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Lemma 7.3.1

Lemma 7.3.1

Lemma 7.3.1. Let C be the field of complex numbers and suppose that
the division ring D is algebraic over C. Then D = C.

Proof. Let a ∈ D. Since D is algebraic over C, then by definition
an + α1a

n−1 + · · ·+ αn−1a + αn = 0 for some α1, α2, . . . , αn ∈ C (we an
take the leading coefficient α0 = 1 without loss of generality).

Now the polynomial p(x) = xn + α1x
n−1 + · · ·+ αn−1x + αn ∈ C[x ] can

be factored in C[x ] into a product of linear factors by Fact 1 and the
Factor Theorem (see my online notes for Introduction to Modern Algebra
[MATH 4127/5127] on Section IV.23. Factorizations of Polynomials;
notice Corollary 23.3, “The Factor Theorem”). Therefore,
p(x) = (x − λ1)(x − λ2) · · · (x − λn) where λ1, λ2, . . . , λn ∈ C. Since C is
in the center of D then every element of C commutes with a, and hence

p(a) = (a−λ1)(a−λ2) · · · (a−λn) = an +α1a
n−1 + · · ·+αn−1a+αn = 0.
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Lemma 7.3.1

Lemma 7.3.1 (continued)

Lemma 7.3.1. Let C be the field of complex numbers and suppose that
the division ring D is algebraic over C. Then D = C.

Proof (continued). A division ring has no zero divisors (see my
Introduction to Modern Algebra notes on Section IV.19. Integral Domains;
see Note 19.A), so we must have a = λk for some 1 ≤ k ≤ n. Since
a = λk ∈ C and a is an arbitrary element of D, then we have D ⊆ C. Since
C is in the center of D then C ⊆ D. Therefore D = C, as claimed.
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Lemma 7.3.A

Lemma 7.3.A

Lemma 7.3.A. Let division ring D be algebraic over R and let the center
of D contain a copy of C. Then D = C.

Proof. Since D is algebraic over R, then for every a ∈ D we have
an + α1a

n−1 + · · ·+ αn−1a + αn = 0 for some α1, α2, . . . , αn ∈ R ⊆ C. As
in the proof of Lemma 7.3.1, by Fact 1 we have

p(x) = xn + α1x
n−1 + · · ·+ αn−1x + αn = (x − λ1)(x − λ2) · · · (x − λn)

where λ1, λ2, . . . , λn ∈ C. Since C is in the center of D then every
element of C commutes with a, and hence

p(a) = an +α1a
n−1 + · · ·+αn−1a+αn = (a−λ1)(a−λ2) · · · (a−λn) = 0.

Again as in the proof of Lemma 7.3.1, we have a = λk ∈ C for some
1 ≤ k ≤ n. So a ∈ C and since a is an arbitrary element of D, then
D ⊆ C. Since C is in the center of D, then C ⊆ D and hence D = C, as
claimed.
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Theorem 7.3.1 (Frobenius)

Theorem 7.3.1 (Frobenius)

Theorem 7.3.1. (Frobenius) Let D be a division ring algebraic over field
R, the field of real numbers. Then D is isomorphic to one of: the field of
real numbers R, the field of complex numbers C, or the division ring of
real quaternions H.

Proof. Suppose that D 6= R and that a ∈ D \ R. Since division ring D is
algebraic over R by hypothesis, then there is some polynomial in
p(x) ∈ R[x ] such that p(a) = 0; without loss of generality we can take
p(x) to be irreducible in R[x ]; this follows from the fact that division ring
D has no zero divisors and from Theorem 23.20 of my online notes for
Introduction to Modern Algebra on Section IV.23. Factorizations of
Polynomials. By Fact 2, the irreducible polynomials over R are of degree 1
or 2. If p(x) is of degree 1, then p(a) = 0 implies that a ∈ R, contrary to
our choice of a ∈ D \ R. So we may assume that a2 − 2αa + β = 0 for
some α, β ∈ R.
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Theorem 7.3.1 (Frobenius)

Theorem 7.3.1 (Frobenius, continued 1)

Proof (continued). Next, a2 − 2αa + β = 0 implies
(a− α)2 = a2 − 2αa + α2 = α2 − β. Notice that the quadratic equation
allows us to solve for a in the equation a2 − 2αa + β = 0 to get

a =
2α±

√
4α2 − 4β

2
= α±

√
α2 − β. If α2 − β ≥ 0 then we have that

a ∈ R, contrary to our choice of a ∈ D \ R. So it must be that
α2 − β < 0, say α2 − β = −γ2 where γ ∈ R. Then
(a− α)2 = α2 − β = −γ2, whence [(a− α)/γ]2 = −1. Thus:

if a ∈ D \ R then [(a− α)/γ]2 = −1 for some α, γ ∈ R.

