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Lemma 45.9.

Lemma 45.9.

Lemma 45.9. Let R be a commutative ring and let N1 ⊆ N2 ⊆ ... be an
ascending chain of ideals Ni in R. Then N = supi Ni is an ideal of R.

Proof Let a, b ∈ N. Then there are ideals Ni and Nj in the chain with
a ∈ Ni and b ∈ Nj . WLOG, Ni ⊆ Nj and a, b ∈ Nj .

Every ideal is an
additive subgroup, so a± b ∈ Nj . By the definition of ideal, ab ∈ Nj . So
a± b, ab ∈ N.
Since 0 ∈ Ni for all i , it follows that for all b ∈ N, we have −b ∈ N and
0 ∈ N. By Exercise 18.48, N is a subring of R. For a ∈ N and r ∈ R, we
have a ∈ Ni for some i and since Ni is an ideal, then da = ad ∈ Ni . So
ad ∈ ∪iNi and da ∈ N. So N is an ideal of R.
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Lemma 45.10. The Ascending Chain Condition for a PID

Lemma 45.10. The Ascending Chain Condition for a PID

Lemma 45.10. The Ascending Chain Condition for a PID. Let D be
a PID. If N1 ⊆ N2 ⊆ ... is an ascending chain of ideals, then there exists a
positive integer r such that Nr = Ns for all s ≥ r . Equivalently, every
strictly ascending chain of ideals in a PID is of finite length. Under such
conditions it is said that the ascending chain condition holds for ideals in a
PID.

Proof. By Lemma 45.9, we have that N = ∪iNi is an ideal of D. Since D
is a PID then N is a principal ideal and so N = 〈c〉 for some c ∈ D.

Since
N = ∪iNi , then c ∈ Nr for some r ∈ N. For s ≥ r we have
〈c〉 ⊆ Nr ⊆ Ns ⊆ N = 〈c〉. So Nr = Ns for all s ≥ r .
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Theorem 45.11.

Theorem 45.11.

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. Let a ∈ D where ’a’ is neither 0 nor a unit. [We first show that ’a’
has at least one irreducible factor.]

If ’a’ itself is irreducible then we are done. If ’a’ is not irreducible, then
a = a1b1 where neither a1 or b1 is a unit. Now 〈a〉 ⊂ 〈a1〉 by Note 1 Part
(1) (if 〈a〉 = 〈a1〉 then by Note 1 Part (2) ’a’ and a1 would be associates,
contradicting the fact that neither a1 nor b1 is a unit). If a1 is irreducible
then a1 is an irreducible factor of ’a’. If not, write a1 = a2b2 where neither
a2 nor b2 is a unit. As above, we have 〈a1〉 ⊂ 〈a2〉. Continue this process
to form a strictly ascending chain 〈a〉 ⊂ 〈a1〉 ⊂ 〈a2〉 ⊂ ....
By Lemma 45.10, this chain terminates with some 〈ar 〉 and this ar must
be irreducible (or else we would contruct 〈ar+1〉 with 〈ar 〉 ⊂ 〈ar+1〉). We
now have a = b1b2...brar and so ar is an irreducible factor of ’a’.
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Theorem 45.11.

Theorem 45.11. (Continued)

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. (Continued) Now that we know ’a’ has an irreducible factor, we
show that it can be written as a product of irreducible factors.
By above, we have that ’a’ (neither 0 nor a unit in D) is irreducible or of
the form a = p1c1 for p1 an irreducible and c1 not a unit.

If c1 is not a
unit (and of course it’s not 0) then by the argument of the first paragraph
we have 〈a〉 ⊂ 〈c1〉 and if c1 is not irreducible then c1 = p2c2 for
irreducible p2 with c2 not a unit. Continuing we again get a strictly
ascending chain of ideals 〈a〉 ⊂ 〈c1〉 ⊂ 〈c2〉 ⊂ ....
By Lemma 45.10, this chain terminates with some cr = qr that is
irreducible (as argued in the first paragraph). Then a = p − 1p2...prqr is a
product of irreducibles.
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Lemma 45.12.

