Introduction to Modern Algebra

Part IX. Factorization

VII.45. Unique Factorization Domains

Introduction to Modern Algebra

March 21, 2024

Introduction to Modern Algebra

March 21, 2024

Lemma 45.10. The Ascending Chain Condition for a PID

Lemma 45.10. The Ascending Chain Condition for a PID. Let D be a PID. If $N_1 \subset N_2 \subset ...$ is an ascending chain of ideals, then there exists a positive integer r such that $N_r = N_s$ for all s > r. Equivalently, every strictly ascending chain of ideals in a PID is of finite length. Under such conditions it is said that the ascending chain condition holds for ideals in a PID.

Proof. By Lemma 45.9, we have that $N = \bigcup_i N_i$ is an ideal of D. Since D is a PID then N is a principal ideal and so $N = \langle c \rangle$ for some $c \in D$. Since $N = \bigcup_i N_i$, then $c \in N_r$ for some $r \in \mathbb{N}$. For $s \geq r$ we have $\langle c \rangle \subset N_r \subset N_s \subset N = \langle c \rangle$. So $N_r = N_s$ for all s > r.

Lemma 45.9.

Lemma 45.9. Let R be a commutative ring and let $N_1 \subseteq N_2 \subseteq ...$ be an ascending chain of ideals N_i in R. Then $N = \sup_i N_i$ is an ideal of R.

Proof Let $a, b \in N$. Then there are ideals N_i and N_i in the chain with $a \in N_i$ and $b \in N_i$. WLOG, $N_i \subseteq N_i$ and $a, b \in N_i$. Every ideal is an additive subgroup, so $a \pm b \in N_i$. By the definition of ideal, $ab \in N_i$. So $a \pm b$, $ab \in N$.

Since $0 \in N_i$ for all i, it follows that for all $b \in N$, we have $-b \in N$ and $0 \in \mathbb{N}$. By Exercise 18.48, N is a subring of R. For $a \in \mathbb{N}$ and $r \in \mathbb{R}$, we have $a \in N_i$ for some i and since N_i is an ideal, then $da = ad \in N_i$. So $ad \in \bigcup_i N_i$ and $da \in N$. So N is an ideal of R.

Theorem 45.11.

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a unit of D is a product of irreducibles.

Proof. Let $a \in D$ where 'a' is neither 0 nor a unit. [We first show that 'a' has at least one irreducible factor.]

If 'a' itself is irreducible then we are done. If 'a' is not irreducible, then $a=a_1b_1$ where neither a_1 or b_1 is a unit. Now $\langle a \rangle \subset \langle a_1 \rangle$ by Note 1 Part (1) (if $\langle a \rangle = \langle a_1 \rangle$ then by Note 1 Part (2) 'a' and a_1 would be associates, contradicting the fact that neither a_1 nor b_1 is a unit). If a_1 is irreducible then a_1 is an irreducible factor of 'a'. If not, write $a_1 = a_2 b_2$ where neither a_2 nor b_2 is a unit. As above, we have $\langle a_1 \rangle \subset \langle a_2 \rangle$. Continue this process to form a strictly ascending chain $\langle a \rangle \subset \langle a_1 \rangle \subset \langle a_2 \rangle \subset \dots$

By Lemma 45.10, this chain terminates with some $\langle a_r \rangle$ and this a_r must be irreducible (or else we would contruct $\langle a_{r+1} \rangle$ with $\langle a_r \rangle \subset \langle a_{r+1} \rangle$). We now have $a = b_1 b_2 ... b_r a_r$ and so a_r is an irreducible factor of 'a'.

Introduction to Modern Algebra

Introduction to Modern Algebra

March 21, 2024 5 / 27

Theorem 45.11. (Continued)

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a unit of D is a product of irreducibles.

Proof. (Continued) Now that we know 'a' has an irreducible factor, we show that it can be written as a product of irreducible factors. By above, we have that 'a' (neither 0 nor a unit in D) is irreducible or of the form $a=p_1c_1$ for p_1 an irreducible and c_1 not a unit. If c_1 is not a unit (and of course it's not 0) then by the argument of the first paragraph we have $\langle a \rangle \subset \langle c_1 \rangle$ and if c_1 is not irreducible then $c_1=p_2c_2$ for irreducible p_2 with p_2 not a unit. Continuing we again get a strictly ascending chain of ideals $\langle a \rangle \subset \langle c_1 \rangle \subset \langle c_2 \rangle \subset ...$. By Lemma 45.10, this chain terminates with some $c_r=q_r$ that is irreducible (as argued in the first paragraph). Then $a=p-1p_2...p_rq_r$ is a product of irreducibles.

