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Lemma 7.4.1

Lemma 7.4.1

Lemma 7.4.1. The adjoint in Q satisfies:

1. x∗∗ = x ,

2. (δx + γy)∗ = δx∗ + γy∗, and

3. (xy)∗ = y∗x∗

for all x , y ∈ Q and for all real δ and γ.

Proof. (1) If x = α0 + α1i + α2j + α3k then

x∗∗ = (x∗)∗ = (α0 − α1i − α2j − α3k)∗ = α0 + α1i + α2j + α3k,

as claimed.

(2) Let x = α0 + α1i + α2j + α3k and y = β0 + β1iβ2j + β3k be in Q and
let δ and γ be real numbers. Then

δx + γy = (δα0 + γβ0) + (δα1 + γβ1)i + (δα2 + γβ2)j + (δα3 + γβ3)k, . . .
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Lemma 7.4.1

Lemma 7.4.1 (continued 1)

Lemma 7.4.1. (xy)∗ = y∗x∗

Proof (continued). . . . and so

(δx + γy)∗ = (δα0 + γβ0)− (δα1 + γβ1)i − (δα2 + γβ2)j − (δα3 + γβ3)k

= δ(α0 − α1j − α2j − α2)k) + γ(β0 − β1i − β2j − β3k) = δx∗ + γy∗,

as claimed.

(3) We prove the result for the basis elements 1, i , j , k of Q (as a real
vector space). This requires several cases. We have ij = k and ji = −k, so
by (2) we have (ij)∗ = k∗ = −k = ji = (−j)(−i) = j∗i∗. We have ki = j
and ik = −j , so by (2) we have
(ik)∗ = (−j)∗ = j = ki = (−k)(−i) = k∗i∗. We have jk = i and kj = −i ,
so by (2) we have (jk)∗ = i∗ = −i = kj = (−k)(−j) = k∗j∗. Also,
(i2)∗ = (−1)∗ = −1 = (−i)2 = (i∗)2, (j2)∗ = (−1)∗ = −1 = (−j)2

= (j∗)2, and (k2)∗ = (−1)∗ = −1 = (−k)2 = (k∗)2.
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Lemma 7.4.1 (continued 1)
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Lemma 7.4.1

Lemma 7.4.1 (continued 2)

Lemma 7.4.1. The adjoint in Q satisfies:

1. x∗∗ = x ,
2. (δx + γy)∗ = δx∗ + γy∗, and
3. (xy)∗ = y∗x∗

for all x , y ∈ Q and for all real δ and γ.

Proof (continued). Let x = α0 + α1i + α2j + α3k and
y = β0 + β1iβ2j + β3k be in Q. Then by (2)

(xy)∗ = ((α0 + α1i + α2j + α3k)(β0 + β1iβ2j + β3k))∗

= ((α0 + α1i + α2j + α3k)β0 + (α0 + α1i + α2j + α3k)β1i

+(α0 + α1i + α2j + α3k)β2j + (α0 + α1i + α2j + α3k)β3k)∗

= (α0 + α1i + α2j + α3k)∗β0 + (α0 + α1i + α2j + α3k)∗β1i
∗

+(α0 + α1i + α2j + α3k)∗β2j
∗ + (α0 + α1i + α2j + α3k)∗β3k

∗

= β0(α0 + α1i + α2j + α3k)∗ + β1i
∗(α0 + α1i + α2j + α3k)∗

+β2j
∗(α0 + α1i + α2j + α3k)∗ + β3k

∗(α0 + α1i + α2j + α3k)∗
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Lemma 7.4.1

Lemma 7.4.1 (continued 3)

Lemma 7.4.1. The adjoint in Q satisfies:

1. x∗∗ = x ,

2. (δx + γy)∗ = δx∗ + γy∗, and

3. (xy)∗ = y∗x∗

for all x , y ∈ Q and for all real δ and γ.

Proof (continued). . . .

(xy)∗ = β0(α0 + α1i + α2j + α3k)∗ + β1i
∗(α0 + α1i + α2j + α3k)∗

+β2j
∗(α0 + α1i + α2j + α3k)∗ + β3k

∗(α0 + α1i + α2j + α3k)∗

= (β0 + β1i + β2j + β3k)∗(α0 + α1i + α2j + α3k)∗

= y∗x∗,

as claimed.
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Lemma 7.4.2

Lemma 7.4.2

Lemma 7.4.2. For all x , y ∈ Q we have N(xy) = N(x)N(y).

