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Lemma 45.9.

Lemma 45.9. Let R be a commutative ring and let Ny C N, C ... be an
ascending chain of ideals N; in R. Then N = sup; N; is an ideal of R.
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Lemma 45.9.

Lemma 45.9. Let R be a commutative ring and let Ny C N, C ... be an
ascending chain of ideals N; in R. Then N = sup; N; is an ideal of R.

Proof Let a, b € N. Then there are ideals V; and N; in the chain with
ac N;and b€ Nj. WLOG, N; C Nj and a, be Nj.

Introduction to Modern Algebra March 21, 2024 3/27



Lemma 45.9.

Lemma 45.9. Let R be a commutative ring and let Ny C N, C ... be an
ascending chain of ideals N; in R. Then N = sup; N; is an ideal of R.

Proof Let a, b € N. Then there are ideals V; and N; in the chain with
ae N;and be N;. WLOG, N; C N; and a,b € N;. Every ideal is an
additive subgroup, so a4+ b € N;. By the definition of ideal, ab € N;. So
atbabe N.
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Lemma 45.9.

Lemma 45.9. Let R be a commutative ring and let Ny C N, C ... be an
ascending chain of ideals N; in R. Then N = sup; N; is an ideal of R.

Proof Let a, b € N. Then there are ideals V; and N; in the chain with
ae N;and be N;. WLOG, N; C N; and a,b € N;. Every ideal is an
additive subgroup, so a4+ b € N;. By the definition of ideal, ab € N;. So
atbabe N.

Since 0 € N; for all /, it follows that for all b € N, we have —b € N and
0 € N. By Exercise 18.48, N is a subring of R.
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Lemma 45.9.

Lemma 45.9. Let R be a commutative ring and let Ny C N, C ... be an
ascending chain of ideals N; in R. Then N = sup; N; is an ideal of R.

Proof Let a, b € N. Then there are ideals V; and N; in the chain with
ae N;and be N;. WLOG, N; C N; and a,b € N;. Every ideal is an
additive subgroup, so a4+ b € N;. By the definition of ideal, ab € N;. So
atbabe N.

Since 0 € N; for all i, it follows that for all b € N, we have —b € N and
0 € N. By Exercise 18.48, N is a subring of R. For a€ N and r € R, we
have a € N; for some i and since N; is an ideal, then da = ad € N,.
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Lemma 45.9.

Lemma 45.9. Let R be a commutative ring and let Ny C N, C ... be an
ascending chain of ideals N; in R. Then N = sup; N; is an ideal of R.

Proof Let a, b € N. Then there are ideals V; and N; in the chain with
ae N;and be N;. WLOG, N; C N; and a,b € N;. Every ideal is an
additive subgroup, so a4+ b € N;. By the definition of ideal, ab € N;. So
atbabe N.

Since 0 € N; for all /, it follows that for all b € N, we have —b € N and

0 € N. By Exercise 18.48, N is a subring of R. For a€ N and r € R, we
have a € N, for some i and since N; is an ideal, then da = ad € N;. So
ad € U;N; and da € N. So N is an ideal of R. O]

Introduction to Modern Algebra March 21, 2024 3/27



Lemma 45.10. The Ascending Chain Condition for a PID

Lemma 45.10. The Ascending Chain Condition for a PID. Let D be
a PID. If Ny € N, C ... is an ascending chain of ideals, then there exists a
positive integer r such that N, = N, for all s > r. Equivalently, every
strictly ascending chain of ideals in a PID is of finite length. Under such
conditions it is said that the ascending chain condition holds for ideals in a

PID.

Introduction to Modern Algebra March 21, 2024 4 /27



Lemma 45.10. The Ascending Chain Condition for a PID

Lemma 45.10. The Ascending Chain Condition for a PID

Lemma 45.10. The Ascending Chain Condition for a PID. Let D be
a PID. If Ny € N, C ... is an ascending chain of ideals, then there exists a
positive integer r such that N, = N, for all s > r. Equivalently, every
strictly ascending chain of ideals in a PID is of finite length. Under such

conditions it is said that the ascending chain condition holds for ideals in a
PID.

Proof. By Lemma 45.9, we have that N = U;N; is an ideal of D. Since D
is a PID then N is a principal ideal and so N = (c) for some ¢ € D.
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Lemma 45.10. The Ascending Chain Condition for a PID

Lemma 45.10. The Ascending Chain Condition for a PID

Lemma 45.10. The Ascending Chain Condition for a PID. Let D be
a PID. If Ny € N, C ... is an ascending chain of ideals, then there exists a
positive integer r such that N, = N, for all s > r. Equivalently, every
strictly ascending chain of ideals in a PID is of finite length. Under such

conditions it is said that the ascending chain condition holds for ideals in a
PID.

