R$, then $c\in D$ is the root of some polynomial in $\mathbb R[x]$ and we may take the polynomial to be irreducible and of degree 1 or 2 (by Fact 2). That is, $c^2+\lambda c+\mu=0$ for some $\lambda,\mu\in\mathbb R$. Since c^2 and μ commute with i, we have $$(\lambda c)i = (-c^2 - \mu)i = -(c^2 + \mu)i = -i(c^2 + \mu) = i(-c^2 - \mu) = i(\lambda c).$$ Also, λ and i commutes (since $\lambda \in \mathbb{R}$ is in the center of D) so that $\lambda ci = i\lambda c = \lambda ic = \lambda(-ci) = -\lambda ci$. Hence $2\lambda ci = \lambda ci + \lambda ci = \lambda ci + (-\lambda ci) = 0$. Since $c \neq 0$, as shown above, and $i \neq 0$ (because, say, $i^2 = -1$) then $2ci \neq 0$; hence we must have $\lambda = 0$. Because $c^2 + \lambda c + \mu = 0$, this implies that $c^2 = -\mu$. Now $c \notin \mathbb{R}$ (because $ci = -ic \neq ic$, so c is not in the center of D), so $c^2 = -\mu$ implies that $\mu > 0$ (or else $c^2 > 0$ and c is real). With $\mu > 0$, we have $\mu = \nu^2$ for some $\nu \in \mathbb{R}$. Therefore $c^4 = -\nu^2$. Let $i = c/\nu$. Introduction to Modern Algebra October 23, 2022 2 10 / #### Theorem 7.3.1 (Frobenius # Theorem 7.3.1 (Frobenius, continued 6) **Proof (continued).** Lastly, we want to show that D equals the quaternions, \mathbb{H} . Let $r \in D$ satisfy $r^2 = -1$ (such $r \in D$ exists as described above; for example, $i^2 = j^2 = k^2 = -1$). The normalizer of r in D is $N(r) = \{x \in D \mid xr = rx\}$ (this is an idea from group theory, but since the nonzero elements of a division ring form a multiplicative group, the idea applies here as well). In Modern Algebra 1 (MATH 5410), the normalizer of r in D is called the *centralizer* of r in the (multiplicative) group D. It is shown that this is the "stabilizer group" under the group action of conjugation; this is a group by Theorem II.4.2 of Modern Algebra 1 in Section II.4. The Action of a Group on a Set. Moreover, for $\alpha_0, \alpha_1 \in \mathbb{R}$ we have $\alpha_0 + \alpha_1 r$ is in the center of N(r) because $$\begin{array}{rcl} (\alpha_0 + \alpha_1 r)r & = & \alpha_0 r + \alpha_1 r^2 \\ & = & r\alpha_0 + r\alpha_1 r \text{ because } \alpha_0, \alpha_1 \in \mathbb{R} \text{ and} \\ & \mathbb{R} \text{ is in the center of } D \\ & = & r(\alpha_0 + \alpha_1 r). \end{array}$$ Theorem 7.3.1 (Frobenius # Theorem 7.3.1 (Frobenius, continued 5) **Proof (continued).** Then *j* satisfies 1. $$j^2 = c^2/\nu^2 = c^2/(-c^2) = -1$$, and 2. $$ji + ij = (c/\nu)i + i(c/\nu) = (ci + ic)/\nu = 0$$ because $ci + ic = 0$. Let k = ij. Then $$k^2 = (ij)^2 = ijij = ij(-ji) = -ij^2i = -i(-1)i = i^2 = -1$$. Also, $ijk = (k)k = k^1 = -1$. We now have that $i^2 = j^2 = k^2 = ijk = -1$. Since $k = ij$, then $-k = ji$ so $$jk+kj=j(ij)+(ij)j=j(-ji)+ij^2=-(j^2)i-i=i-i=0$$ and $ki+ik=(ij)i+i(ij)=(-ji)i+i^2j=-ji^2-j=j-j=0$. Now $jk=j(ij)=j(-ji)=-j^2i=i$ and $ki=(ij)i=(-ji)i=-ji^2=j$. We now have $ij=-ji=k$, $jk=-kj=i$, and $ki=-ik=j$. Of course we have $ri=ir$, $rj=jr$, and $rk=kr$ for all $r\in\mathbb{R}$ since the center of D includes \mathbb{R} . So the equations defining the quaternions are satisfied in the event that D is not commutative, and we have that D contains an isomorphic copy of the quaternions, say T . This completes step (2). Introduction to Modern Algebra October 23, 2022 11 / #### Theorem 7.3.1 (Frobenius # Theorem 7.3.1 (Frobenius, continued 7) **Proof (continued).