We now consider three steps: (1) the case where D is commutative, (2) D
is not commutative and we can construct a copy of the quaternions in D,
and (3) D is not commutative and we show that D contains only the
quaternions.
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Theorem 7.3.1 (Frobenius)

Theorem 7.3.1 (Frobenius, continued 2)

Proof (continued). Suppose D is commutative and let a ∈ D \ R (so we
are assuming that D 6= R here). As shown above, there are α, γ ∈ R such
that [(a− α)/γ]2 = −1. Denote i = (a− α)/γ so that i2 = −1. Since D
is commutative and contains R and i ∈ D, then D contains the extension
field R[i ]: R[i ] ⊆ D (this is where commutativity is used). Now R[i ] is
isomorphic (as a field) to C, so D contains an isomorphic copy of C. Since
D is algebraic over F = R, then by Lemma 7.3.1 we have D ∼= C. Hence,
if D is commutative then either D ∼= R (in which case there is no
a ∈ D \ R) or D ∼= C (when a ∈ D \ R exists). This completes step (1).

Next, suppose that D is not commutative. ASSUME that there is a in the
center of D where a 6∈ R. As shown above, for some α, γ ∈ R we have
[(a− α)/γ]2 = −1. But then the center of D contains R and contains
(a− α)/γ so that the center of D contains an isomorphic copy of C
(namely, R[(a− α)/γ] ∼= R[i ]). Since a is an arbitrary non-real element of
the center of D, then the center of D contains an isomorphic copy of C.
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Theorem 7.3.1 (Frobenius)

Theorem 7.3.1 (Frobenius, continued 3)

Proof (continued). By Lemma 7.3.A, we have D ∼= C (since D has an
isomorphic copy of C and does not necessarily contain C itself, we cannot
draw a conclusion of equality as given in Lemma 7.3.A, but only a
conclusion of isomorphic). But if D ∼= C, then D is commutative, a
CONTRADICTION to the fact that we are considering the case where D
is not commutative. So the assumption that a is a non-real element of the
center is false, and hence the center of D includes all of R.

We now show that noncommutative D satisfying the hypotheses contains
an isomorphic copy of the quaternions. Let a ∈ D \ R. As shown above,
for some α, γ ∈ R we have i = (a− α)/γ satisfies i2 = −1. Since i 6∈ R,
then i is not in the center of R as argued above. Therefore there is b ∈ D
such that c = bi − ib 6= 0. We then have

ic + ci = i(bi − ib) + (bi − ib)i = ibi − i2b + bi2 − ibi

= ibi − (−1)b + b(−1)− ibi = 0.

() Introduction to Modern Algebra October 23, 2022 9 / 16



Theorem 7.3.1 (Frobenius)

Theorem 7.3.1 (Frobenius, continued 3)

Proof (continued). By Lemma 7.3.A, we have D ∼= C (since D has an
isomorphic copy of C and does not necessarily contain C itself, we cannot
draw a conclusion of equality as given in Lemma 7.3.A, but only a
conclusion of isomorphic). But if D ∼= C, then D is commutative, a
CONTRADICTION to the fact that we are considering the case where D
is not commutative. So the assumption that a is a non-real element of the
center is false, and hence the center of D includes all of R.

We now show that noncommutative D satisfying the hypotheses contains
an isomorphic copy of the quaternions. Let a ∈ D \ R. As shown above,
for some α, γ ∈ R we have i = (a− α)/γ satisfies i2 = −1. Since i 6∈ R,
then i is not in the center of R as argued above. Therefore there is b ∈ D
such that c = bi − ib 6= 0. We then have

ic + ci = i(bi − ib) + (bi − ib)i = ibi − i2b + bi2 − ibi

= ibi − (−1)b + b(−1)− ibi = 0.