Proof. By Lemma 45.9, we have that N = U;N; is an ideal of D. Since D
is a PID then N is a principal ideal and so N = (c) for some ¢ € D. Since
N = U;N;, then ¢ € N, for some r € N.
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Lemma 45.10. The Ascending Chain Condition for a PID

Lemma 45.10. The Ascending Chain Condition for a PID

Lemma 45.10. The Ascending Chain Condition for a PID. Let D be
a PID. If Ny € N, C ... is an ascending chain of ideals, then there exists a
positive integer r such that N, = N, for all s > r. Equivalently, every
strictly ascending chain of ideals in a PID is of finite length. Under such

conditions it is said that the ascending chain condition holds for ideals in a
PID.

Proof. By Lemma 45.9, we have that N = U;N; is an ideal of D. Since D
is a PID then N is a principal ideal and so N = (c) for some ¢ € D. Since
N = U;N;, then ¢ € N, for some r € N. For s > r we have

(c) SN, CNs CN=(c). So N, = N;s for all s > r. O
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Theorem 45.11.

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.
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Theorem 45.11.

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. Let a € D where 'a’ is neither 0 nor a unit. [We first show that 'a’
has at least one irreducible factor.]
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Theorem 45.11.

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. Let a € D where 'a’ is neither 0 nor a unit. [We first show that 'a’
has at least one irreducible factor.]

If 'a’ itself is irreducible then we are done. If 'a’ is not irreducible, then

a = a1 b1 where neither a; or by is a unit.
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Theorem 45.11.

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. Let a € D where 'a’ is neither 0 nor a unit. [We first show that 'a’
has at least one irreducible factor.]

If 'a’ itself is irreducible then we are done. If 'a’ is not irreducible, then

a = a; by where neither a; or by is a unit. Now (a) C (a;) by Note 1 Part
(1) (if (a) = (a1) then by Note 1 Part (2) 'a’ and a; would be associates,
contradicting the fact that neither a; nor by is a unit).
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Theorem 45.11.

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. Let a € D where 'a’ is neither 0 nor a unit. [We first show that 'a’
has at least one irreducible factor.]

If 'a’ itself is irreducible then we are done. If 'a’ is not irreducible, then

a = a; by where neither a; or by is a unit. Now (a) C (a;) by Note 1 Part
(1) (if (a) = (a1) then by Note 1 Part (2) 'a’ and a; would be associates,
contradicting the fact that neither a; nor by is a unit). If a; is irreducible
then aj is an irreducible factor of 'a’. If not, write a; = a>bo where neither
ar nor by is a unit.

Introduction to Modern Algebra March 21, 2024 5/27



Theorem 45.11.

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. Let a € D where 'a’ is neither 0 nor a unit. [We first show that 'a’
has at least one irreducible factor.]

If 'a’" itself is irreducible then we are done. If 'a’ is not irreducible, then

a = a; by where neither a; or by is a unit. Now (a) C (a;) by Note 1 Part
(1) (if (a) = (a1) then by Note 1 Part (2) 'a’ and a; would be associates,
contradicting the fact that neither a; nor by is a unit). If a; is irreducible
then aj is an irreducible factor of 'a’. If not, write a; = a>bo where neither
a» nor by is a unit. As above, we have (a1) C (ap). Continue this process
to form a strictly ascending chain (a) C (a1) C (a2) C ....
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Theorem 45.11.

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. Let a € D where 'a’ is neither 0 nor a unit. [We first show that 'a’
has at least one irreducible factor.]

If 'a’" itself is irreducible then we are done. If 'a’ is not irreducible, then

a = a; by where neither a; or by is a unit. Now (a) C (a;) by Note 1 Part
(1) (if (a) = (a1) then by Note 1 Part (2) 'a’ and a; would be associates,
contradicting the fact that neither a; nor by is a unit). If a; is irreducible
then aj is an irreducible factor of 'a’. If not, write a; = a>bo where neither
a» nor by is a unit. As above, we have (a1) C (ap). Continue this process
to form a strictly ascending chain (a) C (a1) C (a2) C ....

By Lemma 45.10, this chain terminates with some (a,) and this a, must
be irreducible (or else we would contruct (a,11) with (a,) C (a,+1)).
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Theorem 45.11.

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. Let a € D where 'a’ is neither 0 nor a unit. [We first show that 'a’
has at least one irreducible factor.]

If 'a’ itself is irreducible then we are done. If 'a’ is not irreducible, then

a = a; by where neither a; or by is a unit. Now (a) C (a;) by Note 1 Part
(1) (if (a) = (a1) then by Note 1 Part (2) 'a’ and a; would be associates,
contradicting the fact that neither a; nor by is a unit). If a; is irreducible
then aj is an irreducible factor of 'a’. If not, write a; = a>bo where neither
a» nor by is a unit. As above, we have (a1) C (ap). Continue this process
to form a strictly ascending chain (a) C (a1) C (a2) C ....

