Lemma 45.9. Let \(R \) be a commutative ring and let \(N_1 \subseteq N_2 \subseteq \ldots \) be an ascending chain of ideals \(N_i \) in \(R \). Then \(N = \text{sup} \, N_i \) is an ideal of \(R \).

Proof. Let \(a, b \in N_i \). Then there are ideals \(N_i \) and \(N_j \) in the chain with \(a \in N_i \) and \(b \in N_j \). \(\text{WLOG}, \ N_i \subseteq N_j \) and \(a, b \in N_j \). Every ideal is an additive subgroup, so \(a \pm b \in N_j \). By the definition of ideal, \(ab \in N_j \). So \(a \pm b, ab \in N \).

Since \(0 \in N_i \) for all \(i \), it follows that for all \(b \in N \), we have \(-b \in N \) and \(0 \in N \). By Exercise 18.48, \(N \) is a subring of \(R \). For \(a \in N \) and \(r \in R \), we have \(a \in N_i \) for some \(i \) and since \(N_i \) is an ideal, then \(ra = ad \in N_i \). So \(ad \in \bigcup N_i \) and \(da \in N \). So \(N \) is an ideal of \(R \).

Lemma 45.10. The Ascending Chain Condition for a PID

Lemma 45.10. The Ascending Chain Condition for a PID. Let \(D \) be a PID. If \(N_1 \subseteq N_2 \subseteq \ldots \) is an ascending chain of ideals, then there exists a positive integer \(r \) such that \(N_s = N_r \) for all \(s \geq r \). Equivalently, every strictly ascending chain of ideals in a PID is of finite length. Under such conditions it is said that the ascending chain condition holds for ideals in a PID.

Proof. By Lemma 45.9, we have that \(N = \bigcup N_i \) is an ideal of \(D \). Since \(D \) is a PID then \(N \) is a principal ideal and so \(N = (c) \) for some \(c \in D \). Since \(N = \bigcup N_i \), then \(c \in N_i \) for some \(r \in \mathbb{N} \). For \(s \geq r \) we have \((c) \subset N_s \subset N_r \subset N = (c) \) so \(N_s = N_r \) for all \(s \geq r \).

Lemma 45.11. Let \(D \) be a PID. Every element that is neither 0 nor a unit of \(D \) is a product of irreducibles.

Proof. Let \(a \in D \) where 'a' is neither 0 nor a unit. [We first show that 'a' has at least one irreducible factor.]

If 'a' itself is irreducible then we are done. If 'a' is not irreducible, then \(a = a_1 b_1 \) where neither \(a_1 \) or \(b_1 \) is a unit. Now \((a) \subseteq (a_1) \) by Note 1 Part (1) (if \((a) \subseteq (a_1) \) then by Note 1 Part (2) 'a' and \(a_1 \) would be associates, contradicting the fact that neither \(a_1 \) nor \(b_1 \) is a unit). If \(a_1 \) is irreducible then \(a_1 \) is an irreducible factor of 'a'. If not, write \(a_1 = a_2 b_2 \) where neither \(a_2 \) nor \(b_2 \) is a unit. As above, we have \((a_1) \subseteq (a_2) \). Continue this process to form a strictly ascending chain \((a) \subseteq (a_1) \subseteq (a_2) \subseteq \ldots . \)

By Lemma 45.10, this chain terminates with some \((a_r) \) and this \(a_r \) must be irreducible (or else we would contract \((a_{r+1}) \) with \((a_r) \subseteq (a_{r+1}) \)). We now have \(a = b_1 b_2 \ldots b_r a_r \) and so \(a_r \) is an irreducible factor of 'a'.
Theorem 45.11. (Continued)

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a unit of D is a product of irreducibles.

Proof. (Continued) Now that we know α has an irreducible factor, we show that it can be written as a product of irreducible factors.

By above, we have that α (neither 0 nor a unit in D) is irreducible or of the form $a = p_1 c_1$ for p_1 an irreducible and c_1 not a unit. If c_1 is not a unit (and of course it's not 0) then by the argument of the first paragraph we have $\langle a \rangle \subset \langle c_1 \rangle$ and if c_1 is not irreducible then $c_1 = p_2 c_2$ for irreducible p_2 with c_2 not a unit. Continuing we again get a strictly ascending chain of ideals $\langle a \rangle \subset \langle c_1 \rangle \subset \langle c_2 \rangle \subset \ldots$.

