Introduction to Modern Algebra

Part 1X. Factorization
IX.46. Euclidean Domains
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Theorem 46.4. (Continued)

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. (Continued) So r = a— bg € N ("clearly” N is closed under
addition by the definition of ideal). But then v(r) < v(b) is impossible
since v(b) is maximal over all nonzero elements of N, under r = 0. Then
a = bg and a € (b). Therefore N = (b), that is N is a principal ideal, and
D is a PID. O
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Theorem 46.4.

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. Let D be a Euclidean domain with a Euclidean norm v and let N
be an ideal in D. If N = {0}, then N = (0) and N is principal. Suppose
that N # {0}. Then there exists b # 0 in N. Choose a nonzero b € N
such that v(b) is minimal among all v(n) for n € N (this can be done
since v is defined on the nonzero elements of D and v takes on
nonnegative integer values). We now show that (b) = N. Let a € N. By
Condition 1 for a Euclidean domain, there exists g and r in D such that
a = bg + r where either r = 0 or v(r) < v(b). Now r = a — bq where
a,be N. We have b(—q) = —bg € N since N is an ideal (recall N is an
ideal if xN C N and Ny C N for all x,y € D).
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Theorem 46.6.

Theorem. 46.6. For a Euclidean domain with a Euclidean norm v, v(1) is
minimal among all v(a) nonzero a € D, and v € D is a unit if and only if

v(u) = v(1).

Proof. Condition 2 implies that for nonzero a € D we have
v(1) < v(1a) = v(a), so v(1) is minimal. Next, if u is a unit in D, with
inverse u~1, then v(u) < v(uu=! = v(1) and since v(1) is minimal then

v(u) = v(1).

Now suppose v(u) = v(1) for nonzero u € D. Then by Condition 1 there
exists g, v € D such that 1 = uq + r where either r = 0 or v(v) < v(u).
But since v(1) = v(u) is minimal, then it must be that r =0 and 1 = ugq.
So g is an inverse of u and u is a unit. O
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Theorem 46.9. Euclidean Algorithm

Theorem. 46.9. Euclidean Algorithm Let D be a Euclidean domain
with a Euclidean norm v, and let a and b be nonzero elements of D. Let
r1 be as in Condition 1 for a Euclidean norm, that is a = bg; + r1 where
either n =0 or v(r1) < v(b). If n #0, let r» be such that b=nrqg + r
where either r» = 0 or v(r») < v(r1). Recursively, let r;;1 be such that
ri—1 = rigi4+1 + ri+1 where either ri;1 = 0 or v(ri;1) < v(r;). Then the
sequence r, rp, ... must terminate with some r3 =0. If 1 =0, then bis a
gcd of aand b. If 1 # 0 and re = 0 is the first r; = 0 then a gcd of a and
bis rs_1. Furthermore, if d is a gcd of a and b, then there exist A and p
in D such that d = Aa+ ub.
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Theorem 46.9. Euclidean Algorithm

Theorem 46.9. Euclidean Algorithm (Continued)

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) So inductively, the set of common divisors of a and
b (say, when i = D set r_1 = a and rp = b) is the same as the set of
common divisors of re_» and re_1 (with i = s — 2), where r¢ is the first r;
equal to 0. Then a gcd of rs_» and rs_1 is also a gcd of a and b. But we
have

Fs—2 = rs—1Qqs + rs = Qsts—1 (1)

since rs =0, 3 a ged of re_» and re_1 in re_1.
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Theorem 46.9. Euclidean Algorithm

Theorem. 46.9. Euclidean Algorithm

Proof. Since v(r;) < v(ri—1) and v(r;) is a nonnegative integer, then after
some finite number of steps we must arrive at a point where we cannot
have v(rs) < v(rs—1) and so rs = 0.

If 1 =0 then a = bg; and b is a gcd of a and b. Suppose r; # 0. (1)
Thenif d | aand d | bwe have d | (a— bg1) and so d | 1 since
rr=a—bgqgy. (2)Butifdy |rnanddy | bthend | (bgi+n)andsod |a
since a = bg; + 1. These two conditions show that the set of commons
divisors of a and b is the same set as the set of commons divisors of b and
ri. In general, we have hypothesized that r;_1 = rigi11 + rir1 so we
similarly have (replacing a with r;_1, b with r;, g1 with g;4+1, and r; with
riv1) that if rip1 # 0 then the set of common divisors of r;_; and r; is the
same as the set of commons divisors of r; and r;y1.
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Theorem 46.9. Euclidean Algorithm (Continued)

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) Now for the "furthermore” claim. That is, if d is a
ged of "a” and b then d = Aa+ pub for some A\, € D. If d = b (and

r1 = 0) then d = 0a + 1b and we are done. If d = rs then working
backward through the equations given above, we can inductively express
each r; in the form r; = \jri_1 + piri—> for some A;, uj € D (namely, since
we hypothesize ri_1 = rigi+1+ riy1 OR r;_2 = ri_1q; + r;, we have

ri = —qiri—1 + ri—2, so we take \; = —q; and p; = 1). So we have

d=rs_1=As_1rs—2+ [ls—1rs-3
= As—1(As—2rs—3 + fs—2rs—a) + pls—1rs—3 (2)
= (As—1As—2 + f1s—1)rs—3 + fls—2Fs—4
which can be written in the form of a "linear combination” of rs_3 and

rs_4, then as a "linear combination of rs_4 and rs_s.
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Theorem 46.9. Euclidean Algorithm (Continued)

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) Continuing this process (inductively) we get d as a

linear combination of a=r_; and b= ry: d = Aa+ ub for some A, € D.
Finally, if d’ is any other gcd of a and b then d’ = du for some unit u € D
(see the note after Definition 45.19), so d’ = (A\u)a + (uu)b. O
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