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Lemma 7.4.1

Lemma 7.4.1. The adjoint in Q satisfies:
1. x™ = x,
2. (0x +yy)* = ox* +vy*, and
3. () =yx*

for all x,y € Q and for all real § and ~.

Introduction to Modern Algebra April 25, 2022

3/ 20



Lemma 7.4.1

Lemma 7.4.1

Lemma 7.4.1. The adjoint in Q satisfies:

1. x™ = x,

2. (0x +yy)* = ox* +vy*, and

3. () =yx*
for all x,y € Q and for all real § and ~.
Proof. (1) If x = ap + a1/ + azj + ask then

koK

X = (x")" = (g — a1i — apj — azk)” = ag + a1i + apj + azk,

as claimed.
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Lemma 7.4.1

Lemma 7.4.1. The adjoint in Q satisfies:

1. x* = x,

2. (0x +yy)* = ox* +vy*, and

3. () =yx*
for all x,y € Q and for all real § and ~.
Proof. (1) If x = ap + a1/ + azj + ask then

X7 = (x")" = (a0 — aai — apj — azk)” = ag + a1i + azj + ask,
as claimed.

(2) Let x = ap + a1i + apj + azk and y = (o + [1i02j + B3k be in Q and
let 9 and v be real numbers. Then

dx +yy = (6ag +vB0) + (s +y61)i + (daz +7v52)j + (das +53)k, . . .
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Lemma 7.4.1

Lemma 7.4.1 (continued 1)
Lemma 7.4.1. (xy)" = y*x*

Proof (continued). ...and so

(0x +vy)* = (dag +vBo) — (dax +v51)i — (dax +vB2)j — (daz + vB3)k

= (oo — aj — apj — a)k) + (8o — Bri — Poj — B3k) = 0x* +yy*,
as claimed.
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Lemma 7.4.1 (continued 1)

Lemma 7.4.1. (xy)" = y*x*

Proof (continued). ...and so
(6x +yy)" = (a0 + v6o) — (0ar + yB1)i — (a2 + yB2)j — (das + vP3)k

= (oo — aj — apj — a)k) + (8o — Bri — Poj — B3k) = 0x* +yy*,
as claimed.

(3) We prove the result for the basis elements 1,1/, /, k of Q (as a real
vector space). This requires several cases. We have ij = k and ji = —k, so
by (2) we have (ij)x = k* = —k = ji = (—j)(—i) = j*i*. We have ki =
and ik = —j, so by (2) we have

(ikyx= (=) =j=ki= (—k)(—i) = k*i*. We have jk =i and kj = —i,
so by (2) we have (jk)x = i* = —i = kj = (—k)(—j) = k*j*. Also,

() = (1) = —1=(=i)* = ("2 () = (1) = -1 = (=))?

= (/)% and (k) = (-1)" = -1 = (—k)* = (K*)%.
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Lemma 7.4.1 (continued 2)

Lemma 7.4.1. The adjoint in Q satisfies:

1. x*™ = x,
2. (0x +yy)* = ox* +vy*, and
3. (xy)" =y*x*

for all x,y € Q and for all real § and ~.

Proof (continued). Let x = ag + a1/ + azj + azk and
y = Bo + B1if2j + B3k be in Q. Then by (2)

(xy)" =

(a0 + a1i + aoj + azk)(Bo + PriB2j + B3k))”

((cvo + a1i + agj + aszk)Bo + (o + a1i + apj + azk)Fri

+(ao + a1i + apj + azk)Baj + (o + ari + apj + ask)B3k)*
(o + a1i + aoj + azk)*Bo + (o + a1i + aoj + azk)*fri*
+(ao + a1i 4+ apj + azk)*Boj* + (o + a1/ + aoj + azk)*Psk™
Bo(ao + a1i + aoj + azk)™ + fri* (o + a1i + apj + azk)”
+02j" (a0 + i + azj + azk)” + B3k (a0 + a1i + azj + aszk)”
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Lemma 7.4.1 (continued 3)

Lemma 7.4.1. The adjoint in Q satisfies:
1. x** = x,
2. (x4 vy)* = ox* +vy*, and
3. (xy)* = y*x*

for all x,y € Q and for all real § and ~.