By Lemma 45.10, this chain terminates with some $c_r = q_r$ that is irreducible (as argued in the first paragraph). Then $a = p_1 p_2 \ldots p_r q_r$ is a product of irreducibles. □

Lemma 45.12. (Continued)

Lemma 45.12. An ideal $\langle p \rangle$ in a PID is maximal if and only if p is irreducible.

Proof. (Continued) Conversely, suppose that p is an irreducible in D. If $\langle p \rangle \subseteq \langle a \rangle$ then by Note 41 Part(1) we must have $p = ab$ for some b in D. If a is a unit, then α and 1 are associates and by Note 41 Part(2), we have $\langle a \rangle = \langle 1 \rangle = D$ and $\langle a \rangle$ is a maximal ideal. If α is not a unit, then b must be a unit (since p is irreducible) so there exists $u \in D$ such that $bu = 1$.

Then $pu = abu = a$ and by Note 41 Part(1) $\langle a \rangle \subseteq \langle p \rangle$ and since p and α are associates, by Note 41 Part (2) we have $\langle a \rangle = \langle p \rangle$. We have now shown that if $\langle p \rangle \subseteq \langle a \rangle$ then either $\langle a \rangle = D$ (if α is a unit) or $\langle a \rangle = \langle p \rangle$ (if α is not a unit). □

Lemma 45.12. (Continued)

Lemma 45.12. An ideal $\langle p \rangle$ in a PID is maximal if and only if p is irreducible.

Proof. (Continued) So there is no proper ideal of D which properly contains $\langle p \rangle$ (of course all ideals of D are principal). That is, $\langle p \rangle$ is a maximal ideal.
Lemma 45.13. In a PID, if an irreducible p divides ab then either $p | a$ or $p | b$.

Proof. Let D be a PID and suppose that for an irreducible $p \in D$ we have $p | ab$. Then $ab \in \langle p \rangle$ (since $\langle p \rangle$ consists of all multiples of p). Since p is irreducible, by Lemma 45.12 $\langle p \rangle$ is a maximal ideal in D. By Corollary 27.16, every maximal ideal is a prime ideal, so $\langle p \rangle$ is a prime ideal. Then $ab \in \langle p \rangle$ implies that either $a \in \langle p \rangle$ or $b \in \langle p \rangle$. That is, by Note 1 Part (1), either $p | a$ or $p | b$. □

Theorem 45.17. Every PID is a UFD

Proof. Theorem 45.11 shows that every PID satisfies the first property of a UFD and gives for a in a PID D where ‘a’ is neither 0 nor a unit, a factorization $a = p_1 p_2 \cdots p_r$ into irreducibles. Property 2 of a UFD says that such a factorization is unique (in terms of associates). Let $a = q_1 q_2 \cdots q_s$ be another factorization of ‘a’ into irreducibles. Then we have $p_j | (q_1 q_2 \cdots q_s)$. By Corollary 45.14, $p_j | q_i$ for some j. Reorder the q’s such that q_j becomes q_1. Then $q_1 = p_1 u_1$ where u_1 is a unit. Then p_1 and q_1 are associates. Then $p_1 p_2 \cdots p_r = (p_1 u_1) q_2 \cdots q_s$. By cancellation in integral domain D (Theorem 19.5) $p_2 p_3 \cdots p_r = u_1 q_1 q_2 \cdots q_s$.

Corollary 45.18 Fundamental Theorem of Arithmetic.

Proof. We know that \mathbb{Z} is a PID (see the note after Definition 45.7). So by Theorem 45.17, \mathbb{Z} is a UFD. □
Lemma 45.23. If \(D \) is a UFD then for every nonconstant \(f(x) \in D[x] \) we have \(f(x) = cg(x) \) where \(c \in D \), \(g(x) \in D[x] \) and \(g(x) \) is a primitive. The element \(c \) is unique up to a unit factor in \(D \) and is the content of \(f(x) \). Also \(g(x) \) is unique up to a unit factor in \(D \).

Proof. Let \(f(x) \in D[x] \) be given where \(f(x) \) is a nonconstant polynomial with coefficients \(a_0, a_1, ..., a_n \). Let \(c \) be a gcd of the \(a_i \). Then for each \(i \), we have \(a_i = cg_i \) for some \(g_i \in D \). We have \(f(x) = cg(x) \). Now there is no irreducible dividing all of the \(g_i \) (if so, say the irreducible in \(b \), then \(cb \) divides all \(a_i \), but \(cb \) \(\mid c \) so in this case \(c \) is not a gcd of the \(a_i \)). So a gcd of the \(g_i \) must be a unit and have an associate of 1. So 1 is a gcd of the \(g_i \) and \(g(x) \) is a primitive polynomial.