() Introduction to Modern Algebra October 23, 2022 9 / 16



Theorem 7.3.1 (Frobenius)

Theorem 7.3.1 (Frobenius, continued 4)

Proof (continued). Thus ic = −ci , form which we have
ic2 = (ic)c = (−ci)c = −c(ic) = −c(−ci) = c2i , and so c2 commutes
with i . Since D is algebraic over R, then c ∈ D is the root of some
polynomial in R[x ] and we may take the polynomial to be irreducible and
of degree 1 or 2 (by Fact 2). That is, c2 + λc + µ = 0 for some λ, µ ∈ R.
Since c2 and µ commute with i , we have

(λc)i = (−c2 − µ)i = −(c2 + µ)i = −i(c2 + µ) = i(−c2 − µ) = i(λc).

Also, λ and i commutes (since λ ∈ R is in the center of D) so that
λci = iλc = λic = λ(−ci) = −λci . Hence
2λci = λci + λci = λci + (−λci) = 0. Since c 6= 0, as shown above, and
i 6= 0 (because, say, i2 = −1) then 2ci 6= 0; hence we must have λ = 0.
Because c2 + λc + µ = 0, this implies that c2 = −µ. Now c 6∈ R (because
ci = −ic 6= ic , so c is not in the center of D), so c2 = −µ implies that
µ > 0 (or else c2 > 0 and c is real). With µ > 0, we have µ = ν2 for some
ν ∈ R. Therefore c4 = −ν2. Let j = c/ν.
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Theorem 7.3.1 (Frobenius)

Theorem 7.3.1 (Frobenius, continued 5)

Proof (continued). Then j satisfies

1. j2 = c2/ν2 = c2/(−c2) = −1, and
2. ji + ij = (c/ν)i + i(c/ν) = (ci + ic)/ν = 0 because

ci + ic = 0.

Let k = ij . Then
k2 = (ij)2 = ijij = ij(−ji) = −ij2i = −i(−1)i = i2 = −1. Also,
ijk = (k)k = k1 = −1. We now have that i2 = j2 = k2 = ijk = −1. Since
k = ij , then −k = ji so
jk + kj = j(ij) + (ij)j = j(−ji) + ij2 = −(j2)i − i = i − i = 0 and
ki + ik = (ij)i + i(ij) = (−ji)i + i2j = −ji2 − j = j − j = 0. Now
jk = j(ij) = j(−ji) = −j2i = i and ki = (ij)i = (−ji)i = −ji2 = j . We
now have ij = −ji = k, jk = −kj = i , and ki = −ik = j . Of course we
have ri = ir , rj = jr , and rk = kr for all r ∈ R since the center of D
includes R. So the equations defining the quaternions are satisfied in the
event that D is not commutative, and we have that D contains an
isomorphic copy of the quaternions, say T . This completes step (2).
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Theorem 7.3.1 (Frobenius)

Theorem 7.3.1 (Frobenius, continued 6)

Proof (continued). Lastly, we want to show that D equals the
quaternions, H. Let r ∈ D satisfy r2 = −1 (such r ∈ D exists as described
above; for example, i2 = j2 = k2 = −1). The normalizer of r in D is
N(r) = {x ∈ D | xr = rx} (this is an idea from group theory, but since the
nonzero elements of a division ring form a multiplicative group, the idea
applies here as well). In Modern Algebra 1 (MATH 5410), the normalizer
of r in D is called the centralizer of r in the (multiplicative) group D. It is
shown that this is the “stabilizer group” under the group action of
conjugation; this is a group by Theorem II.4.2 of Modern Algebra 1 in
Section II.4. The Action of a Group on a Set. Moreover, for α0, α1 ∈ R we
have α0 + α1r is in the center of N(r) because

(α0 + α1r)r = α0r + α1r
2

= rα0 + rα1r because α0, α1 ∈ R and

R is in the center of D

= r(α0 + α1r).
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Theorem 7.3.1 (Frobenius)

Theorem 7.3.1 (Frobenius, continued 7)

Proof (continued). Since N(r) is a subgroup of the multiplicative group
of the division ring D, and N(r) is closed under addition, then N(r) is a
sub-division ring of D. Since division ring D is algebraic over R (and hence
so is division ring N(r) ⊆ D) and the center of N(r) contains the
isomorphic copy of C of {α0 + α1r | α0, α1 ∈ R, r2 = −1}, then by
Lemma 7.3.A (applied to N(r)) we have N(r) ∼= C and so
N(r) = {α0 + α1r | α0, α1 ∈ R}. Thus if xr = rx where r2 = −1, then
x = α0 + α1r for some α0, α1 ∈ R.