Proof (continued). ...

(xy)* = Bo(ao+ a1i + azj + ask)™ + B1i* (o + a1i + anj + aszk)”
+ﬂgj*(ozo—|—a1i+oz2j+a3k)*+ﬂ3k*(ao+a1i+a2j+a3k)*
(Bo + Bii + Boj + B3k) (o + ari + anj + azk)*
= y'x5,

as claimed. O
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Lemma 7.4.2

Lemma 7.4.2. For all x,y € Q we have N(xy) = N(x)N(y).

Introduction to Modern Algebra April 25, 2022 7 /20



Lemma 7.4.2

Lemma 7.4.2. For all x,y € Q we have N(xy) = N(x)N(y).

Proof. By the definition of norm, N(xy) = (xy)(xy)*. By Lemma
7.4.1(3), (xy)* = y*x* and so (since norms are real and real numbers
commute with all quaternions; that is, the reals are in the center of the

quaternions)
N(xy) = (xy)(xy)* = xy(y*x*) = x(yy*)x*
= xN(y)x" = xx*N(y) = N(x)N(y),

as claimed.
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Lemma 7.4.3. Lagrange ldentity

Lemma 7.4.3. Lagrange ldentity

Lemma 7.4.3. Lagrange ldentity.

If ag, a1, a0, a3 and By, B1, B2, B3 are real numbers then
(B + a2 +a3+a3) (83 + 67+ B2+ 53) = (aofo — a1 1 — 22 — a3f3)?
+(aof1 + a1fo + @23 — az3(2)? + (aofBa — a1 B3 + axfo + aszfr)?
(B3 + a1f2 — aaf1 + azfp)?.
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Lemma 7.4.3. Lagrange ldentity

Lemma 7.4.3. Lagrange ldentity.
If ag, a1, a0, a3 and By, B1, B2, B3 are real numbers then

(0f +af + a5+ a3)(55 + B3 + 65 + 05) = (cofo — 11 — 22 — a3/33)
+(aoB1 + 10 + a2f3 — 332)° + (202 — a1f3 + 02 + azfr)?
+(aof3 + a182 — azfr + aszfh)’.

Proof. With x = ag + a1/ + asj + azk and y = By + (17 + B2 + B3k in
Q, we have N(x) = a2+ a2 + a3 + a3 and N(y) = 33 + 82 + 35 + /3.
So the left-hand side of the equation in the claim equals N(x)N(y). Also

(see Quaternions—An Algebraic View (Supplement); the product is part of
the definition of the quaternions):

xy = (aofo — a1f1 — az2f2 — azf3) + (aof1 + a1 fo + 233 — azBa)i

+(aof2 + a2fo + azfr — a183)j + (aofs + azfo + a1f2 — azB1)k.
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Lemma 7.4.3. Lagrange ldentity

Lemma 7.4.3. Lagrange Identity (continued)

Lemma 7.4.3. Lagrange ldentity.

If ag, a1, a0, a3 and By, B1, B2, B3 are real numbers then
(ag+af + 03 +03)(65 + BT + 55 + 33) = (aofo — a1 B — 232 — a3f33)?

+(aoB1 + 1o + a23 — a3f)? + (awfa — 183 + aafo + azp1)?
+(0f3 + 12 — a2 + asfh)’.

Proof (continued). ...

y = (agfBo — a1 — a2 — a3f3) + (o f1 + a1f0 + 253 — azf32)i

+(aof2 + a2fo + azfr — a1 33)j + (of3 + azfo + a1f2 — aB1)k.

So the right-hand side of the equation in the claim equals N(xy). Since
N(x)N(y) = N(xy) by Lemma 7.4.2, then we have Lagrange’s
Identity.

O
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm.

Let a, b € H with b # 0. Then there exists two elements ¢, d € H such
that a = cb+ d and N(d) < N(b).
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm.
Let a, b € H with b # 0. Then there exists two elements ¢, d € H such
that a = cb+ d and N(d) < N(b).

