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Lemma 7.4.1

Lemma 7.4.1 (continued 1)

Lemma 7.4.1. (xy)* = y*x*

Proof (continued). ...and so
(6x +7y)* = (6o +vB0) — (daa +yB1)i — (62 + 7 P2)j — (daz +vF3)k

= 0(0 — a1j — aaf — a)k) + (o = Pri = faj — P3k) = Ox* + ",
as claimed.

(3) We prove the result for the basis elements 1,1/, j, k of Q (as a real
vector space). This requires several cases. We have ij = k and ji = —k, so
by (2) we have (ij)x = k* = —k = ji = (—j)(—i) = j*i*. We have ki = j
and ik = —j, so by (2) we have

(ik)x = (—j)* = j = ki = (—k)(—i) = k*i*. We have jk = i and kj = —i,
so by (2) we have (jk)x = i* = —i = kj = (—k)(—j) = k*j*. Also,

(i) =(-1)'=-1= (=i = () (*) = (-1)" = -1=(-))

= (j*)% and (K*)* = (-1)* = —1 = (—k)* = (k).
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Lemma 7.4.1

Lemma 7.4.1

Lemma 7.4.1. The adjoint in Q satisfies:

1. x** = x,

2. (6x +yy)* = dx* +yy*, and

3. () =yrx
for all x,y € Q and for all real § and ~.
Proof. (1) If x = ag + a1/ + aj + azk then

k%

X = (x")" = (o — 1i — apj — azk)* = ap + a1/ + azj + ask,
as claimed.

(2) Let x = ap+ a1i + apj+ ask and y = [y + B1if2j + B3k be in Q and
let § and « be real numbers. Then

Ox + vy = (bao +vPo) + (S +v61)i + (daz +vP2)j + (dz +v33)k, . ..
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Lemma 7.4.1

Lemma 7.4.1 (continued 2)

Lemma 7.4.1. The adjoint in Q satisfies:
1. x* = x,
2. (0x +yy)* = 0x* +yy*, and
3. () =yrx
for all x,y € Q and for all real § and ~.
Proof (continued). Let x = ag + a1/ + apj + azk and
y = Bo+ B1iB2j + B3k be in Q. Then by (2)
(xy)* = ((co+oai+ azj+ azk)(Bo + Puifaj + P3k))”
= ((a0 + cai + azj + azk)Bo + (a0 + a1i + azj + azk)Bii
+(ao + a1i + azj + azk)Baj + (o + a1i + apj + azk)B3k)*
= (ap+ a1i + agj + ask)*Bo + (o + a1i + apj + azk)*B1i*
+(ao + a1i 4+ agj + azk)*Boj* + (o + a1 + apj + azk)*P3k*
= folao + a1i + azj + azk)” + f1i* (o + a1i + aoj + azk)”
+062j" (cvo + a1 + agj + azk)™ + B3k™ (o + aai + azj + azk)”
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Lemma 7.4.1 (continued 3)

Lemma 7.4.1. The adjoint in Q satisfies:
1. x* = x,
2. (0x +vy)* = 0x* 4+ ~yy*, and
3. () =y"x”

for all x,y € Q and for all real § and ~.

Proof (continued). ...

(xy)" = Po(ao + a1i + agj + azk)* + f1i*(ao + a1i + azj + azk)*
+ﬁz/.*(010 + (11[ + Ozzj + Oé3k)* + [53/(*(010 + ali + azj + a3k)*
= (,30 + Gii + Boj + ,83/()*((10 4+ a1i + aj + a3k)*
=y,

as claimed. O
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Lemma 7.4.3. Lagrange ldentity

Lemma 7.4.3. Lagrange ldentity.
If ag, a1, an, vz and By, B1, B2, O3 are real numbers then

(ag+ai + a5+ a3)(65 + 67 + 55 + 33) = (aofo — 11 — 232 — a3 )’
+(aoB + a1fo + 23 — azBa)? + (B2 — a13 + a2l + azfr)?
+(coBs + @182 — a2 + azfh)?.