By Lemma 45.10, this chain terminates with some (a,) and this a, must
be irreducible (or else we would contruct (a,41) with (a,) C (a,+1)). We
now have a = b1 b>...b,a, and so a, is an irreducible factor of 'a’.
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Theorem 45.11. (Continued)

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. (Continued) Now that we know 'a’ has an irreducible factor, we
show that it can be written as a product of irreducible factors.
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Theorem 45.11. (Continued)

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. (Continued) Now that we know 'a’ has an irreducible factor, we
show that it can be written as a product of irreducible factors.

By above, we have that 'a’ (neither 0 nor a unit in D) is irreducible or of
the form a = pyc; for p; an irreducible and ¢; not a unit.
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Theorem 45.11. (Continued)

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. (Continued) Now that we know 'a’ has an irreducible factor, we
show that it can be written as a product of irreducible factors.

By above, we have that 'a’ (neither 0 nor a unit in D) is irreducible or of
the form a = pyc; for p; an irreducible and ¢; not a unit. If ¢; is not a
unit (and of course it's not 0) then by the argument of the first paragraph
we have (a) C (c1) and if ¢; is not irreducible then ¢; = pacy for
irreducible p, with ¢, not a unit.
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Theorem 45.11. (Continued)

Lemma 45.11. Let D be a PID. Every element that is neither 0 nor a
unit of D is a product of irreducibles.

Proof. (Continued) Now that we know 'a’ has an irreducible factor, we
show that it can be written as a product of irreducible factors.

By above, we have that 'a’ (neither 0 nor a unit in D) is irreducible or of
the form a = pyc; for p; an irreducible and ¢; not a unit. If ¢; is not a
unit (and of course it's not 0) then by the argument of the first paragraph
we have (a) C (c1) and if ¢; is not irreducible then ¢; = pacy for
irreducible p» with ¢ not a unit. Continuing we again get a strictly
ascending chain of ideals (a) C (c1) C () C ....

By Lemma 45.10, this chain terminates with some ¢, = g, that is
irreducible (as argued in the first paragraph). Then a = p — 1ps...p,q, is a
product of irreducibles. O
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Lemma 45.12.

Lemma 45.12. An ideal (p) in a PID is maximal if and only if p is
irreducible.
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Lemma 45.12.

Lemma 45.12. An ideal (p) in a PID is maximal if and only if p is
irreducible.

Proof. Let (p) be a maximal ideal of D, a PID. Suppose p = ab in D.
Then by Note 1 Part(1) (p) C (a).
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Lemma 45.12.

Lemma 45.12. An ideal (p) in a PID is maximal if and only if p is
irreducible.

Proof. Let (p) be a maximal ideal of D, a PID. Suppose p = ab in D.
Then by Note 1 Part(1) (p) C (a). If (p) = (a) then by Note 1 Part(2) 'a’
and p are associates and b is a unit. If (p) # (a) then since (p) is maximal
it must be that (a) = D.
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Lemma 45.12.

Lemma 45.12. An ideal (p) in a PID is maximal if and only if p is
irreducible.

Proof. Let (p) be a maximal ideal of D, a PID. Suppose p = ab in D.
Then by Note 1 Part(1) (p) C (a). If (p) = (a) then by Note 1 Part(2) 'a’
and p are associates and b is a unit. If (p) # (a) then since (p) is maximal
it must be that (a) = D. From the definition of "ideal in D" we have

D = (1), so in this case (a) = (1) and by Note 1 Part(2), 'a’ and 1 are
associates and hence 'a’ is a unit. Thus, if p = ab then either 'a’ is a unit
or b is a unit; that is, p is irreducible.
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Lemma 45.12.

Lemma 45.12. (Continued)

Lemma 45.12. An ideal (p) in a PID is maximal if and only if p is
irreducible.

Proof. (Continued) Conversely, suppose that p is an irreducible in D. If
(p) C (a) then by Note 1 Part(1) we must have p = ab for some b in D.
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Lemma 45.12. (Continued)

Lemma 45.12. An ideal (p) in a PID is maximal if and only if p is
irreducible.

Proof. (Continued) Conversely, suppose that p is an irreducible in D. If
(p) C (a) then by Note 1 Part(1) we must have p = ab for some b in D.
If "a’ is a uit, then 'a’ and 1 are associates and by Note 1 Part(2), we have
(a) = (1) = D and (a) is a maximal ideal. If 'a’ is not a unit, then b must
be a unit (since p is irreducible) so there exists u € D such that bu = 1.
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Lemma 45.12. (Continued)

Lemma 45.12. An ideal (p) in a PID is maximal if and only if p is
irreducible.