Proof. We prove the result in two steps. First, suppose a € H and let
b >0 bereal (i.e.,, b€ Z, b>0). Let a = to( + t1/ + toj + tzk where
to, t1, t2, t3 € Z and b = n where n is a positive integer. Let

¢ = xoC + x1i + x1j + x3k where xo, x1, x2, x3 € Z (but are yet to be
determined; we want them to satisfy the condition

N(d) = N(a — cb) = N(a— cn) < N(b) = N(n) = n?).
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm.
Let a, b € H with b # 0. Then there exists two elements ¢, d € H such
that a = cb+ d and N(d) < N(b).

Proof. We prove the result in two steps. First, suppose a € H and let
b >0 bereal (i.e.,, b€ Z, b>0). Let a = to( + t1/ + toj + tzk where
to, t1, t2, t3 € Z and b = n where n is a positive integer. Let

¢ = xoC + x1i + x1j + x3k where xo, x1, x2, x3 € Z (but are yet to be
determined; we want them to satisfy the condition

N(d) = N(a — cb) = N(a— cn) < N(b) = N(n) = n?). Now

1+i+j+k S
a—en = (oo ——F—— + t1i + toj + tzk
<1+i+j+k) . .
—nxg — — nxyi — nxpj — nxzk
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 1)

Proof (continued). ...

1 1 .
a—cn = 5(to — nxg) + E(to +2t; — n(to + 2x1))i
1 o1
+§(to +2t1 — n(to + 2x2))j + E(to + 2t3 — n(to + 2x3))k.
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 1)

Proof (continued). ...

1 1 .
a—cn = 5(to — nxg) + E(to +2t; — n(to + 2x1))i
1 o1
+§(to +2t1 — n(to + 2x2))j + E(to + 2t3 — n(to + 2x3))k.

We now seek to choose xp, x1, X2, x3 such that |tog — nxp| < n/2,
|to + 2t1 — n(to + 2x1)| < n, to + 2t2 — n(tp + 2x2)| < n, and
|to + 2t3 — n(tp + 2x3)| < n then we would have

(to — r7X0)2 " (to 4+ 2t; — n(to + 2X1))2

N(a—cn) =
4 4
(to +2t2 — n(to +2x2))%  (to + 2t3 — n(to + 2x3))?
+ 4 + 4
< n?/16 4+ n?/4+ n?/4+ n?/4 < n® = N(n),
as desired.
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 2)

Proof (continued). The existence of desired xp, x1, X2, X3 are given as
follows:
1. By the Division Algorithm in Z, there is an integer xg such
that to = xon + r where —n/2 < r < n/2. For this xg, we
have |to — xon| = |r| < n/2.
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 2)

Proof (continued). The existence of desired xp, x1, X2, X3 are given as

1. By the Division Algorithm in Z, there is an integer xg such

that to = xon + r where —n/2 < r < n/2. For this xg, we
have |to — xon| = |r| < n/2.

. By the Division Algorithm in Z, there is an integer k such
that tg +2t1 = kn+rand 0 < r < n. If k — tg is even, set
2x1 = k — tp so that ty + 2t; = (2xp + to)n + r and

|to +2t1 — (2x1 + to)n| = r < n. If k — tp is odd, set

2x; = k — tp + 1 so that

to+2t1 = (2x1 +to—1)n+r = (2x1 + to)n+ r — n and
|to +2t1 — (2x1 + to)n| = |[r — n| < nsince 0 < r < n. There
(regardless of the parity of k — tp) there is integer xy for
which |tp + 2t1 — (2x1 + to)n| < n.
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 2)

Proof (continued). The existence of desired xp, x1, X2, X3 are given as
follows:

1. By the Division Algorithm in Z, there is an integer xg such
that to = xon + r where —n/2 < r < n/2. For this xg, we
have |to — xon| = |r| < n/2.

