Introduction to Modern Algebra

Part IX. Factorization IX.46. Euclidean Domains

Table of contents

1 Theorem 46.4.

2 Theorem 46.6.

3 Theorem 46.9. Euclidean Algorithm

2 / 10

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. Let D be a Euclidean domain with a Euclidean norm v and let N be an ideal in D. If $N = \{0\}$, then $N = \langle 0 \rangle$ and N is principal. Suppose that $N \neq \{0\}$. Then there exists $b \neq 0$ in N.

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. Let D be a Euclidean domain with a Euclidean norm v and let N be an ideal in D. If $N = \{0\}$, then $N = \langle 0 \rangle$ and N is principal. Suppose that $N \neq \{0\}$. Then there exists $b \neq 0$ in N. Choose a nonzero $b \in N$ such that v(b) is minimal among all v(n) for $n \in N$ (this can be done since v is defined on the nonzero elements of D and v takes on nonnegative integer values).

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. Let D be a Euclidean domain with a Euclidean norm v and let N be an ideal in D. If $N = \{0\}$, then $N = \langle 0 \rangle$ and N is principal. Suppose that $N \neq \{0\}$. Then there exists $b \neq 0$ in N. Choose a nonzero $b \in N$ such that v(b) is minimal among all v(n) for $n \in N$ (this can be done since v is defined on the nonzero elements of D and v takes on nonnegative integer values). We now show that $\langle b \rangle = N$. Let $a \in N$. By Condition 1 for a Euclidean domain, there exists q and r in D such that a = bq + r where either r = 0 or v(r) < v(b).

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. Let D be a Euclidean domain with a Euclidean norm v and let N be an ideal in D. If $N=\{0\}$, then $N=\langle 0 \rangle$ and N is principal. Suppose that $N \neq \{0\}$. Then there exists $b \neq 0$ in N. Choose a nonzero $b \in N$ such that v(b) is minimal among all v(n) for $n \in N$ (this can be done since v is defined on the nonzero elements of D and v takes on nonnegative integer values). We now show that $\langle b \rangle = N$. Let $a \in N$. By Condition 1 for a Euclidean domain, there exists q and r in D such that a = bq + r where either r = 0 or v(r) < v(b). Now r = a - bq where $a, b \in N$. We have $b(-q) = -bq \in N$ since N is an ideal (recall N is an ideal if $xN \subseteq N$ and $y \subseteq N$ for all $x, y \in D$).

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. Let D be a Euclidean domain with a Euclidean norm v and let N be an ideal in D. If $N=\{0\}$, then $N=\langle 0 \rangle$ and N is principal. Suppose that $N \neq \{0\}$. Then there exists $b \neq 0$ in N. Choose a nonzero $b \in N$ such that v(b) is minimal among all v(n) for $n \in N$ (this can be done since v is defined on the nonzero elements of D and v takes on nonnegative integer values). We now show that $\langle b \rangle = N$. Let $a \in N$. By Condition 1 for a Euclidean domain, there exists q and r in D such that a = bq + r where either r = 0 or v(r) < v(b). Now r = a - bq where $a, b \in N$. We have $b(-q) = -bq \in N$ since N is an ideal (recall N is an ideal if $xN \subseteq N$ and $y \subseteq N$ for all $x, y \in D$).

Theorem 46.4. (Continued)

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. (Continued) So $r = a - bq \in N$ ("clearly" N is closed under addition by the definition of ideal). But then v(r) < v(b) is impossible since v(b) is maximal over all nonzero elements of N, under r = 0. Then a = bq and $a \in \langle b \rangle$. Therefore $N = \langle b \rangle$, that is N is a principal ideal, and D is a PID.

Theorem 46.4. (Continued)

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. (Continued) So $r = a - bq \in N$ ("clearly" N is closed under addition by the definition of ideal). But then v(r) < v(b) is impossible since v(b) is maximal over all nonzero elements of N, under r = 0. Then a = bq and $a \in \langle b \rangle$. Therefore $N = \langle b \rangle$, that is N is a principal ideal, and D is a PID.

Theorem. 46.6. For a Euclidean domain with a Euclidean norm v, v(1) is minimal among all v(a) nonzero $a \in D$, and $u \in D$ is a unit if and only if v(u) = v(1).