Proof. (Continued) Conversely, suppose that p is an irreducible in D. If
(p) C (a) then by Note 1 Part(1) we must have p = ab for some b in D.
If "a’ is a uit, then 'a’ and 1 are associates and by Note 1 Part(2), we have
(a) = (1) = D and (a) is a maximal ideal. If 'a’ is not a unit, then b must
be a unit (since p is irreducible) so there exists u € D such that bu = 1.
Then pu = abu = a and by Note 1 Part(1) (a) C (p) and since p and 'a’
are associates, by Note 1 Part (2) we have (a) = (p).
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Lemma 45.12. (Continued)

Lemma 45.12. An ideal (p) in a PID is maximal if and only if p is
irreducible.

Proof. (Continued) Conversely, suppose that p is an irreducible in D. If
(p) C (a) then by Note 1 Part(1) we must have p = ab for some b in D.
If "a’ is a uit, then 'a’ and 1 are associates and by Note 1 Part(2), we have
(a) = (1) = D and (a) is a maximal ideal. If 'a’ is not a unit, then b must
be a unit (since p is irreducible) so there exists u € D such that bu = 1.
Then pu = abu = a and by Note 1 Part(1) (a) C (p) and since p and 'a’
are associates, by Note 1 Part (2) we have (a) = (p). We have now shown
that if (p) C (a) then either (a) = D (if 'a’ is a unit) or (a) = (p) (if 'a" is
not a unit).
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Lemma 45.12. (Continued)

Lemma 45.12. An ideal (p) in a PID is maximal if and only if p is
irreducible.

Proof. (Continued) So there is no proper ideal of D which properly

contains (p) (of course all ideals of D are principal). That is, (p) is a
maximal ideal. O
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Lemma 45.13.

Lemma 45.13. In a PID, if an irreducible p divies ab then either p | a or
p|b.
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Lemma 45.13.

Lemma 45.13. In a PID, if an irreducible p divies ab then either p | a or
p|b.

Proof. Let D be a PID and suppose that for an irreducible p € D we have
p | ab. Then ab € (p) (since (p) consists of all multiples of p).
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Lemma 45.13.

Lemma 45.13. In a PID, if an irreducible p divies ab then either p | a or
p|b.

Proof. Let D be a PID and suppose that for an irreducible p € D we have
p | ab. Then ab € (p) (since (p) consists of all multiples of p). Since p is
irreducible, by Lemma 45.12 (p) is a maximal ideal in D. By Corollary
27.16, every maximal ideal is a prime ideal, so (p) is a prime ideal.
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Lemma 45.13.

Lemma 45.13. In a PID, if an irreducible p divies ab then either p | a or
p|b.

Proof. Let D be a PID and suppose that for an irreducible p € D we have
p | ab. Then ab € (p) (since (p) consists of all multiples of p). Since p is
irreducible, by Lemma 45.12 (p) is a maximal ideal in D. By Corollary
27.16, every maximal ideal is a prime ideal, so (p) is a prime ideal. Then
ab € (p) implies that either a € (p) or b € (p). That is, by Note 1 Part
(1), either p | aor p| b. O
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Theorem 45.17.

Theorem 45.17. Every PID is a UFD
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Theorem 45.17.

Theorem 45.17. Every PID is a UFD

Proof. Theorem 45.11 shows that every PID satisfies the first property of
a UFD and gives for a in a PID D where 'a’ is neither 0 nor a unit, a
factorization a = pi1p> - - - p, into irreducibles. property 2 of a UFD says
that such a factorization is unique (in terms of associates).
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Theorem 45.17.

Theorem 45.17. Every PID is a UFD

Proof. Theorem 45.11 shows that every PID satisfies the first property of
a UFD and gives for a in a PID D where 'a’ is neither 0 nor a unit, a
factorization a = pi1p> - - - p, into irreducibles. property 2 of a UFD says
that such a factorization is unique (in terms of associates). Let

a=qiq> - - - gs be another factorization of 'a" into irreducibles. Then we
have p1 | (91G2 - - - gs). By Corollary 45.14, p; | g; for some j. Reorder the
q's such that g; becomes q;.
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Theorem 45.17.

Theorem 45.17. Every PID is a UFD

Proof. Theorem 45.11 shows that every PID satisfies the first property of
a UFD and gives for a in a PID D where 'a’ is neither 0 nor a unit, a
factorization a = pi1p> - - - p, into irreducibles. property 2 of a UFD says
that such a factorization is unique (in terms of associates). Let

a=qiq> - - - gs be another factorization of 'a" into irreducibles. Then we
have p1 | (91G2 - - - gs). By Corollary 45.14, p; | g; for some j. Reorder the
q's such that g; becomes g1. Then g1 = pju; where vy is a unit. Then p;
and g; are associates. Then p1ps -+ pr = (p1u1)gq1g2 - - - gs- By
cancellation in integral domain D (Theorem 19.5)

p2p3 - - pr=U1q1Gq2 - - - Qgs.
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Theorem 45.17. (Continued)