Introduction to Modern Algebra

March 21, 2024 6 / 2

Introduction to Modern Algebra

March 21, 2024 7 / 27

Lemma 45.12

Lemma 45.12. (Continued)

Lemma 45.12. An ideal $\langle p \rangle$ in a PID is maximal if and only if p is irreducible.

Proof. (Continued) Conversely, suppose that p is an irreducible in D. If $\langle p \rangle \subseteq \langle a \rangle$ then by Note 1 Part(1) we must have p=ab for some b in D. If 'a' is a uit, then 'a' and 1 are associates and by Note 1 Part(2), we have $\langle a \rangle = \langle 1 \rangle = D$ and $\langle a \rangle$ is a maximal ideal. If 'a' is not a unit, then b must be a unit (since p is irreducible) so there exists $u \in D$ such that bu = 1. Then pu = abu = a and by Note 1 Part(1) $\langle a \rangle \subseteq \langle p \rangle$ and since p and 'a' are associates, by Note 1 Part (2) we have $\langle a \rangle = \langle p \rangle$. We have now shown that if $\langle p \rangle \subseteq \langle a \rangle$ then either $\langle a \rangle = D$ (if 'a' is a unit) or $\langle a \rangle = \langle p \rangle$ (if 'a' is not a unit).

Lemma 45.12.

Lemma 45.12. An ideal $\langle p \rangle$ in a PID is maximal if and only if p is irreducible.

Proof. Let $\langle p \rangle$ be a maximal ideal of D, a PID. Suppose p=ab in D. Then by Note 1 Part(1) $\langle p \rangle \subseteq \langle a \rangle$. If $\langle p \rangle = \langle a \rangle$ then by Note 1 Part(2) 'a' and p are associates and b is a unit. If $\langle p \rangle \neq \langle a \rangle$ then since $\langle p \rangle$ is maximal it must be that $\langle a \rangle = D$. From the definition of "ideal in D" we have $D = \langle 1 \rangle$, so in this case $\langle a \rangle = \langle 1 \rangle$ and by Note 1 Part(2), 'a' and 1 are associates and hence 'a' is a unit. Thus, if p=ab then either 'a' is a unit or b is a unit; that is, p is irreducible.

Lemma 45.1

Lemma 45.12. (Continued)

Lemma 45.12. An ideal $\langle p \rangle$ in a PID is maximal if and only if p is irreducible.

Proof. (Continued) So there is no proper ideal of D which properly contains $\langle p \rangle$ (of course all ideals of D are principal). That is, $\langle p \rangle$ is a maximal ideal.

Introduction to Modern Algebra March 21, 2024 8 / 27 () Introduction to Modern Algebra March 21, 2024 9 / 27

Lemma 45.13.

Lemma 45.13. In a PID, if an irreducible p divies ab then either $p \mid a$ or $p \mid b$.

Proof. Let D be a PID and suppose that for an irreducible $p \in D$ we have $p \mid ab$. Then $ab \in \langle p \rangle$ (since $\langle p \rangle$ consists of all multiples of p). Since p is irreducible, by Lemma 45.12 $\langle p \rangle$ is a maximal ideal in D. By Corollary 27.16, every maximal ideal is a prime ideal, so $\langle p \rangle$ is a prime ideal. Then $ab \in \langle p \rangle$ implies that either $a \in \langle p \rangle$ or $b \in \langle p \rangle$. That is, by Note 1 Part (1), either $p \mid a$ or $p \mid b$.

Introduction to Modern Algebra

March 21, 2024

Introduction to Modern Algebra

March 21, 2024 11 / 27

Theorem 45.17. (Continued)

Theorem 45.17. Every PID is a UFD

UFD and so D is a UFD.

Proof. (Continued) Repeating the process we have

 $1 = u_1 u_2 \cdots u_r q_{r+1} \cdots q_s$ (WLOG $s \ge r$). But if s > R and we have some q still present on the right-hand side, say q_{r+1} , then the other elements of the right-hand side are an inverse of the q, for example $(q_{r+1})^{-1} = u_1 u_2 \cdots u_r q_{r+2} q_{r+3} \cdots q_s$. But this contradicts the fact that the q's are irreducible and so (by definition) not units. So there are no q's remaining on the right-hand side and r = s. So $p_i = u_i q_i$ for i = 1, 2, ..., rand such p_i is an associate of q_i . This is Property 2 in the definition of a

Theorem 45.17.