Proof. By the definition of norm, N(xy) = (xy)(xy)∗. By Lemma
7.4.1(3), (xy)∗ = y∗x∗ and so (since norms are real and real numbers
commute with all quaternions; that is, the reals are in the center of the
quaternions)

N(xy) = (xy)(xy)∗ = xy(y∗x∗) = x(yy∗)x∗

= xN(y)x∗ = xx∗N(y) = N(x)N(y),

as claimed.
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Lemma 7.4.3. Lagrange Identity

Lemma 7.4.3. Lagrange Identity

Lemma 7.4.3. Lagrange Identity.
If α0, α1, α2, α3 and β0, β1, β2, β3 are real numbers then

(α2
0 + α2

1 + α2
2 + α2

3)(β
2
0 + β2

1 + β2
2 + β2

3) = (α0β0 −α1β1 −α2β2 −α3β3)
2

+(α0β1 + α1β0 + α2β3 − α3β2)
2 + (α0β2 − α1β3 + α2β0 + α3β1)

2

+(α0β3 + α1β2 − α2β1 + α3β0)
2.

Proof. With x = α0 + α1i + α2j + α3k and y = β0 + β1i + β2j + β3k in
Q, we have N(x) = α2

0 + α2
1 + α2

2 + α2
3 and N(y) = β2

0 + β2
1 + β2

2 + β2
3 .

So the left-hand side of the equation in the claim equals N(x)N(y). Also
(see Quaternions–An Algebraic View (Supplement); the product is part of
the definition of the quaternions):

xy = (α0β0 − α1β1 − α2β2 − α3β3) + (α0β1 + α1β0 + α2β3 − α3β2)i

+(α0β2 + α2β0 + α3β1 − α1β3)j + (α0β3 + α3β0 + α1β2 − α2β1)k.
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Lemma 7.4.3. Lagrange Identity

Lemma 7.4.3. Lagrange Identity (continued)

Lemma 7.4.3. Lagrange Identity.
If α0, α1, α2, α3 and β0, β1, β2, β3 are real numbers then

(α2
0 + α2

1 + α2
2 + α2

3)(β
2
0 + β2

1 + β2
2 + β2

3) = (α0β0 −α1β1 −α2β2 −α3β3)
2

+(α0β1 + α1β0 + α2β3 − α3β2)
2 + (α0β2 − α1β3 + α2β0 + α3β1)

2

+(α0β3 + α1β2 − α2β1 + α3β0)
2.

Proof (continued). . . .

xy = (α0β0 − α1β1 − α2β2 − α3β3) + (α0β1 + α1β0 + α2β3 − α3β2)i

+(α0β2 + α2β0 + α3β1 − α1β3)j + (α0β3 + α3β0 + α1β2 − α2β1)k.

So the right-hand side of the equation in the claim equals N(xy). Since
N(x)N(y) = N(xy) by Lemma 7.4.2, then we have Lagrange’s
Identity.
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm.
Let a, b ∈ H with b 6= 0. Then there exists two elements c , d ∈ H such
that a = cb + d and N(d) < N(b).

Proof. We prove the result in two steps. First, suppose a ∈ H and let
b > 0 be real (i.e., b ∈ Z, b > 0). Let a = t0ζ + t1i + t2j + t3k where
t0, t1, t2, t3 ∈ Z and b = n where n is a positive integer. Let
c = x0ζ + x1i + x1j + x3k where x0, x1, x2, x3 ∈ Z (but are yet to be
determined; we want them to satisfy the condition
N(d) = N(a− cb) = N(a− cn) < N(b) = N(n) = n2).

Now

a− cn =

(
t0

(
1 + i + j + k

2

)
+ t1i + t2j + t3k

)
−nx0

(
1 + i + j + k

2

)
− nx1i − nx2j − nx3k
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 1)

Proof (continued). . . .

a− cn =
1

2
(t0 − nx0) +

1

2
(t0 + 2t1 − n(t0 + 2x1))i

+
1

2
(t0 + 2t1 − n(t0 + 2x2))j +

1

2
(t0 + 2t3 − n(t0 + 2x3))k.

We now seek to choose x0, x1, x2, x3 such that |t0 − nx0| ≤ n/2,
|t0 + 2t1 − n(t0 + 2x1)| ≤ n, t0 + 2t2 − n(t0 + 2x2)| ≤ n, and
|t0 + 2t3 − n(t0 + 2x3)| ≤ n then we would have

N(a− cn) =
(t0 − nx0)

2

4
+

(t0 + 2t1 − n(t0 + 2x1))
2

4

+
(t0 + 2t2 − n(t0 + 2x2))

2

4
+

(t0 + 2t3 − n(t0 + 2x3))
2

4
≤ n2/16 + n2/4 + n2/4 + n2/4 < n2 = N(n),

as desired.
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 2)

Proof (continued). The existence of desired x0, x1, x2, x3 are given as
follows:

1. By the Division Algorithm in Z, there is an integer x0 such
that t0 = x0n + r where −n/2 ≤ r ≤ n/2. For this x0, we
have |t0 − x0n| = |r | ≤ n/2.