Lemma 45.23. (Continued)

Lemma 45.23. If \(D \) is a UFD then for every nonconstant \(f(x) \in D[x] \) we have \(f(x) = cg(x) \) where \(c \in D \), \(g(x) \in D[x] \) and \(g(x) \) is a primitive. The element \(c \) is unique up to a unit factor in \(D \) and is the content of \(f(x) \). Also \(g(x) \) is unique up to a unit factor in \(D \).

Proof. (Continued) For uniqueness, if \(f(x) = dh(x) \) also for some \(h \in D \) and \(h(x) \in D[x] \) with \(hi(x) \) primitive, then each irreducible factor of \(c \) must divide \(d \) and each irreducible factor of \(d \) must divide \(c \) (or else, as in the first paragraph, 1 is not a gcd of the respective coefficients of \(g \) or \(h \) and hence \(g \) or \(h \) is not primitive).

By setting \(cg(x) = dh(x) \) (since both equal \(f(x) \)) and cancelling irreducible factors of \(c \) into \(d \) (Theorem 19.5), we arrive at \(u g(x) = v h(x) \) for a unit \(u \in D \). But then \(v \) must be a unit of \(D \) or we would be able to cancel irreducible factors of \(v \) into \(u \).

Lemma 45.25 Gauss's Lemma.

Lemma 45.25 Gauss's Lemma. If \(D \) is a UFD, then a product of two primitive polynomials in \(D[x] \) is again primitive.

Proof. Let \(f(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \) and \(g(x) = b_0 + b_1x + b_2x^2 + \ldots + b_mx^m \) be primitives in \(D[x] \) and let \(h(x) = f(x)g(x) \). Let \(p \) be an irreducible in \(D \). Then \(p \) does not divide all \(a_i \) and \(p \) does not divide \(b_j \) (or else a multiple of \(p \) is a gcd of the \(a_i \) and of the \(b_j \) and 1 is not a gcd since all \(gcd \)'s are associates). [since \(f(x) \) and \(g(x) \) are primitive.]

Let \(a_r \) be the first coefficient (i.e., \(r \) is the smallest value) of \(f(x) \) not divisible by \(p \); that is, \(p \mid a_i \) for \(0 \leq i < r \) but \(p \nmid a_r \). Similarly, let \(p \mid b_j \) for \(0 \leq i < s \) but \(p \nmid b_s \).
Lemma 45.25 Gauss’s Lemma. (Continued)

Lemma 45.25 Gauss’s Lemma. If D is a UFD, then a product of two primitive polynomials in $D[x]$ is again primitive.

Proof. (Continued) The coefficient of x^{r+s} in $h(x) = f(x)g(x)$ is (we are in a commutative ring):

$$c_{r+s} = (a_0b_{r+s} + a_1b_{r+s-1} + \ldots + a_{r-1}b_{s+1}) + a_rb_s + (a_{r+1}b_{s-1} + a_{r+2}b_{s-2} + \ldots + a_{r+s}b_0)$$

(1)

Now $p \mid a_i$ for $0 \leq i < r$ implies that

$p \mid (a_0b_{r+s} + a_1b_{r+s-1} + \ldots + a_{r-1}b_{s+1})$ and $p \mid b_j$ for $0 \leq j < s$ implies that

$p \mid (a_{r+1}b_{s-1} + a_{r+2}b_{s-2} + \ldots + a_{r+s}b_0)$.

Lemma 45.27.

Lemma 45.27. Let D be a UFD and let F be a field of quotients of D. Let $f(x) \in D[x]$ where $(\deg f(x)) > 0$. If $f(x)$ is an irreducible in $D[x]$, then $f(x)$ is also an irreducible in $F[x]$. Also, if $f(x)$ is primitive in $D[x]$ and irreducible in $F[x]$, then $f(x)$ is irreducible in $D[x]$.