2. By the Division Algorithm in Z, there is an integer k such
that tg +2t1 = kn+rand 0 < r < n. If k — tg is even, set
2x1 = k — tp so that ty + 2t; = (2xp + to)n + r and
|to +2t1 — (2x1 + to)n| = r < n. If k — tp is odd, set
2x; = k — tp + 1 so that
to+2t1 = (2x1 +to—1)n+r = (2x1 + to)n+ r — n and
|to +2t1 — (2x1 + to)n| = |[r — n| < nsince 0 < r < n. There
(regardless of the parity of k — tp) there is integer xy for
which |tp + 2t1 — (2x1 + to)n| < n.

3. As in part 2, we can find integers xo and x3 which satisfy
|to + 2t2 — (2x2 + to)n| < n and [tg + 2t3 — (2x3 + to)n| < n.
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 3)

Lemma 7.4.5. Left-Division Algorithm.
Let a, b € H with b £ 0. Then there exists two elements ¢, d € H such
that a = cb+ d and N(d) < N(b).

Proof (continued). So the claim holds for a € H and b > 0 real. We
now consider the general case where a,b € H and b # 0.
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 3)

Lemma 7.4.5. Left-Division Algorithm.
Let a, b € H with b £ 0. Then there exists two elements ¢, d € H such
that a = cb+ d and N(d) < N(b).

Proof (continued). So the claim holds for a € H and b > 0 real. We
now consider the general case where a,b € H and b # 0. By Lemma 7.4.4
n = bb* is a positive integer, so by the first part of the proof there is

¢ € H such that ab* = cn + di where N(d1) < N(n); that is

N(d1) = N(ab* — cn) < N(n). But n = bb* we have

N(ab* — cbb*) < N(n), or N((a — cb)b*) < N(n) = N(bb*). By Lemma
7.4.2, this implies N(a — cb)N(b*) < N(b)N(b*) or (since b # 0 and
N(b*) > 0) N(a — cb) < N(b). Set d = a — cb and we have a = cb+ d

where N(d) < N(b), so that the general case holds. O
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Lemma 7.4.6

Lemma 7.4.6

Lemma 7.4.6. Let L be a left-ideal of H. Then there exists an element
u € L such that every element in L is a left-multiple of u; in other words,
there exists u € L such that every x € L is of the form x = ru where r € H
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Lemma 7.4.6

Lemma 7.4.6. Let L be a left-ideal of H. Then there exists an element
u € L such that every element in L is a left-multiple of u; in other words,
there exists u € L such that every x € L is of the form x = ru where r € H.

Proof. If L is the trivial ideal, L = {0}, then we take u = 0. We now
suppose that L has nonzero elements. By Lemma 7.4.4, the norms of
nonzero elements are positive integers, so there is an element v # 0 in L
whose norm is minimum over the nonzero elements of L.
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Lemma 7.4.6

Lemma 7.4.6. Let L be a left-ideal of H. Then there exists an element
u € L such that every element in L is a left-multiple of u; in other words,
there exists u € L such that every x € L is of the form x = ru where r € H.

Proof. If L is the trivial ideal, L = {0}, then we take u = 0. We now
suppose that L has nonzero elements. By Lemma 7.4.4, the norms of
nonzero elements are positive integers, so there is an element v # 0 in L
whose norm is minimum over the nonzero elements of L. For x € L, by the
Left-Division Algorithm (Lemma 7.4.5), x = cu + d where N(d) < N(u).
Now d = x — cu where x and u are in L (and hence cu € L since it is a
left-ideal), so d € L. Since N(u) is the minimum positive norm of nonzero
elements of L, then we must have N(d) =0 and so d = 0. Therefore

x = cu and (replacing ¢ € H here with r € H in the statement of the
lemma) the claim holds. O
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Lemma 7.4.7

Lemma 7.4.7. If a € H then a1 € H if and only if N(a) = 1.
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Lemma 7.4.7

Lemma 7.4.7

Lemma 7.4.7. If a € H then a1 € H if and only if N(a) = 1.
Proof. If both a and a=! are in H, then by Lemma 7.4.4 both N(a) and

N(a~1) are positive integers. However, aa~—! = 1, so by Lemma 7.4.2 we
have N(a)N(a=!) = N(aa=!) = N(1) = 1. But then N(a) = 1, as claimed.
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Lemma 7.4.7

Lemma 7.4.7. If a € H then a1 € H if and only if N(a) = 1.