Let u ∈ D \ R. As shown above, for some α, β ∈ R we have
w = (u − α)/β satisfies w2 = −1. Notice that

i(wi + iw) = iwi + i2w = iwi −w = iwi +w(−1) = iwi +wi2 = (iw +wi)i

so that wi + iw commutes with i and wi + iw is in the center of N(i).
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sub-division ring of D. Since division ring D is algebraic over R (and hence
so is division ring N(r) ⊆ D) and the center of N(r) contains the
isomorphic copy of C of {α0 + α1r | α0, α1 ∈ R, r2 = −1}, then by
Lemma 7.3.A (applied to N(r)) we have N(r) ∼= C and so
N(r) = {α0 + α1r | α0, α1 ∈ R}. Thus if xr = rx where r2 = −1, then
x = α0 + α1r for some α0, α1 ∈ R.

Let u ∈ D \ R. As shown above, for some α, β ∈ R we have
w = (u − α)/β satisfies w2 = −1. Notice that

i(wi + iw) = iwi + i2w = iwi −w = iwi +w(−1) = iwi +wi2 = (iw +wi)i

so that wi + iw commutes with i and wi + iw is in the center of N(i).
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Proof (continued). Also,

w(wi + iw) = w2i + wiw = −i + wiw = i(−1) + wiw

= i(w2) + wiw = (iw + wi)w

so that wi + iw commutes with w and wi + iw is in the center of N(w).
As argued above, we have (with x = wi + iw and first r = i , then second
r = w) that wi + iw = α′

0 + α′
1i = α0 + α1w for α0, α1, α

′
0, α

′
1 ∈ R.

ASSUME w 6∈ T (where T is the isomorphic copy of the quaternions in
D). Then the relation wi + iw = α0 + α1w implies that α1 = 0 (otherwise,
we have w = (α′

0 − α0 + α′
1)/α1 ∈ T ). Thus wi + iw = α0 ∈ R. Similarly,

wj + jw = β0 ∈ R and wk + kw = γ0 ∈ R. Define

z = w +
α0

2
i +

β0

2
j +

γ0

2
k.
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Proof (continued). Then

zi + iz =

(
w +

α0

2
i +

β0

2
j +

γ0

2
k

)
i + i

(
w +

α0

2
i +

β0

2
j +

γ0

2
k

)
= (wi + iw) +

α0

2
(i2 + i2) +

β0

2
(ji + ij) +

γ0

2
(ki + ik)

= α0 − α0 since wi + iw = α0, i
2 = −1, jii j = 0, and ki + ik = 0

= 0.

Similarly, zj + jz = 0 and zk + kz = 0. We now show that z = 0. Since
0 = zk + kz = zij + ijz = (zi + izj + i(jz − zj) = i(jz − zj) since zi + iz = 0,
as just shown. Now i 6= 0 (since i2 = −1), so jz − zj = 0 (because a
division ring has no zero divisors). But we have shown in step (2) that
jz + zj = 0 so that we must have 2jz = 0, and since 2j 6= 0 then z = 0.
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Proof (continued). From the definition of z we then have

z = w +
α0

2
i +

β0

2
j +

γ0

2
k = 0,

from which

w = −α0

2
i − β0

2
j − γ0

2
k ∈ T ,

a CONTRADICTION to the assumption that w 6∈ T . Therefore w ∈ T .
Since w = (u − α)/β, then u = βw + α and so u ∈ T (because w ∈ T
and α, β ∈ R). Now u is an arbitrary element of D \ R, so we have that
D \ R ⊆ T and, of course, R ⊆ T . Therefore D ⊆ T . In step (2) we
showed that T ⊆ D, so we now have that T = D. That is, D = T ∼= H.
This is step (3).
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