** Since N(r) is a subgroup of the multiplicative group of the division ring D, and N(r) is closed under addition, then N(r) is a sub-division ring of D. Since division ring D is algebraic over $\mathbb R$ (and hence so is division ring $N(r) \subseteq D$) and the center of N(r) contains the isomorphic copy of $\mathbb C$ of $\{\alpha_0 + \alpha_1 r \mid \alpha_0, \alpha_1 \in \mathbb R, r^2 = -1\}$, then by Lemma 7.3.A (applied to N(r)) we have $N(r) \cong \mathbb C$ and so $N(r) = \{\alpha_0 + \alpha_1 r \mid \alpha_0, \alpha_1 \in \mathbb R\}$. Thus if xr = rx where $r^2 = -1$, then $x = \alpha_0 + \alpha_1 r$ for some $\alpha_0, \alpha_1 \in \mathbb R$. Let $u \in D \setminus \mathbb{R}$. As shown above, for some $\alpha, \beta \in \mathbb{R}$ we have $w = (u - \alpha)/\beta$ satisfies $w^2 = -1$. Notice that $$i(wi + iw) = iwi + i^2w = iwi - w = iwi + w(-1) = iwi + wi^2 = (iw + wi)i$$ so that wi + iw commutes with i and wi + iw is in the center of N(i). #### Theorem 7.3.1 (Frobenius, continued 8) Proof (continued). Also, $$w(wi + iw) = w^{2}i + wiw = -i + wiw = i(-1) + wiw$$ $$= i(w^{2}) + wiw = (iw + wi)w$$ so that wi+iw commutes with w and wi+iw is in the center of N(w). As argued above, we have (with x=wi+iw and first r=i, then second r=w) that $wi+iw=\alpha'_0+\alpha'_1i=\alpha_0+\alpha_1w$ for $\alpha_0,\alpha_1,\alpha'_0,\alpha'_1\in\mathbb{R}$. ASSUME $w\not\in T$ (where T is the isomorphic copy of the quaternions in D). Then the relation $wi+iw=\alpha_0+\alpha_1w$ implies that $\alpha_1=0$ (otherwise, we have $w=(\alpha'_0-\alpha_0+\alpha'_1)/\alpha_1\in T$). Thus $wi+iw=\alpha_0\in\mathbb{R}$. Similarly, $wj+jw=\beta_0\in\mathbb{R}$ and $wk+kw=\gamma_0\in\mathbb{R}$. Define $$z = w + \frac{\alpha_0}{2}i + \frac{\beta_0}{2}j + \frac{\gamma_0}{2}k.$$ Introduction to Modern Algebra October 23, 2022 14 14 / 16 - (Introduction to Modern Algebra Theorem 7.3.1 (Frobenius #### Theorem 7.3.1 (Frobenius, continued 10) **Proof (continued).** From the definition of z we then have $$z = w + \frac{\alpha_0}{2}i + \frac{\beta_0}{2}j + \frac{\gamma_0}{2}k = 0,$$ from which $$w = -\frac{\alpha_0}{2}i - \frac{\beta_0}{2}j - \frac{\gamma_0}{2}k \in T,$$ a CONTRADICTION to the assumption that $w \not\in T$. Therefore $w \in T$. Since $w = (u - \alpha)/\beta$, then $u = \beta w + \alpha$ and so $u \in T$ (because $w \in T$ and $\alpha, \beta \in \mathbb{R}$). Now u is an arbitrary element of $D \setminus \mathbb{R}$, so we have that $D \setminus \mathbb{R} \subseteq T$ and, of course, $\mathbb{R} \subseteq T$. Therefore $D \subseteq T$. In step (2) we showed that $T \subseteq D$, so we now have that T = D. That is, $D = T \cong \mathbb{H}$. This is step (3). Introduction to Modern Algebra October 23, 2022 16 / 16 #### Theorem 7.3.1 (Frobenius, continued 9) #### Proof (continued). Then $$zi + iz = \left(w + \frac{\alpha_0}{2}i + \frac{\beta_0}{2}j + \frac{\gamma_0}{2}k\right)i + i\left(w + \frac{\alpha_0}{2}i + \frac{\beta_0}{2}j + \frac{\gamma_0}{2}k\right)$$ $$= (wi + iw) + \frac{\alpha_0}{2}(i^2 + i^2) + \frac{\beta_0}{2}(ji + ij) + \frac{\gamma_0}{2}(ki + ik)$$ $$= \alpha_0 - \alpha_0 \text{ since } wi + iw = \alpha_0, i^2 = -1, ji_ij = 0, \text{ and } ki + ik = 0$$ $$= 0.$$ Similarly, zj + jz = 0 and zk + kz = 0. We now show that z = 0. Since $0 = zk + kz = zij + ijz = (zi + iz_j + i(jz - zj)) = i(jz - zj)$ since zi + iz = 0, as just shown. Now $i \neq 0$ (since $i^2 = -1$), so jz - zj = 0 (because a division ring has no zero divisors). But we have shown in step (2) that jz + zj = 0 so that we must have 2jz = 0, and since $2j \neq 0$ then z = 0.