Lemma 45.12.

Lemma 45.12. An ideal 〈p〉 in a PID is maximal if and only if p is
irreducible.

Proof. Let 〈p〉 be a maximal ideal of D, a PID. Suppose p = ab in D.
Then by Note 1 Part(1) 〈p〉 ⊆ 〈a〉.

If 〈p〉 = 〈a〉 then by Note 1 Part(2) ’a’
and p are associates and b is a unit. If 〈p〉 6= 〈a〉 then since 〈p〉 is maximal
it must be that 〈a〉 = D. From the definition of ”ideal in D” we have
D = 〈1〉, so in this case 〈a〉 = 〈1〉 and by Note 1 Part(2), ’a’ and 1 are
associates and hence ’a’ is a unit. Thus, if p = ab then either ’a’ is a unit
or b is a unit; that is, p is irreducible.
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are associates, by Note 1 Part (2) we have 〈a〉 = 〈p〉. We have now shown
that if 〈p〉 ⊆ 〈a〉 then either 〈a〉 = D (if ’a’ is a unit) or 〈a〉 = 〈p〉 (if ’a’ is
not a unit).
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Lemma 45.12.

Lemma 45.12. (Continued)

Lemma 45.12. An ideal 〈p〉 in a PID is maximal if and only if p is
irreducible.

Proof. (Continued) So there is no proper ideal of D which properly
contains 〈p〉 (of course all ideals of D are principal). That is, 〈p〉 is a
maximal ideal.
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Lemma 45.13.

Lemma 45.13. In a PID, if an irreducible p divies ab then either p | a or
p | b.

Proof. Let D be a PID and suppose that for an irreducible p ∈ D we have
p | ab. Then ab ∈ 〈p〉 (since 〈p〉 consists of all multiples of p).

Since p is
irreducible, by Lemma 45.12 〈p〉 is a maximal ideal in D. By Corollary
27.16, every maximal ideal is a prime ideal, so 〈p〉 is a prime ideal. Then
ab ∈ 〈p〉 implies that either a ∈ 〈p〉 or b ∈ 〈p〉. That is, by Note 1 Part
(1), either p | a or p | b.
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Theorem 45.17.

Theorem 45.17.

Theorem 45.17. Every PID is a UFD

Proof. Theorem 45.11 shows that every PID satisfies the first property of
a UFD and gives for a in a PID D where ’a’ is neither 0 nor a unit, a
factorization a = p1p2 · · · pr into irreducibles. property 2 of a UFD says
that such a factorization is unique (in terms of associates).

Let
a = q1q2 · · · qs be another factorization of ’a’ into irreducibles. Then we
have p1 | (q1q2 · · · qs). By Corollary 45.14, p1 | qj for some j . Reorder the
q’s such that qj becomes q1. Then q1 = p1u1 where u1 is a unit. Then p1

and q1 are associates. Then p1p2 · · · pr = (p1u1)q1q2 · · · qs . By
cancellation in integral domain D (Theorem 19.5)
p2p3 · · · pr = u1q1q2 · · · qs .
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Theorem 45.17.

Theorem 45.17. (Continued)

Theorem 45.17. Every PID is a UFD

Proof. (Continued) Repeating the process we have
1 = u1u2 · · · urqr+1 · · · qs (WLOG s ≥ r). But if s > R and we have some
q still present on the right-hand side, say qr+1, then the other elements of
the right-hand side are an inverse of the q, for example
(qr+1)

−1 = u1u2 · · · urqr+2qr+3 · · · qs . But this contradicts the fact that
the q’s are irreducible and so (by definition) not units. So there are no q’s
remaining on the right-hand side and r = s. So pi = uiqi for i = 1, 2, ..., r
and such pi is an associate of qi . This is Property 2 in the definition of a
UFD and so D is a UFD.
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Corollary 45.18. Fundamental Theorem of Arithmetic

Corollary 45.18. Fundamental Theorem of Arithmetic

Corollary 45.18. Fundamental Theorem of Arithmetic. The integral
domain Z is a UFD.