Theorem 45.17. Every PID is a UFD

Proof. Theorem 45.11 shows that every PID satisfies the first property of a UFD and gives for a in a PID D where 'a' is neither 0 nor a unit, a factorization $a = p_1 p_2 \cdots p_r$ into irreducibles. property 2 of a UFD says that such a factorization is unique (in terms of associates). Let $a = q_1 q_2 \cdots q_s$ be another factorization of 'a' into irreducibles. Then we have $p_1 \mid (q_1q_2\cdots q_s)$. By Corollary 45.14, $p_1 \mid q_i$ for some j. Reorder the q's such that q_i becomes q_1 . Then $q_1 = p_1 u_1$ where u_1 is a unit. Then p_1 and q_1 are associates. Then $p_1p_2\cdots p_r=(p_1u_1)q_1q_2\cdots q_s$. By cancellation in integral domain D (Theorem 19.5) $p_2p_3\cdots p_r=u_1q_1q_2\cdots q_s$.

Corollary 45.18. Fundamental Theorem of Arithmetic

Corollary 45.18. Fundamental Theorem of Arithmetic. The integral domain \mathbb{Z} is a UFD.

Proof. We know that \mathbb{Z} is a PID (see the note after Definition 45.7). So by Theorem 45.17, \mathbb{Z} is a UFD.

March 21, 2024 Introduction to Modern Algebra March 21, 2024 13 / 27 Introduction to Modern Algebra

Lemma 45.23.

Lemma 45.23. If D is a UFD then for every nonconstant $f(x) \in D[x]$ we have f(x) = cg(x) where $c \in D$, $g(x) \in D[x]$ and g(x) is a primitive. The element c is unique up to a unit factor in D and is the content of f(x). Also g(x) is unique up to a unit factor in D.

Proof. Let $f(x) \in D[x]$ be given where f(x) is a nonconstant polynomial with coefficients a_0, a_1, \ldots, a_n . Let c be a gcd of the a_i . Then for each i, we have $a_i = cg_i$ for some $g_i \in D$. We have f(x) = cg(x). Now there is no irreducible dividing all of the g_i (if so, say the irreducible in b, then cbdivides all a_i , but $cb \nmid c$ so in this case c is not a gcd of the a_i). So a gcd of the g_i must be a unit and have an associate of 1. So 1 is a gcd of the g_i and g(x) is a primitive polynomial.

Introduction to Modern Algebra

March 21, 2024

Lemma 45.23. (Continued)

Lemma 45.23. If D is a UFD then for every nonconstant $f(x) \in D[x]$ we have f(x) = cg(x) where $c \in D$, $g(x) \in D[x]$ and g(x) is a primitive. The element c is unique up to a unit factor in D and is the content of f(x). Also g(x) is unique up to a unit factor in D.

Proof. (Continued) So u and v are both units and c is unique up to a unit factor (here, $d = v^{-1}uc$). Since f(x) = cg(x), then the primitive polynomial g(x) is also unique up to a unit factor.

Lemma 45.23. (Continued)

Lemma 45.23. If D is a UFD then for every nonconstant $f(x) \in D[x]$ we have f(x) = cg(x) where $c \in D$, $g(x) \in D[x]$ and g(x) is a primitive. The element c is unique up to a unit factor in D and is the content of f(x). Also g(x) is unique up to a unit factor in D.

Proof. (Continued) For uniqueness, if f(x) = dh(x) also for some $h \in D$ and $h(x) \in D[x]$ with h(x) primitive, then each irreducible factor of c must divide d and each irreducible factor of d must divide c (or else, as in the first paragraph, 1 is not a gcd of the respective coefficients of g or hand hence g or h is not primitive).

By setting cg(x) = dh(x) (since both equal f(x)) and cancelling irreducible factors of c into d (Theorem 19.5), we arrive at ug(x) = vh(x)for a unit $u \in D$. But then v must be a unit of D or we would be able to cancel irreducible factors of v into u.

Lemma 45.25 Gauss's Lemma

Lemma 45.25. Gauss's Lemma. If D is a UFD, then a product of two primitive polynomials in D[x] is again primitive.