Theorem 45.17. Every PID is a UFD

Proof. (Continued) Repeating the process we have

l=uwu- - urgrs1---qgs (WLOG s > r). But if s > R and we have some
q still present on the right-hand side, say g,+1, then the other elements of
the right-hand side are an inverse of the g, for example

(gr+1)"Y = Ut - - - UrGr12Gr13 - - - gs. But this contradicts the fact that
the g's are irreducible and so (by definition) not units.
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Theorem 45.17. (Continued)

Theorem 45.17. Every PID is a UFD

Proof. (Continued) Repeating the process we have

l=uwu- - urgrs1---qgs (WLOG s > r). But if s > R and we have some
q still present on the right-hand side, say g,+1, then the other elements of
the right-hand side are an inverse of the g, for example

(gr+1)"Y = Ut - - - UrGr12Gr13 - - - gs. But this contradicts the fact that
the ¢'s are irreducible and so (by definition) not units. So there are no g's
remaining on the right-hand side and r =s. So p; = ujq; for i =1,2,....r
and such p; is an associate of g;. This is Property 2 in the definition of a
UFD and so D is a UFD. O
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Corollary 45.18. Fundamental Theorem of Arithmetic

Corollary 45.18. Fundamental Theorem of Arithmetic

Corollary 45.18. Fundamental Theorem of Arithmetic. The integral
domain Z is a UFD.

Proof. We know that Z is a PID (see the note after Definition 45.7). So
by Theorem 45.17, Z is a UFD. O
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Lemma 45.23.

Lemma 45.23. If D is a UFD then for every nonconstant f(x) € D[x] we
have f(x) = cg(x) where c € D, g(x) € D[x] and g(x) is a primitive. The
element c is unique up to a unit factor in D and is the content of f(x).
Also g(x) is unique up to a unit factor in D.
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Lemma 45.23.

Lemma 45.23. If D is a UFD then for every nonconstant f(x) € D[x] we
have f(x) = cg(x) where c € D, g(x) € D[x] and g(x) is a primitive. The
element c is unique up to a unit factor in D and is the content of f(x).
Also g(x) is unique up to a unit factor in D.

Proof. Let f(x) € D[x] be given where f(x) is a nonconstant polynomial

with coefficients ag, a1, ..., a,. Let ¢ be a gcd of the a;. Then for each i,
we have a; = cg; for some g; € D.
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Lemma 45.23.

Lemma 45.23. If D is a UFD then for every nonconstant f(x) € D[x] we
have f(x) = cg(x) where c € D, g(x) € D[x] and g(x) is a primitive. The
element c is unique up to a unit factor in D and is the content of f(x).
Also g(x) is unique up to a unit factor in D.

Proof. Let f(x) € D[x] be given where f(x) is a nonconstant polynomial
with coefficients ag, a1, ..., a,. Let ¢ be a gcd of the a;. Then for each i,
we have a; = cgj for some g; € D. We have f(x) = cg(x). Now there is
no irreducible dividing all of the g; (if so, say the irreducible in b, then cb
divides all a;, but cbt ¢ so in this case c is not a gcd of the a;). So a ged
of the g; must be a unit and have an associate of 1.
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Lemma 45.23.

Lemma 45.23. If D is a UFD then for every nonconstant f(x) € D[x] we
have f(x) = cg(x) where c € D, g(x) € D[x] and g(x) is a primitive. The
element c is unique up to a unit factor in D and is the content of f(x).
Also g(x) is unique up to a unit factor in D.

Proof. Let f(x) € D[x] be given where f(x) is a nonconstant polynomial
with coefficients ag, a1, ..., a,. Let ¢ be a gcd of the a;. Then for each i,
we have a; = cgj for some g; € D. We have f(x) = cg(x). Now there is

no irreducible dividing all of the g; (if so, say the irreducible in b, then cb
divides all a;, but cbt ¢ so in this case c is not a gcd of the a;). So a ged
of the g; must be a unit and have an associate of 1. So 1 is a gcd of the
gi and g(x) is a primitive polynomial.
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Lemma 45.23. (Continued)

Lemma 45.23. If D is a UFD then for every nonconstant f(x) € D[x] we
have f(x) = cg(x) where c € D, g(x) € D[x] and g(x) is a primitive. The
element c is unique up to a unit factor in D and is the content of f(x).
Also g(x) is unique up to a unit factor in D.

Proof. (Continued) For uniqueness, if f(x) = dh(x) also for some h € D
and h(x) € D[x] with h(x) primitive, then each irreducible factor of ¢
must divide d and each irreducible factor of d must divide c (or else, as in
the first paragraph, 1 is not a gcd of the respective coefficients of g or h
and hence g or h is not primitive).
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Lemma 45.23. (Continued)

Lemma 45.23. If D is a UFD then for every nonconstant f(x) € D[x] we
have f(x) = cg(x) where c € D, g(x) € D[x] and g(x) is a primitive. The
element c is unique up to a unit factor in D and is the content of f(x).
Also g(x) is unique up to a unit factor in D.