Proof. We prove the contrapositive of the first claim. Suppose that a nonconstant $f(x) \in D[x]$ factors into polymonials of lower degree in $F[x]$; that is $f(x) = r(x)s(x)$ for $r(x), s(x) \in F[x]$. Then since F is a field of quotients of D, each coefficient in $r(x)$ and $s(x)$ is of the form a/b for some $a, b \in D$, $b \neq 0$. By “clearing the denominators” (i.e. multiplying through by a common multiple of the denominator) we can get $d(f(x)) = r_1(x)s_1(x)$ for $d \in D$ and $r_1(x), s_1(x) \in D[x]$ where the degrees of $r_1(x)$ and $s_1(x)$ equal the degrees of $r(x)$ and $s(x)$, respectively.
Corollary 45.28.

Corollary 45.28. If D is a UFD and F is a field of quotients of D, then a nonconstant $f(x) \in D[x]$ factors into a product of two polynomials of lower degrees r and s in $F[x]$ if and only if it has a factorization into polynomials of the same degrees r and s in $D[x]$.

Proof. In the proof of Lemma 45.27, if $f(x)$ factors in $F[x]$ into $f(x) = r(x)s(x)$ where $r(x)$ and $s(x)$ are of degrees smaller than the degree of $f(x)$, then $f(x) = curt(x)s_2(x)$ in $D[x]$ where the degrees of $r(x)$ and $s_2(x)$ are the same and the degrees of $s(x)$ and $s_2(x)$ are the same. The converse holds since $D[x] \subseteq F[x]$. □

Theorem 45.29.

Theorem 45.29. If D is a UFD, then $D[x]$ is a UFD.

Proof. Let $f(x) \in D[x]$ where $f(x)$ is neither 0 nor a unit. If $f(x)$ is of degree 0, we are done since D is a UFD. Suppose (degree $f(x)) > 0$. Let $f(x) = g_1(x)g_2(x) \cdots g_r(x)$ be a factorization of $f(x)$ in $D[x]$ having the greatest number r of factors of positive degree (so no $g_i(x)$ is a constant polynomial). There is such a greatest number of such factors since r cannot exceed the degree of $f(x)$.

Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then $D[x]$ is a UFD.

Proof. (Continued)* Now factor each $g_i(x)$ in the form $g_i(x) = c_i h_i(x)$ where c_i is the content of $g_i(x)$ (by Lemma 45.23, c is a gcd of the coefficients of $g_i(x)$) and $h_i(x)$ is a primitive polynomial. Also, each $h_i(x)$ must be irreducible; if an $h_i(x)$ could be factored then the corresponding factorization of $g_i(x)$ (described in the proof of Lemma 45.27) would give a factorization of $f(x)$ with more than r factors, contradicting the choice of r. Thus we now have $f(x) = c_1 h_1(x)c_2 h_2(x) \cdots c_r h_r(x)$ where the $h_i(x)$ are irreducible in $D[x]$. If we now factor the c_i into irreducibles in D (since D is a UFD), we obtain a factorization of $f(x)$ into a product of irreducibles in $D[x]$.

Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then $D[x]$ is a UFD.

Proof. (Continued) The factorization of $f(x) \in D[x]$ where $f(x)$ has degree 0 is unique since D is a UFD. If $f(x)$ has degree greater than 0, then any factorization of $f(x)$ into irreducibles in $D[x]$ corresponds to a factorization in $F[x]$ into units (the factors in D; the constant factors) and, by Lemma 45.27, irreducible polynomials in $F[x]$. By Theorem 23.20, these irreducible polynomials are unique, except for possible constant factors in F. But as an irreducible in $D[x]$, each polynomial of degree > 0 appearing in the factorization of $f(x)$ in $D[x]$ is primitive (or else the constant gcd of the coefficients could be factored out).
Theorem 45.29. If D is a UFD, then $D[x]$ is a UFD.

Proof. (Continued) By the uniqueness part of Lemma 45.23, these irreducible polynomial factors are unique in $D[x]$ up to unit factors (that is, unique up to being associates). The product of the irreducibles in D in the factorization of $f(x)$ (that is, the constant factors) is the content of $f(x)$, which is unique up to a unit factor by Lemma 45.23. Thus all irreducibles in $D[x]$ appearing in the factorization are unique up to order and associates.

Corollary 45.30. If F is a field and x_1, x_2, \ldots, x_n are indeterminates, then $F[x_1, x_2, \ldots, x_n]$ is a UFD.

Proof. By Theorem 23.20, $F[x]$ is a UFD. By Corollary 45.30 and induction, $F[x_1, x_2], F[x_1, x_2, x_3], \ldots, F[x_1, x_2, \ldots, x_n]$ are UFDs. \qed