Proof. Let $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ and $g(x) = b_0 + b_1 x + b_2 x^2 + ... + b_m x^m$ be primitives in D[x] and let h(x) = f(x)g(x). Let p be an irreducible in D. Then p does not divide all a_i and p does not divide b_i * (or else a multiple of p is a gcd of the a_i and of the b_i and 1 is not a gcd since all gcd's are associates). [since f(x) and g(x) are primitive.

Let a_r be the first coefficient (i.e., r is the smallest value) of f(x) not divisible by p; that is, $p \mid a_i$ for $0 \le i < r$ but $p \nmid a_r$. Similarly, let $p \mid b_i$ for $0 \le i \le s$ but $p \nmid b_s$.

Lemma 45.25 Gauss's Lemma. (Continued)

Lemma 45.25 Gauss's Lemma. If D is a UFD, then a product of two primitive polynomials in D[x] is again primitive.

Proof. (Continued) The cofficient of x^{r+s} in h(x) = f(x)g(x) is (we are in a commutative ring):

$$c_{r+s} = (a_0b_{r+s} + a_1b_{r+s-1} + \dots + a_{r-1}b_{s+1}) + a_rb_s + (a_{r+1}b_{s-1} + a_{r+2}b_{s-2} + \dots + a_{r+s}b_0)$$
(1)

Now $p \mid a_i$ for $0 \le i < r$ implies that $p \mid (a_0 b_{r+s} + a_1 b_{r+s-1} + ... + a_{r-1} b_{s+1})$ and $p \mid b_i$ for $0 \le i < s$ implies that $p \mid (a_{r+1}b_{s-1} + a_{r+2}b_{s-2} + ... + a_{r+s}b_0)$.

Introduction to Modern Algebra

March 21, 2024

Introduction to Modern Algebra

March 21, 2024 19 / 27

Lemma 45.27.

Lemma 45.27. Let D be a UFD and let F be a field of quotients of D. Let $f(x) \in D[x]$ where (degree f(x)) > 0. If f(x) is an irreducible in D[x], then f(x) is also an irreducible in F[x]. Also, if f(x) is primitive in D[x]and irreducible in F[x], then f(x) is irreducible in D[x].

Proof. We prove the contrapositive of the first claim. Suppose that a nonconstant $f(x) \in D[x]$ factors into polynomials of lower degree in F[x]; that is f(x) = r(x)s(x) for $r(x), s(x) \in F[x]$. Then since F is a field of quotients of D, each coefficient in r(x) and s(x) is of the form a/b for some $a, b \in D$, $b \neq 0$. By "clearing the denominators" (i.e. multiplying through by a common multiple of the denominator) we can get $df(x) = r_1(x)s_1(x)$ for $d \in D$ and $r_1(x), s_1(x) \in D[x]$ where the degrees of $r_1(x)$ and $s_1(x)$ equal the degrees of r(x) and s(x), respectively.

Lemma 45.25 Gauss's Lemma. (Continued)

Lemma 45.25 Gauss's Lemma. If D is a UFD, then a product of two primitive polynomials in D[x] is again primitive.

Proof. (Continued) But p does not divide a_r or b_s , so p does not divide $a_r b_s$ and consequently p does not divide c_{r+s} . So we have that any irreducible $p \in D$ does not divide some coefficient of f(x)g(x). So the gcd of the coefficients of f(x)g(x) is 1 and f(x)g(x) is primitive.

Lemma 45.27. (Continued)

Lemma 45.27. Let D be a UFD and let F be a field of quotients of D. Let $f(x) \in D[x]$ where (degree f(x)) > 0. If f(x) is an irreducible in D[x], then f(x) is also an irreducible in F[x]. Also, if f(x) is primitive in D[x]and irreducible in F[x], then f(x) is irreducible in D[x].

Proof. (Continued) By Lemma 45.23 f(x) = cg(x), $r_1(x) = c_1 r_2(x)$, and $s_1(x) = c_2 s_2(x)$ for primitive polynomials g(x), $r_2(x)$ and $s_2(x)$ in D[x] and $c, c_1, c_2 \in D$. Then $dcg(x) = c_1r_2(x)c_2s_2(x) = c_1c_2r_2(x)s_2(x)$ and by Lemma 45.25 the product $r_2(x)s_2(x)$ is primitive. By the uniqueness part of Lemma 45.23, $c_1c_2 = dcu$ for some unit u in D. But then $dcg(x) = dcur_2(x)s_2(x)$ and so $f(x) = cg(x) = cur_2(x)s_2(x)$ where $cu \in D$ and $r_2(x), s_2(x) \in D[x]$.