2. By the Division Algorithm in Z, there is an integer k such
that t0 + 2t1 = kn + r and 0 ≤ r ≤ n. If k − t0 is even, set
2x1 = k − t0 so that t0 + 2t1 = (2x0 + t0)n + r and
|t0 + 2t1 − (2x1 + t0)n| = r < n. If k − t0 is odd, set
2x1 = k − t0 + 1 so that
t0 + 2t1 = (2x1 + t0 − 1)n + r = (2x1 + t0)n + r − n and
|t0 + 2t1 − (2x1 + t0)n| = |r − n| ≤ n since 0 ≤ r < n. There
(regardless of the parity of k − t0) there is integer x1 for
which |t0 + 2t1 − (2x1 + t0)n| ≤ n.

3. As in part 2, we can find integers x2 and x3 which satisfy
|t0 + 2t2 − (2x2 + t0)n| ≤ n and |t0 + 2t3 − (2x3 + t0)n| ≤ n.
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Lemma 7.4.5. Left-Division Algorithm

Lemma 7.4.5. Left-Division Algorithm (continued 3)

Lemma 7.4.5. Left-Division Algorithm.
Let a, b ∈ H with b 6= 0. Then there exists two elements c , d ∈ H such
that a = cb + d and N(d) < N(b).

Proof (continued). So the claim holds for a ∈ H and b > 0 real. We
now consider the general case where a, b ∈ H and b 6= 0. By Lemma 7.4.4
n = bb∗ is a positive integer, so by the first part of the proof there is
c ∈ H such that ab∗ = cn + d1 where N(d1) < N(n); that is
N(d1) = N(ab∗ − cn) < N(n). But n = bb∗ we have
N(ab∗ − cbb∗) < N(n), or N((a− cb)b∗) < N(n) = N(bb∗). By Lemma
7.4.2, this implies N(a− cb)N(b∗) < N(b)N(b∗) or (since b 6= 0 and
N(b∗) > 0) N(a− cb) < N(b). Set d = a− cb and we have a = cb + d
where N(d) < N(b), so that the general case holds.
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Lemma 7.4.6

Lemma 7.4.6

Lemma 7.4.6. Let L be a left-ideal of H. Then there exists an element
u ∈ L such that every element in L is a left-multiple of u; in other words,
there exists u ∈ L such that every x ∈ L is of the form x = ru where r ∈ H.

Proof. If L is the trivial ideal, L = {0}, then we take u = 0. We now
suppose that L has nonzero elements. By Lemma 7.4.4, the norms of
nonzero elements are positive integers, so there is an element u 6= 0 in L
whose norm is minimum over the nonzero elements of L.

For x ∈ L, by the
Left-Division Algorithm (Lemma 7.4.5), x = cu + d where N(d) < N(u).
Now d = x − cu where x and u are in L (and hence cu ∈ L since it is a
left-ideal), so d ∈ L. Since N(u) is the minimum positive norm of nonzero
elements of L, then we must have N(d) = 0 and so d = 0. Therefore
x = cu and (replacing c ∈ H here with r ∈ H in the statement of the
lemma) the claim holds.
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Lemma 7.4.7

Lemma 7.4.7

Lemma 7.4.7. If a ∈ H then a−1 ∈ H if and only if N(a) = 1.

Proof. If both a and a−1 are in H, then by Lemma 7.4.4 both N(a) and
N(a−1) are positive integers. However, aa−1 = 1, so by Lemma 7.4.2 we
have N(a)N(a−1) = N(aa−1) = N(1) = 1. But then N(a) = 1, as claimed.

If a ∈ H and N(a) = 1, then aa∗ = N(a) = 1 and so a−1 = a∗. By Lemma
7.4.4, since a ∈ H then a∗ ∈ H, so that a−1 ∈ H as claimed.
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Theorem 7.4.1. Lagrange’s Four-Square Theorem

Theorem 7.4.1. Lagrange’s Four-Square Theorem

Theorem 7.4.1. Lagrange’s Four-Square Theorem.
Every positive integer can be expressed as the sum of squares of four
integers.

Proof. Let n be a positive integer. By the Fundamental Theorem of
Arithmetic, n is a product of powers of prime numbers and by Lagrange’s
Identity (Lemma 7.4.3) a product of integers expressible as a sum of four
squares is itself a sum of four squares. So it is sufficient to prove that
every prime number is a sum of four squares. Of course prime number 2
equals 02 + 02 + 12 + 12, so we only need to consider odd primes.