Proof. With x = ag + a1/ + azj + azk and y = Bg + B1i + Boj + B3k in
Q, we have N(x) = a3 +af + a3 + a3 and N(y) = B2 + 37 + (35 + 3.
So the left-hand side of the equation in the claim equals N(x)N(y). Also

(see Quaternions—An Algebraic View (Supplement); the product is part of
the definition of the quaternions):

xy = (aofo — a1f1 — az02 — azf3) + (aof1 + a1080 + a2083 — azfBa)i

+(082 + a2fo + a3f1 — a183)j + (aofB3 + azfBo + a182 — azfr)k.
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Lemma 7.4.2

Lemma 7.4.2. For all x,y € Q we have N(xy) = N(x)N(y).

Proof. By the definition of norm, N(xy) = (xy)(xy)*. By Lemma
7.4.1(3), (xy)* = y*x* and so (since norms are real and real numbers
commute with all quaternions; that is, the reals are in the center of the
quaternions)

N(xy) = (xy)(xy)" = xy(y"x*) = x(yy")x*

= xN(y)x* = xx*N(y) = N(x)N(y),

as claimed. O
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Lemma 7.4.3. Lagrange ldentity

Lemma 7.4.3. Lagrange ldentity (continued)

Lemma 7.4.3. Lagrange ldentity.
If ag, 1, an, ez and Bo, B1, B2, O3 are real numbers then

(ap +af + a3 +ad)(65 + B7 + 05 + 35) = (a0l — arfr — azff2 — a3f33)?
+(aofr + a1fo + azfs — azBa)’ + (B2 — a1 + a2 + azfr)?
(o83 + 12 — aaf + a3f)?.

Proof (continued). ...
xy = (aofo — a1f1 — azfs — azf3) + (aobi + a1fo + aafs — az )i

(B2 + a2fo + azfBr — a13)j + (B3 + az3fo + 1B — azf1)k.

So the right-hand side of the equation in the claim equals N(xy). Since
N(x)N(y) = N(xy) by Lemma 7.4.2, then we have Lagrange's
Identity. O
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm.
Let a, b € H with b # 0. Then there exists two elements ¢, d € H such
that a = cb+ d and N(d) < N(b).

Proof. We prove the result in two steps. First, suppose a € H and let
b >0 be real (i.e., b€ Z, b>0). Let a = to( + t1/ + toj + t3k where
to, t1, to, t3 € Z and b = n where n is a positive integer. Let

c = xoC + x1i + x1j + x3k where xg, x1, x2, x3 € Z (but are yet to be
determined; we want them to satisfy the condition

N(d) = N(a— cb) = N(a— cn) < N(b) = N(n) = n?). Now

1+i+j+k . .
a—cn = |t ——F—— + t1i + toj + t3k
<1+i+j+k> . :
—NnXxp f —nX]_I—nXZj—nX3k

Introduction to Modern Algebra April 25, 2022 10 / 20

Lemma 7.4.5. Left-Division Algorithm (continued 2)

Proof (continued). The existence of desired xp, X1, X2, X3 are given as
follows:

1. By the Division Algorithm in Z, there is an integer xg such
that tg = xon + r where —n/2 < r < n/2. For this xg, we
have |tg — xon| = |r| < n/2.

2. By the Division Algorithm in Z, there is an integer k such
that tg +2t = kn+rand 0 < r <n. If k— ty is even, set
2x1 = k — to so that ty + 2t; = (2xp + to)n + r and
[to +2t1 — (2x1 + to)n| = r < n. If k — tp is odd, set
2x1 = k — tp + 1 so that
to+2t1 =2x1+to—1)n+r=(2x1 +to)n+r—nand
|to +2t1 — (2x1 + to)n| = |r — n| < n'since 0 < r < n. There
(regardless of the parity of k — tp) there is integer x; for
which |to + 2t; — (2x1 + to)n| < n.

3. As in part 2, we can find integers x» and x3 which satisfy
[to + 2t2 — (2x2 + to)n| < n and |tg + 2t3 — (2x3 + to)n| < n.
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 1)

Proof (continued). ...