So f(x) factors nontrivially into polynomials of the same degree in D[x] as the degree of the polynomial factors of f(x) in F[x].

A nonconstant $f(x) \in D[x]$ that is primitive in D[x] and irreducible in F[x]is also irreducible in D[x] since $D[x] \subseteq F[x]$.

Corollary 45.28

Corollary 45.28.

Theorem 45.29.

Corollary 45.28. If D is a UFD and F is a field of quotients of D, then a nonconstant $f(x) \in D[x]$ factors into a product of two polynomials of lower degrees r and s in F[x] if and only if it has a factorization into polynomials of the same degrees r and s in D[x].

Proof. In the proof of Lemma 45.27, if f(x) factors in F[x] into f(x) = r(x)s(x) where r(x) and s(x) are of degrees smaller than the degree of f(x), then $f(x) = cur_2(x)s_2(x)$ in D[x] where the degrees of r(x) and $r_2(x)$ are the same and the degrees of s(x) and $s_2(x)$ are the same. The converse holds since $D[x] \subseteq F[x]$.

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. Let $f(x) \in D[x]$ where f(x) is neither 0 nor a unit. If f(x) is of degree 0, we are done since D is a UFD. Suppose $(degree\ f(x)) > 0$. Let $f(x) = g_1(x)g_2(x)\cdots g_r(x)$ be a factorization of f(x) in D[x] having the greatest number r of factors of positive degree (so no $g_i(x)$ is a constant polynomial). There is such a greatest number of such factors since r cannot exceed the degree of f(x).

Introduction to Modern Algebra

March 21, 2024 22 / 2

Introduction to Modern Algebra

March 21, 2024 23 / 27

Theorem 45.29

Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. (Continued) Now factor each $g_i(x)$ in the form $g_i(x) = c_i h(x)$ where c_i is the content of $g_i(x)$ (by Lemma 45.23, c is a gcd of the coefficients of $g_i(x)$) and $h_i(x)$ is a primitive polynomial. Also, each $h_i(x)$ must be irreducible; if an $h_i(x)$ could be factored then the corresponding factorization of $g_i(x)$ (described in the proof of Lemma 45.27) would give a factorization of f(x) with more than r factors, contradicting the choice of r. Thus we now have $f(x) = c_1 h_1(x) c_2 h_2(x) \cdots c_r h_r(x)$ where the $h_i(x)$ are irreducible in D[x]. If we now factor the c_i into irreducibles in D (since D is a UFD), we obtain a factorization of f(x) into a product of irreducibles in D[x].

Theorem 45.2

Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. (Continued) The factorization of $f(x) \in D[x]$ where f(x) has degree 0 is unique since D is a UFD. If f(x) has degree greater than 0, then any factorization of f(x) into irreducibles in D[x] corresponds to a factorization in F[x] into units (the factors in D; the constant factors) and, by Lemma 45.27, irreducible polynomials in F[x]. By Theorem 23.20, these irreducible polynomials are unique, except for possible constant factors in F. But as an irreducible in D[x], each polynomial of degree > 0 appearing in the factorization of f(x) in D[x] is primitive (or else the constant gcd of the coefficients could be factored out).

Introduction to Modern Algebra March 21, 2024 24 / 27 () Introduction to Modern Algebra March 21, 2024 25 / 27

Theorem 45.29. (Continued)

Corollary 45.30.

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. (Continued) By the uniqueness part of Lemma 45.23, these irreducible polynomial factors are unique in D[x] up to unit factors (that is, unique up to being associates). The product of the irreducibles in D in the factorization of f(x) (that is, the constant factors) is the content of f(x), which is unique up to a unit facotr by Lemma 45.23. Thus all irreducibles in D[x] appearing in the factorization are unique up to order and associates.

Corollary 45.30. If F is a field and x_1 , x_2 , ..., x_n are indeterminates, then $F[x_1, x_2, ..., x_n]$ is a UFD.

Proof. By Theorem 23.20, F[x] is a UFD. By Corollary 45.30 and induction, $F[x_1, x_2]$, $F[x_1, x_2, x_3]$,..., $F[x_1, x_2, ..., x_n]$ are UFDs.

()

Introduction to Modern Algebra

March 21, 2024

26 / 27

Introduction to Modern Algebra

March 21, 2024

27 / 2