Proof. (Continued) For uniqueness, if f(x) = dh(x) also for some h € D
and h(x) € D[x] with h(x) primitive, then each irreducible factor of ¢
must divide d and each irreducible factor of d must divide c (or else, as in
the first paragraph, 1 is not a gcd of the respective coefficients of g or h
and hence g or h is not primitive).

By setting cg(x) = dh(x) (since both equal f(x)) and cancelling
irreducible factors of ¢ into d (Theorem 19.5), we arrive at ug(x) = vh(x)
for a unit u € D. But then v must be a unit of D or we would be able to
cancel irreducible factors of v into u.
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Lemma 45.23. (Continued)

Lemma 45.23. If D is a UFD then for every nonconstant f(x) € D[x] we
have f(x) = cg(x) where c € D, g(x) € D[x] and g(x) is a primitive. The
element c is unique up to a unit factor in D and is the content of f(x).
Also g(x) is unique up to a unit factor in D.

Proof. (Continued) So v and v are both units and ¢ is unique up to a
unit factor (here, d = v~luc). Since f(x) = cg(x), then the primitive
polynomial g(x) is also unique up to a unit factor. O
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Lemma 45.25. Gauss's Lemma

Lemma 45.25. Gauss’s Lemma. If D is a UFD, then a product of two
primitive polynomials in D[x] is again primitive.
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Lemma 45.25. Gauss's Lemma

Lemma 45.25. Gauss’s Lemma. If D is a UFD, then a product of two
primitive polynomials in D[x] is again primitive.

Proof. Let f(x) = ag + a;x + axx® + ... + a,x" and

g(x) = bo + bix + byx? + ... + bpx™ be primitives in D[x] and let

h(x) = f(x)g(x). Let p be an irreducible in D. Then p does not divide all
a;j and p does not divide bj* (or else a multiple of p is a gcd of the a; and
of the b; and 1 is not a gcd since all ged's are associates). [since f(x) and
g(x) are primitive.]
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Lemma 45.25. Gauss's Lemma

Lemma 45.25. Gauss’s Lemma. If D is a UFD, then a product of two
primitive polynomials in D[x] is again primitive.

Proof. Let f(x) = ag + a;x + axx® + ... + a,x" and

g(x) = bo + bix + byx? + ... + bpx™ be primitives in D[x] and let

h(x) = f(x)g(x). Let p be an irreducible in D. Then p does not divide all
a;j and p does not divide bj* (or else a multiple of p is a gcd of the a; and
of the b; and 1 is not a gcd since all ged's are associates). [since f(x) and
g(x) are primitive.]

Let a, be the first coefficient (i.e., r is the smallest value) of f(x) not
divisible by p; that is, p | a; for 0 < i < r but p{ a,. Similarly, let p | b; for
0<i<sbutpftbs.

Introduction to Modern Algebra March 21, 2024 17 / 27



Lemma 45.25. Gauss's Lemma

Lemma 45.25 Gauss's Lemma. (Continued)

Lemma 45.25 Gauss’s Lemma. If D is a UFD, then a product of two
primitive polynomials in D[x] is again primitive.

Proof. (Continued) The cofficient of x"*= in h(x) = f(x)g(x) is (we are
in a commutative ring):

Crys = (aOerrs + alerrsfl + ...+ arflstrl) + arbs (1)
+ (3r+1b571 + 3r+2bsf2 + ...+ ar+sb0)
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Lemma 45.25 Gauss's Lemma. (Continued)

Lemma 45.25 Gauss’s Lemma. If D is a UFD, then a product of two
primitive polynomials in D[x] is again primitive.

Proof. (Continued) The cofficient of x"** in h(x) = f(x)g(x) is (we are
in a commutative ring):

Cris = (aobr+5 +ai1brys 1+ ...+ arflstrl) + arbs

(1)
+ (3r+1b571 + 3r+2bsf2 + ...+ ar+sb0)

Now p | a; for 0 < i < r implies that
p| (aobrys + aibrys—1 + ... + ar—1bsi1) and p | bj for 0 < j < s implies
that P | (ar+1bs—1 + ar-i-2bs—2 + ...+ ar-l-st)'
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Lemma 45.25. Gauss's Lemma

Lemma 45.25 Gauss's Lemma. (Continued)

Lemma 45.25 Gauss’s Lemma. If D is a UFD, then a product of two
primitive polynomials in D[x] is again primitive.

Proof. (Continued) But p does not divide a, or bs, so p does not divide
a,bs and consequently p does not divide ¢,+s. So we have that any

irreducible p € D does not divide some coefficient of f(x)g(x). So the gcd
of the coefficients of f(x)g(x) is 1 and f(x)g(x) is primitive. O
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Lemma 45.27.