1 1 .
a—cn = E(to — nxp) + E(to +2t1 — n(tp + 2x1))i

1 1
+§(t0 +2t; — n(to + 2x))j + E(to + 2t3 — n(to + 2x3))k.
We now seek to choose xp, x1, X2, x3 such that |tg — nxp| < n/2,

[to + 2t1 — n(to + 2x1)| < n, to + 2t> — n(to + 2x2)| < n, and

|to + 2t3 — n(to + 2x3)| < n then we would have

ty — 2 to + 2t — n(tg + 2x1))?
N(a—cn) — (to — nx0)® | (to +2t1 — n(to + 2x1))
4 4
(to + 2t> — n(to +2x2))%  (to + 2tz — n(to + 2x3))?
+ +
4 4
< n?/16 +n?/4+ n?/4 + n? /4 < n® = N(n),
as desired.
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 3)

Lemma 7.4.5. Left-Division Algorithm.
Let a, b € H with b # 0. Then there exists two elements ¢,d € H such
that a = cb+ d and N(d) < N(b).

Proof (continued). So the claim holds for a € H and b > 0 real. We
now consider the general case where a,b € H and b # 0. By Lemma 7.4.4
n = bb* is a positive integer, so by the first part of the proof there is

¢ € H such that ab* = cn + d; where N(di) < N(n); that is

N(d1) = N(ab* — cn) < N(n). But n = bb* we have

N(ab* — cbb*) < N(n), or N((a — cb)b*) < N(n) = N(bb*). By Lemma
7.4.2, this implies N(a — cb)N(b*) < N(b)N(b*) or (since b # 0 and
N(b*) > 0) N(a— cb) < N(b). Set d = a — cb and we have a = cb+ d
where N(d) < N(b), so that the general case holds. O
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Lemma 7.4.6

Lemma 7.4.6

Lemma 7.4.6. Let L be a left-ideal of H. Then there exists an element
u € L such that every element in L is a left-multiple of u; in other words,
there exists u € L such that every x € L is of the form x = ru where r € H.

Proof. If L is the trivial ideal, L = {0}, then we take u = 0. We now
suppose that L has nonzero elements. By Lemma 7.4.4, the norms of
nonzero elements are positive integers, so there is an element u # 0 in L
whose norm is minimum over the nonzero elements of L. For x € L, by the
Left-Division Algorithm (Lemma 7.4.5), x = cu + d where N(d) < N(u).
Now d = x — cu where x and u are in L (and hence cu € L since it is a
left-ideal), so d € L. Since N(u) is the minimum positive norm of nonzero
elements of L, then we must have N(d) =0 and so d = 0. Therefore

x = cu and (replacing ¢ € H here with r € H in the statement of the
lemma) the claim holds. O
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Theorem 7.4.1. Lagrange's Four-Square Theorem

Theorem 7.4.1. Lagrange's Four-Square Theorem

Theorem 7.4.1. Lagrange’s Four-Square Theorem.
Every positive integer can be expressed as the sum of squares of four
integers.

Proof. Let n be a positive integer. By the Fundamental Theorem of
Arithmetic, n is a product of powers of prime numbers and by Lagrange’s
Identity (Lemma 7.4.3) a product of integers expressible as a sum of four
squares is itself a sum of four squares. So it is sufficient to prove that
every prime number is a sum of four squares. Of course prime number 2
equals 02 4+ 02 4+ 12 4 12, so we only need to consider odd primes.

Let p be an odd prime. With Z, as the integers modulo p, consider the
set of quaternions W, = {ag + a1i + agj + azk | ap, a1, a3, a3 € Zp}.
The W, is finite (in fact, |W,| = p*) and forms a ring. Since p # 2, the
W, is not commutative because ij = —ji # ji (if p = 2 then, so to speak,
“—1=1").
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Lemma 7.4.7

Lemma 7.4.7

Lemma 7.4.7. If a € H then a1 € H if and only if N(a) = 1.

Proof. If both a and a~! are in H, then by Lemma 7.4.4 both N(a) and
N(a~1) are positive integers. However, aa~! = 1, so by Lemma 7.4.2 we
have N(a)N(a=!) = N(aa=!) = N(1) = 1. But then N(a) = 1, as claimed.