Proof. We know that Z is a PID (see the note after Definition 45.7). So
by Theorem 45.17, Z is a UFD.
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Lemma 45.23.

Lemma 45.23.

Lemma 45.23. If D is a UFD then for every nonconstant f (x) ∈ D[x ] we
have f (x) = cg(x) where c ∈ D, g(x) ∈ D[x ] and g(x) is a primitive. The
element c is unique up to a unit factor in D and is the content of f (x).
Also g(x) is unique up to a unit factor in D.

Proof. Let f (x) ∈ D[x ] be given where f (x) is a nonconstant polynomial
with coefficients a0, a1, . . . , an. Let c be a gcd of the ai . Then for each i ,
we have ai = cgi for some gi ∈ D.

We have f (x) = cg(x). Now there is
no irreducible dividing all of the gi (if so, say the irreducible in b, then cb
divides all ai , but cb - c so in this case c is not a gcd of the ai ). So a gcd
of the gi must be a unit and have an associate of 1. So 1 is a gcd of the
gi and g(x) is a primitive polynomial.
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Lemma 45.23.

Lemma 45.23. (Continued)

Lemma 45.23. If D is a UFD then for every nonconstant f (x) ∈ D[x ] we
have f (x) = cg(x) where c ∈ D, g(x) ∈ D[x ] and g(x) is a primitive. The
element c is unique up to a unit factor in D and is the content of f (x).
Also g(x) is unique up to a unit factor in D.

Proof. (Continued) For uniqueness, if f (x) = dh(x) also for some h ∈ D
and h(x) ∈ D[x ] with h(x) primitive, then each irreducible factor of c
must divide d and each irreducible factor of d must divide c (or else, as in
the first paragraph, 1 is not a gcd of the respective coefficients of g or h
and hence g or h is not primitive).
By setting cg(x) = dh(x) (since both equal f (x)) and cancelling
irreducible factors of c into d (Theorem 19.5), we arrive at ug(x) = vh(x)
for a unit u ∈ D. But then v must be a unit of D or we would be able to
cancel irreducible factors of v into u.
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Lemma 45.23. (Continued)

Lemma 45.23. If D is a UFD then for every nonconstant f (x) ∈ D[x ] we
have f (x) = cg(x) where c ∈ D, g(x) ∈ D[x ] and g(x) is a primitive. The
element c is unique up to a unit factor in D and is the content of f (x).
Also g(x) is unique up to a unit factor in D.

Proof. (Continued) So u and v are both units and c is unique up to a
unit factor (here, d = v−1uc). Since f (x) = cg(x), then the primitive
polynomial g(x) is also unique up to a unit factor.
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Lemma 45.25. Gauss’s Lemma

Lemma 45.25. Gauss’s Lemma

Lemma 45.25. Gauss’s Lemma. If D is a UFD, then a product of two
primitive polynomials in D[x ] is again primitive.

Proof. Let f (x) = a0 + a1x + a2x
2 + ... + anx

n and
g(x) = b0 + b1x + b2x

2 + ... + bmxm be primitives in D[x ] and let
h(x) = f (x)g(x). Let p be an irreducible in D. Then p does not divide all
ai and p does not divide bj∗ (or else a multiple of p is a gcd of the ai and
of the bj and 1 is not a gcd since all gcd’s are associates). [since f (x) and
g(x) are primitive.]