Proof. If both a and a~! are in H, then by Lemma 7.4.4 both N(a) and
N(a~1) are positive integers. However, aa~—! = 1, so by Lemma 7.4.2 we
have N(a)N(a=!) = N(aa=!) = N(1) = 1. But then N(a) = 1, as claimed.

If a€ H and N(a) = 1, then aa* = N(a) =1 and so a~! = a*. By Lemma
7.4.4, since a € H then a* € H, so that a1 € H as claimed. O
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Theorem 7.4.1. Lagrange's Four-Square Theorem

Theorem 7.4.1. Lagrange’s Four-Square Theorem.
Every positive integer can be expressed as the sum of squares of four
integers.
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Theorem 7.4.1. Lagrange's Four-Square Theorem

Theorem 7.4.1. Lagrange’s Four-Square Theorem.
Every positive integer can be expressed as the sum of squares of four
integers.

Proof. Let n be a positive integer. By the Fundamental Theorem of
Arithmetic, n is a product of powers of prime numbers and by Lagrange's
Identity (Lemma 7.4.3) a product of integers expressible as a sum of four
squares is itself a sum of four squares. So it is sufficient to prove that
every prime number is a sum of four squares. Of course prime number 2
equals 0% + 0% 4+ 12 + 12, so we only need to consider odd primes.
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Theorem 7.4.1. Lagrange's Four-Square Theorem

Theorem 7.4.1. Lagrange’s Four-Square Theorem.
Every positive integer can be expressed as the sum of squares of four
integers.

Proof. Let n be a positive integer. By the Fundamental Theorem of
Arithmetic, n is a product of powers of prime numbers and by Lagrange's
Identity (Lemma 7.4.3) a product of integers expressible as a sum of four
squares is itself a sum of four squares. So it is sufficient to prove that
every prime number is a sum of four squares. Of course prime number 2
equals 0% + 0% 4+ 12 + 12, so we only need to consider odd primes.

Let p be an odd prime. With Z, as the integers modulo p, consider the
set of quaternions W, = {ag + a1i + agj + azk | ap, a1, 3,3 € Zp}.
The W, is finite (in fact, |W,| = p*) and forms a ring. Since p # 2, the
W, is not commutative because ij = —ji # ji (if p = 2 then, so to speak,
—1=1").
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Theorem 7.4.1 (continued 1)
Proof (continued). Thus, by Wedderburn's Theorem W, is not a division

ring. By Lemma 7.4.A, W, has a proper, nontrivial left-ideal. The
two-sided ideal V in H defined as

V = {xoC + x1i + xoj + xok | p divides all of xg, x1, x2, x3}

has the property that H/V is isomorphic to W, by Note 7.4.A. If V were
a maximal left-ideal in H, then H/V = W,, would have no left ideals other
the the trivial one and H/V = W, (remember, “bigger” ideals yield
“smaller” quotient rings).
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Theorem 7.4.1. Lagrange's Four-Square Theorem

Theorem 7.4.1 (continued 1)

Proof (continued). Thus, by Wedderburn's Theorem W, is not a division
ring. By Lemma 7.4.A, W, has a proper, nontrivial left-ideal. The
two-sided ideal V in H defined as

V = {xoC + x1i + xoj + xok | p divides all of xg, x1, x2, x3}

has the property that H/V is isomorphic to W, by Note 7.4.A. If V were
a maximal left-ideal in H, then H/V = W,, would have no left ideals other
the the trivial one and H/V = W, (remember, “bigger” ideals yield
“smaller” quotient rings). Therefore there is some left ideal L of H such
that L# H, L# V,and L D V. By Lemma 7.4.6, there is an element

u € L such that every element in L is a left multiple of u. Since p € V
then p € L and hence p = cu for some ¢ € H. If u € V then, since V is a
two-sided ideal, every multiple of u would be in V' and this cannot be the
case since V is a proper subset of L and every element in L is a left
multiple of u. So u ¢ V.