If a€ H and N(a) =1, then aa* = N(a) = 1 and so a~! = a*. By Lemma
7.4.4, since a € H then a* € H, so that a~1 € H as claimed. O
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Theorem 7.4.1. Lagrange's Four-Square Theorem

Theorem 7.4.1 (continued 1)

Proof (continued). Thus, by Wedderburn's Theorem W, is not a division
ring. By Lemma 7.4.A, W, has a proper, nontrivial left-ideal. The
two-sided ideal V in H defined as

V = {x( + x1i + xoj + xok | p divides all of xp, x1, x2, X3}

has the property that H/V is isomorphic to W, by Note 7.4.A. If V were
a maximal left-ideal in H, then H/V = W, would have no left ideals other
the the trivial one and H/V = W, (remember, “bigger” ideals yield
“smaller” quotient rings). Therefore there is some left ideal L of H such
that L#£ H, L# V,and L D V. By Lemma 7.4.6, there is an element

u € L such that every element in L is a left multiple of u. Since p € V
then p € L and hence p = cu for some ¢ € H. If u € V then, since V is a
two-sided ideal, every multiple of u would be in V and this cannot be the
case since V is a proper subset of L and every element in L is a left
multiple of u. Sou ¢ V.
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Theorem 7.4.1. Lagrange's Four-Square Theorem

Theorem 7.4.1 (continued 2)

Proof (continued). Now c cannot have an inverse in H, or else u = c~1p
would be in V. By Lemma 7.4.7, we now have that N(c) > 1. Next u
cannot have an inverse in H or else the left-multiple of u by this inverse
would imply that 1 € L and, since L is a left ideal of H, we would have

L = H in contradiction to the fact that L ## H. Again by Lemma 7.4.7, we
have N(u) > 1. Since off prime p satisfies p = cu, then

p?> = N(p) = N(cu) = N(c)N(u). But N(c) and N(u) are integers (since
¢,u € H) greater than 1, hence N(c) = N(u) = p.

Since u € H, the u = mo( + myi + myj + mzk where mg, my, my, ms are
integers. Thus (by the definition of ():
2u =2moC + 2myi + 2myj + 2msk = (mg + moi + moj + mok)

+2myi+2moj+2m3k = mg + (2my + mg)i + (2mp + mo)j + (2m3 + mg) k.
Therefore N(2u) = m3 + (2my1 + mo)? + (2my + mo)? + (2m3 + mg)?.
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Theorem 7.4.1. Lagrange's Four-Square Theorem

Theorem 7.4.1 (continued 4)

Theorem 7.4.1. Lagrange’s Four-Square Theorem.
Every positive integer can be expressed as the sum of squares of four
integers.

Proof (continued). Now 4p is a sum of four squares by (x), so the the
previous comment we have that 2p is a sum of four squares and, again by
the previous comment, p itself is a sum of four square. That is, odd prime
p satisfies p = a3 + a3 + a3 + ag for some integers ag, a1, a2, a3. So
Lagrange's Four-Square Theorem holds for all primes and, as commented
at the start of the proof, holds for all positive integers. O
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Theorem 7.4.1. Lagrange's Four-Square Theorem

Theorem 7.4.1 (continued 3)

Proof (continued). But N(2u) = N(2)N(u) = 4p since N(2) =22 =4
and N(u) = p. We now have

4p = mg + (2m; + mo)2 + (2my + m0)2 + (2ms + m0)2. (%)

Next, notice that if 2a = x3 + x? + x3 + x3 where a, x, x1, X2, X3 € Z then
all the x;'s are even, all are odd, or two are even and two odd. In all three
cases, the x;'s can be paired in such a way that

_ Xo+Xx1 _Xp— X1 X2+ X3

X2 — X3
Yo = 2 y Y1 = 2 » Yo 2 ) =

and Yo = 2 )

are all integers. Then

X0 + X1 2 X0 — X1 2 X2 + X3 2 X2 — X3 2
oot () (252 (242 ()

= (¢ +F +x3+x3)/2 = (2a3)/2 = a.

That is, if 2a is a sum of four squares, then so is a.
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