Let ar be the first coefficient (i.e., r is the smallest value) of f (x) not
divisible by p; that is, p | ai for 0 ≤ i < r but p - ar . Similarly, let p | bj for
0 ≤ i < s but p - bs .
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Lemma 45.25. Gauss’s Lemma

Lemma 45.25 Gauss’s Lemma. (Continued)

Lemma 45.25 Gauss’s Lemma. If D is a UFD, then a product of two
primitive polynomials in D[x ] is again primitive.

Proof. (Continued) The cofficient of x r+s in h(x) = f (x)g(x) is (we are
in a commutative ring):

cr+s = (a0br+s + a1br+s−1 + ... + ar−1bs+1) + arbs

+ (ar+1bs−1 + ar+2bs−2 + ... + ar+sb0)
(1)

Now p | ai for 0 ≤ i < r implies that
p | (a0br+s + a1br+s−1 + ... + ar−1bs+1) and p | bj for 0 ≤ j < s implies
that p | (ar+1bs−1 + ar+2bs−2 + ... + ar+sb0).
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primitive polynomials in D[x ] is again primitive.

Proof. (Continued) The cofficient of x r+s in h(x) = f (x)g(x) is (we are
in a commutative ring):
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(1)
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Lemma 45.25. Gauss’s Lemma

Lemma 45.25 Gauss’s Lemma. (Continued)

Lemma 45.25 Gauss’s Lemma. If D is a UFD, then a product of two
primitive polynomials in D[x ] is again primitive.

Proof. (Continued) But p does not divide ar or bs , so p does not divide
arbs and consequently p does not divide cr+s . So we have that any
irreducible p ∈ D does not divide some coefficient of f (x)g(x). So the gcd
of the coefficients of f (x)g(x) is 1 and f (x)g(x) is primitive.
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Lemma 45.27.

Lemma 45.27.

Lemma 45.27. Let D be a UFD and let F be a field of quotients of D.
Let f (x) ∈ D[x ] where (degree f (x)) > 0. If f (x) is an irreducible in D[x ],
then f (x) is also an irreducible in F [x ]. Also, if f (x) is primitive in D[x ]
and irreducible in F [x ], then f (x) is irreducible in D[x ].

Proof. We prove the contrapositive of the first claim. Suppose that a
nonconstant f (x) ∈ D[x ] factors into polynomials of lower degree in F [x ];
that is f (x) = r(x)s(x) for r(x), s(x) ∈ F [x ]. Then since F is a field of
quotients of D, each coefficient in r(x) and s(x) is of the form a/b for
some a, b ∈ D, b 6= 0.

By ”clearing the denominators” (i.e. multiplying
through by a common multiple of the denominator) we can get
df (x) = r1(x)s1(x) for d ∈ D and r1(x), s1(x) ∈ D[x ] where the degrees of
r1(x) and s1(x) equal the degrees of r(x) and s(x), respectively.
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Lemma 45.27.

Lemma 45.27. (Continued)

Lemma 45.27. Let D be a UFD and let F be a field of quotients of D.
Let f (x) ∈ D[x ] where (degree f (x)) > 0. If f (x) is an irreducible in D[x ],
then f (x) is also an irreducible in F [x ]. Also, if f (x) is primitive in D[x ]
and irreducible in F [x ], then f (x) is irreducible in D[x ].

Proof. (Continued) By Lemma 45.23 f (x) = cg(x) , r1(x) = c1r2(x),
and s1(x) = c2s2(x) for primitive polynomials g(x), r2(x) and s2(x) in
D[x ] and c , c1, c2 ∈ D. Then dcg(x) = c1r2(x)c2s2(x) = c1c2r2(x)s2(x)
and by Lemma 45.25 the product r2(x)s2(x) is primitive. By the
uniqueness part of Lemma 45.23, c1c2 = dcu for some unit u in D. But
then dcg(x) = dcur2(x)s2(x) and so f (x) = cg(x) = cur2(x)s2(x) where
cu ∈ D and r2(x), s2(x) ∈ D[x ].
So f (x) factors nontrivially into polynomials of the same degree in D[x ] as
the degree of the polynomial factors of f (x) in F [x ].
A nonconstant f (x) ∈ D[x ] that is primitive in D[x ] and irreducible in F [x ]
is also irreducible in D[x ] since D[x ] ⊆ F [x ].
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Corollary 45.28.