Let p be an odd prime. With Zp as the integers modulo p, consider the
set of quaternions Wp = {α0 + α1i + α2j + α3k | α0, α1, α3, α3 ∈ Zp}.
The Wp is finite (in fact, |Wp| = p4) and forms a ring. Since p 6= 2, the
Wp is not commutative because ij = −ji 6= ji (if p = 2 then, so to speak,
“−1 = 1”).
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Theorem 7.4.1. Lagrange’s Four-Square Theorem

Theorem 7.4.1 (continued 1)

Proof (continued). Thus, by Wedderburn’s Theorem Wp is not a division
ring. By Lemma 7.4.A, Wp has a proper, nontrivial left-ideal. The
two-sided ideal V in H defined as

V = {x0ζ + x1i + x2j + x2k | p divides all of x0, x1, x2, x3}

has the property that H/V is isomorphic to Wp by Note 7.4.A. If V were
a maximal left-ideal in H, then H/V ∼= Wp would have no left ideals other
the the trivial one and H/V ∼= Wp (remember, “bigger” ideals yield
“smaller” quotient rings). Therefore there is some left ideal L of H such
that L 6= H, L 6= V , and L ⊃ V . By Lemma 7.4.6, there is an element
u ∈ L such that every element in L is a left multiple of u. Since p ∈ V
then p ∈ L and hence p = cu for some c ∈ H. If u ∈ V then, since V is a
two-sided ideal, every multiple of u would be in V and this cannot be the
case since V is a proper subset of L and every element in L is a left
multiple of u. So u 6∈ V .
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Theorem 7.4.1. Lagrange’s Four-Square Theorem

Theorem 7.4.1 (continued 2)

Proof (continued). Now c cannot have an inverse in H, or else u = c−1p
would be in V . By Lemma 7.4.7, we now have that N(c) > 1. Next u
cannot have an inverse in H or else the left-multiple of u by this inverse
would imply that 1 ∈ L and, since L is a left ideal of H, we would have
L = H in contradiction to the fact that L 6= H. Again by Lemma 7.4.7, we
have N(u) > 1. Since off prime p satisfies p = cu, then
p2 = N(p) = N(cu) = N(c)N(u). But N(c) and N(u) are integers (since
c , u ∈ H) greater than 1, hence N(c) = N(u) = p.

Since u ∈ H, the u = m0ζ + m1i + m2j + m3k where m0,m1,m2,m3 are
integers. Thus (by the definition of ζ):

2u = 2m0ζ + 2m1i + 2m2j + 2m3k = (m0 + m0i + m0j + m0k)

+2m1i +2m2j +2m3k = m0 +(2m1 +m0)i +(2m2 +m0)j +(2m3 +m0)k.

Therefore N(2u) = m2
0 + (2m1 + m0)

2 + (2m2 + m0)
2 + (2m3 + m0)

2.
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Theorem 7.4.1. Lagrange’s Four-Square Theorem

Theorem 7.4.1 (continued 3)

Proof (continued). But N(2u) = N(2)N(u) = 4p since N(2) = 22 = 4
and N(u) = p. We now have

4p = m2
0 + (2m1 + m0)

2 + (2m2 + m0)
2 + (2m3 + m0)

2. (∗)

Next, notice that if 2a = x2
0 + x2

1 + x2
2 + x2

3 where a, x0, x1, x2, x3 ∈ Z then
all the xi ’s are even, all are odd, or two are even and two odd. In all three
cases, the xi ’s can be paired in such a way that

y0 =
x0 + x1

2
, y1 =

x0 − x1

2
, y0 =

x2 + x3

2
, and y0 =

x2 − x3

2
,

are all integers. Then

y2
0 +y2

1 +y2
2 +y2

3 =

(
x0 + x1

2

)2

+

(
x0 − x1

2

)2

+

(
x2 + x3

2

)2

+

(
x2 − x3

2

)2

= (x2
0 + x2

1 + x2
2 + x2

3 )/2 = (2a)/2 = a.

That is, if 2a is a sum of four squares, then so is a.
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Theorem 7.4.1. Lagrange’s Four-Square Theorem

Theorem 7.4.1 (continued 4)

Theorem 7.4.1. Lagrange’s Four-Square Theorem.
Every positive integer can be expressed as the sum of squares of four
integers.

Proof (continued). Now 4p is a sum of four squares by (∗), so the the
previous comment we have that 2p is a sum of four squares and, again by
the previous comment, p itself is a sum of four square. That is, odd prime
p satisfies p = a2

1 + a2
1 + a2

2 + a2
3 for some integers a0, a1, a2, a3. So

Lagrange’s Four-Square Theorem holds for all primes and, as commented
at the start of the proof, holds for all positive integers.
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