Lemma 45.27. Let D be a UFD and let F be a field of quotients of D.
Let f(x) € D[x] where (degree f(x)) > 0. If f(x) is an irreducible in D[x],
then f(x) is also an irreducible in F[x]. Also, if f(x) is primitive in D[x]
and irreducible in F[x], then f(x) is irreducible in D[x].
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Lemma 45.27.

Lemma 45.27. Let D be a UFD and let F be a field of quotients of D.
Let f(x) € D[x] where (degree f(x)) > 0. If f(x) is an irreducible in D[x],
then f(x) is also an irreducible in F[x]. Also, if f(x) is primitive in D[x]
and irreducible in F[x], then f(x) is irreducible in D[x].

Proof. We prove the contrapositive of the first claim. Suppose that a
nonconstant f(x) € D[x] factors into polynomials of lower degree in F[x];
that is f(x) = r(x)s(x) for r(x),s(x) € F[x]. Then since F is a field of
quotients of D, each coefficient in r(x) and s(x) is of the form a/b for
some a,be D, b #0.
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Lemma 45.27.

Lemma 45.27. Let D be a UFD and let F be a field of quotients of D.
Let f(x) € D[x] where (degree f(x)) > 0. If f(x) is an irreducible in D[x],
then f(x) is also an irreducible in F[x]. Also, if f(x) is primitive in D[x]
and irreducible in F[x], then f(x) is irreducible in D[x].

Proof. We prove the contrapositive of the first claim. Suppose that a
nonconstant f(x) € D[x] factors into polynomials of lower degree in F[x];
that is f(x) = r(x)s(x) for r(x),s(x) € F[x]. Then since F is a field of
quotients of D, each coefficient in r(x) and s(x) is of the form a/b for
some a,b € D, b # 0. By "clearing the denominators” (i.e. multiplying
through by a common multiple of the denominator) we can get

df (x) = n(x)si(x) for d € D and ri(x), s1(x) € D[x] where the degrees of
ri(x) and s1(x) equal the degrees of r(x) and s(x), respectively.
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Lemma 45.27. (Continued)

Lemma 45.27. Let D be a UFD and let F be a field of quotients of D.
Let f(x) € D[x] where (degree f(x)) > 0. If f(x) is an irreducible in D[x],
then f(x) is also an irreducible in F[x]. Also, if f(x) is primitive in D[x]
and irreducible in F[x], then f(x) is irreducible in D[x].

Proof. (Continued) By Lemma 45.23 f(x) = cg(x) , ri(x) = c1r(x),
and s1(x) = cs2(x) for primitive polynomials g(x), r2(x) and sx(x) in
D[x] and ¢, c1, 2 € D. Then dcg(x) = c1r(x)cs:(x) = crcar(x)s(x)
and by Lemma 45.25 the product r(x)sy(x) is primitive.
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Lemma 45.27. (Continued)

Lemma 45.27. Let D be a UFD and let F be a field of quotients of D.
Let f(x) € D[x] where (degree f(x)) > 0. If f(x) is an irreducible in D[x],
then f(x) is also an irreducible in F[x]. Also, if f(x) is primitive in D[x]
and irreducible in F[x], then f(x) is irreducible in D[x].

Proof. (Continued) By Lemma 45.23 f(x) = cg(x) , ri(x) = c1r(x),
and s1(x) = cs2(x) for primitive polynomials g(x), r2(x) and sx(x) in
D[x] and ¢, c1, 2 € D. Then dcg(x) = c1r(x)cs:(x) = crcar(x)s(x)
and by Lemma 45.25 the product ra(x)sy(x) is primitive. By the
uniqueness part of Lemma 45.23, c;c; = dcu for some unit v in D. But
then dcg(x) = dcura(x)sz2(x) and so f(x) = cg(x) = cura(x)s2(x) where
cu € D and n(x), s2(x) € D[x].
So f(x) factors nontrivially into polynomials of the same degree in D[x] as
the degree of the polynomial factors of f(x) in F[x].
A nonconstant f(x) € D[x] that is primitive in D[x] and irreducible in F[x]
is also irreducible in D[x] since D[x] C F[x]. O
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Corollary 45.28.

Corollary 45.28.

Corollary 45.28. If D is a UFD and F is a field of quotients of D, then a
nonconstant f(x) € D[x] factors into a product of two polynomials of
lower degrees r and s in F[x] if and only if it has a factorization into
polynomials of the same degrees r and s in D[x].
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Corollary 45.28.

Corollary 45.28. If D is a UFD and F is a field of quotients of D, then a
nonconstant f(x) € D[x] factors into a product of two polynomials of
lower degrees r and s in F[x] if and only if it has a factorization into
polynomials of the same degrees r and s in D[x].