Corollary 45.28.

Corollary 45.28. If D is a UFD and F is a field of quotients of D, then a
nonconstant f (x) ∈ D[x ] factors into a product of two polynomials of
lower degrees r and s in F [x ] if and only if it has a factorization into
polynomials of the same degrees r and s in D[x ].

Proof. In the proof of Lemma 45.27, if f (x) factors in F [x ] into
f (x) = r(x)s(x) where r(x) and s(x) are of degrees smaller than the
degree of f (x), then f (x) = cur2(x)s2(x) in D[x ] where the degrees of
r(x) and r2(x) are the same and the degrees of s(x) and s2(x) are the
same. The converse holds since D[x ] ⊆ F [x ].
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Theorem 45.29.

Theorem 45.29.

Theorem 45.29. If D is a UFD, then D[x ] is a UFD.

Proof. Let f (x) ∈ D[x ] where f (x) is neither 0 nor a unit. If f (x) is of
degree 0, we are done since D is a UFD.

Suppose (degree f (x)) > 0. Let
f (x) = g1(x)g2(x) · · · gr (x) be a factorization of f (x) in D[x ] having the
greatest number r of factors of positive degree (so no gi (x) is a constant
polynomial). There is such a greatest number of such factors since r
cannot exceed the degree of f (x).
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Theorem 45.29.

Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x ] is a UFD.

Proof. (Continued) Now factor each gi (x) in the form gi (x) = cih(x)
where ci is the content of gi (x) (by Lemma 45.23, c is a gcd of the
coefficients of gi (x)) and hi (x) is a primitive polynomial. Also, each hi (x)
must be irreducible; if an hi (x) could be factored then the corresponding
factorization of gi (x) (described in the proof of Lemma 45.27) would give
a factorization of f (x) with more than r factors, contradicting the choice
of r .

Thus we now have f (x) = c1h1(x)c2h2(x) · · · crhr (x) where the
hi (x) are irreducible in D[x ]. If we now factor the ci into irreducibles in D
(since D is a UFD), we obtain a factorization of f (x) into a product of
irreducibles in D[x ].
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Theorem 45.29.

Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x ] is a UFD.

Proof. (Continued) The factorization of f (x) ∈ D[x ] where f (x) has
degree 0 is unique since D is a UFD. If f (x) has degree greater than 0,
then any factorization of f (x) into irreducibles in D[x ] corresponds to a
factorization in F [x ] into units (the factors in D; the constant factors)
and, by Lemma 45.27, irreducible polynomials in F [x ]. By Theorem 23.20,
these irreducible polynomials are unique, except for possible constant
factors in F . But as an irreducible in D[x ], each polynomial of degree > 0
appearing in the factorization of f (x) in D[x ] is primitive (or else the
constant gcd of the coefficients could be factored out).
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Theorem 45.29.

Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x ] is a UFD.

Proof. (Continued) By the uniqueness part of Lemma 45.23, these
irreducible polynomial factors are unique in D[x ] up to unit factors (that
is, unique up to being associates). The product of the irreducibles in D in
the factorization of f (x) (that is, the constant factors) is the content of
f (x), which is unique up to a unit facotr by Lemma 45.23. Thus all
irreducibles in D[x ] appearing in the factorization are unique up to order
and associates.
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Corollary 45.30.

Corollary 45.30.

Corollary 45.30. If F is a field and x1, x2, ..., xn are indeterminates, then
F [x1, x2, ..., xn] is a UFD.

Proof. By Theorem 23.20, F [x ] is a UFD. By Corollary 45.30 and
induction, F [x1, x2], F [x1, x2, x3],...,F [x1, x2, ..., xn] are UFDs.
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