Introduction to Modern Algebra April 25, 2022 17 / 20



Theorem 7.4.1 (continued 2)

Proof (continued). Now c cannot have an inverse in H, or else u = c1p
would be in V. By Lemma 7.4.7, we now have that N(c) > 1. Next u
cannot have an inverse in H or else the left-multiple of u by this inverse
would imply that 1 € L and, since L is a left ideal of H, we would have

L = H in contradiction to the fact that L # H. Again by Lemma 7.4.7, we
have N(u) > 1. Since off prime p satisfies p = cu, then

p? = N(p) = N(cu) = N(c)N(u). But N(c) and N(u) are integers (since
c,u € H) greater than 1, hence N(c) = N(u) = p.
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Theorem 7.4.1. Lagrange's Four-Square Theorem

Theorem 7.4.1 (continued 2)

Proof (continued). Now c cannot have an inverse in H, or else u = c1p

would be in V. By Lemma 7.4.7, we now have that N(c) > 1. Next u
cannot have an inverse in H or else the left-multiple of u by this inverse
would imply that 1 € L and, since L is a left ideal of H, we would have

L = H in contradiction to the fact that L # H. Again by Lemma 7.4.7, we
have N(u) > 1. Since off prime p satisfies p = cu, then

p? = N(p) = N(cu) = N(c)N(u). But N(c) and N(u) are integers (since
c,u € H) greater than 1, hence N(c) = N(u) = p.

Since u € H, the u = mg{ + myi + myj + mzk where mg, my, my, m3 are
integers. Thus (by the definition of ():

2u =2moC + 2myi + 2myj + 2msk = (mg + moi + moj + mok)

+2myi+2moj+2m3k = mo+ (2my + mg)i + (2my + mo)j + (2m3 + mg) k.
Therefore N(2u) = m2 + (2my + mg)? + (2mp + mg)? + (2m3 + mg)?.
Introduction to Modern Algebra April 25, 2022 18 / 20



Theorem 7.4.1 (continued 3)

Proof (continued). But N(2u) = N(2)N(u) = 4p since N(2) =22 =4
and N(u) = p. We now have

4p = m3 + (2my + mo)? + (2ma + mo) + (2ms + mg)?. (%)
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Theorem 7.4.1 (continued 3)

Proof (continued). But N(2u) = N(2)N(u) = 4p since N(2) =22 =4
and N(u) = p. We now have

4p = m3 + (2my + mo)? + (2ma + mo) + (2ms + mg)?. (%)

Next, notice that if 25 = xg + x12 + x22 + x32 where a, xg, x1, X2, x3 € Z then
all the x;'s are even, all are odd, or two are even and two odd. In all three
cases, the x;'s can be paired in such a way that

X0+ X1 _Xp— X1 X2+ X3 and X2 — X3
Yo = 2 y Y1 = 2 , Yo = 2 ) Yo = 2 ’

are all integers. Then

Xo + X1 2 X0 — X1 2 X2 + X3 2 X2 — X3 2
doeded= (50) +(252) +(252) +(252)

= (6 +xi +x3 +x3)/2=(23)/2 = a.
That is, if 2a is a sum of four squares, then so is a.
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Theorem 7.4.1 (continued 4)

Theorem 7.4.1. Lagrange’s Four-Square Theorem.
Every positive integer can be expressed as the sum of squares of four

integers.

Proof (continued). Now 4p is a sum of four squares by (%), so the the
previous comment we have that 2p is a sum of four squares and, again by
the previous comment, p itself is a sum of four square. That is, odd prime
p satisfies p = af + a% + a% + a% for some integers ag, a1, a2, a3. So
Lagrange's Four-Square Theorem holds for all primes and, as commented
at the start of the proof, holds for all positive integers. O
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