Proof. In the proof of Lemma 45.27, if f(x) factors in F[x] into

f(x) = r(x)s(x) where r(x) and s(x) are of degrees smaller than the
degree of f(x), then f(x) = cury(x)s2(x) in D[x] where the degrees of
r(x) and ry(x) are the same and the degrees of s(x) and sy(x) are the
same. The converse holds since D[x] C F[x]. O
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Theorem 45.29.

Theorem 45.29. If D is a UFD, then D[x] is a UFD.
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Theorem 45.29.

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. Let f(x) € D[x] where f(x) is neither O nor a unit. If f(x) is of
degree 0, we are done since D is a UFD.
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Theorem 45.29.

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. Let f(x) € D[x] where f(x) is neither O nor a unit. If f(x) is of
degree 0, we are done since D is a UFD. Suppose (degree f(x)) > 0. Let
f(x) = g1(x)g2(x) - - - g-(x) be a factorization of f(x) in D[x] having the
greatest number r of factors of positive degree (so no gi(x) is a constant
polynomial). There is such a greatest number of such factors since r
cannot exceed the degree of f(x).
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Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. (Continued) Now factor each gj(x) in the form gi(x) = ¢;h(x)
where ¢; is the content of gj(x) (by Lemma 45.23, c is a gcd of the
coefficients of gj(x)) and h;(x) is a primitive polynomial.
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Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. (Continued) Now factor each gj(x) in the form gi(x) = ¢;h(x)
where ¢; is the content of gj(x) (by Lemma 45.23, c is a gcd of the
coefficients of gj(x)) and h;(x) is a primitive polynomial. Also, each h;(x)
must be irreducible; if an hj(x) could be factored then the corresponding
factorization of gj(x) (described in the proof of Lemma 45.27) would give
a factorization of f(x) with more than r factors, contradicting the choice
of r.
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Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. (Continued) Now factor each gj(x) in the form gi(x) = ¢;h(x)
where ¢; is the content of gj(x) (by Lemma 45.23, c is a gcd of the
coefficients of gj(x)) and h;(x) is a primitive polynomial. Also, each h;(x)
must be irreducible; if an hj(x) could be factored then the corresponding
factorization of gj(x) (described in the proof of Lemma 45.27) would give
a factorization of f(x) with more than r factors, contradicting the choice
of r. Thus we now have f(x) = cihi(x)coha(x) - - - ¢ hr(x) where the
hi(x) are irreducible in D[x]. If we now factor the ¢; into irreducibles in D
(since D is a UFD), we obtain a factorization of f(x) into a product of
irreducibles in D[x].
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Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. (Continued) The factorization of f(x) € D[x] where f(x) has

degree 0 is unique since D is a UFD. If f(x) has degree greater than 0,
then any factorization of f(x) into irreducibles in D[x] corresponds to a
factorization in F[x] into units (the factors in D; the constant factors)

and, by Lemma 45.27, irreducible polynomials in F[x].
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Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. (Continued) The factorization of f(x) € D[x] where f(x) has
degree 0 is unique since D is a UFD. If f(x) has degree greater than 0,
then any factorization of f(x) into irreducibles in D[x] corresponds to a
factorization in F[x] into units (the factors in D; the constant factors)
and, by Lemma 45.27, irreducible polynomials in F[x]. By Theorem 23.20,
these irreducible polynomials are unique, except for possible constant
factors in F. But as an irreducible in D[x], each polynomial of degree > 0
appearing in the factorization of f(x) in D[x] is primitive (or else the
constant gecd of the coefficients could be factored out).
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Theorem 45.29.

Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. (Continued) By the uniqueness part of Lemma 45.23, these
irreducible polynomial factors are unique in D[x] up to unit factors (that
is, unique up to being associates). The product of the irreducibles in D in
the factorization of f(x) (that is, the constant factors) is the content of
f(x), which is unique up to a unit facotr by Lemma 45.23.
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Theorem 45.29. (Continued)

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Proof. (Continued) By the uniqueness part of Lemma 45.23, these
irreducible polynomial factors are unique in D[x] up to unit factors (that
is, unique up to being associates). The product of the irreducibles in D in
the factorization of f(x) (that is, the constant factors) is the content of
f(x), which is unique up to a unit facotr by Lemma 45.23. Thus all
irreducibles in D[x] appearing in the factorization are unique up to order

and associates. O
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Corollary 45.30.

Corollary 45.30. If F is a field and xi, x2, ..., X, are indeterminates, then
Flx1,x2,...,xn] is @ UFD.
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Corollary 45.30.

Corollary 45.30.

Corollary 45.30. If F is a field and xi, x2, ..., X, are indeterminates, then
Flx1,x2,...,xn] is @ UFD.

Proof. By Theorem 23.20, F[x] is a UFD. By Corollary 45.30 and
induction, F[x1, x2], F[x1,x2,x3],...,F[x1, X2, ..., x»] are UFDs.

OJ
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