Proof. Condition 2 implies that for nonzero $a \in D$ we have $v(1) \le v(1a) = v(a)$, so v(1) is minimal. Next, if u is a unit in D, with inverse u^{-1} , then $v(u) \le v(uu^{-1} = v(1))$ and since v(1) is minimal then v(u) = v(1).

5 / 10

Theorem. 46.6. For a Euclidean domain with a Euclidean norm v, v(1) is minimal among all v(a) nonzero $a \in D$, and $u \in D$ is a unit if and only if v(u) = v(1).

Proof. Condition 2 implies that for nonzero $a \in D$ we have $v(1) \le v(1a) = v(a)$, so v(1) is minimal. Next, if u is a unit in D, with inverse u^{-1} , then $v(u) \le v(uu^{-1} = v(1))$ and since v(1) is minimal then v(u) = v(1).

Now suppose v(u) = v(1) for nonzero $u \in D$. Then by Condition 1 there exists $q, v \in D$ such that 1 = uq + r where either r = 0 or v(v) < v(u).

Theorem. 46.6. For a Euclidean domain with a Euclidean norm v, v(1) is minimal among all v(a) nonzero $a \in D$, and $u \in D$ is a unit if and only if v(u) = v(1).

Proof. Condition 2 implies that for nonzero $a \in D$ we have $v(1) \le v(1a) = v(a)$, so v(1) is minimal. Next, if u is a unit in D, with inverse u^{-1} , then $v(u) \le v(uu^{-1} = v(1))$ and since v(1) is minimal then v(u) = v(1).

Now suppose v(u) = v(1) for nonzero $u \in D$. Then by Condition 1 there exists $q, v \in D$ such that 1 = uq + r where either r = 0 or v(v) < v(u). But since v(1) = v(u) is minimal, then it must be that r = 0 and 1 = uq. So g is an inverse of u and u is a unit.

5 / 10

Theorem. 46.6. For a Euclidean domain with a Euclidean norm v, v(1) is minimal among all v(a) nonzero $a \in D$, and $u \in D$ is a unit if and only if v(u) = v(1).

Proof. Condition 2 implies that for nonzero $a \in D$ we have $v(1) \le v(1a) = v(a)$, so v(1) is minimal. Next, if u is a unit in D, with inverse u^{-1} , then $v(u) \le v(uu^{-1} = v(1))$ and since v(1) is minimal then v(u) = v(1).

Now suppose v(u) = v(1) for nonzero $u \in D$. Then by Condition 1 there exists $q, v \in D$ such that 1 = uq + r where either r = 0 or v(v) < v(u). But since v(1) = v(u) is minimal, then it must be that r = 0 and 1 = uq. So g is an inverse of u and u is a unit.

Theorem. 46.9. Euclidean Algorithm Let D be a Euclidean domain with a Euclidean norm v, and let a and b be nonzero elements of D. Let r_1 be as in Condition 1 for a Euclidean norm, that is $a=bq_1+r_1$ where either $r_1=0$ or $v(r_1)< v(b)$. If $r_1\neq 0$, let r_2 be such that $b=r_1q_2+r_2$ where either $r_2=0$ or $v(r_2)< v(r_1)$. Recursively, let r_{i+1} be such that $r_{i-1}=r_iq_{i+1}+r_{i+1}$ where either $r_{i+1}=0$ or $v(r_{i+1})< v(r_i)$. Then the sequence $r_1,r_2,...$ must terminate with some $r_3=0$. If $r_1=0$, then b is a gcd of a and b. If $r_1\neq 0$ and $r_s=0$ is the first $r_i=0$ then a gcd of a and b is r_{s-1} . Furthermore, if d is a gcd of a and b, then there exist a0 and a1 in a2 such that a2 is a3.

Theorem. 46.9. Euclidean Algorithm

Proof. Since $v(r_i) < v(r_{i-1})$ and $v(r_i)$ is a nonnegative integer, then after some finite number of steps we must arrive at a point where we cannot have $v(r_s) < v(r_{s-1})$ and so $r_s = 0$.

```
If r_1 = 0 then a = bq_1 and b is a gcd of a and b. Suppose r_1 \neq 0. (1) Then if d \mid a and d \mid b we have d \mid (a - bq_1) and so d \mid r_1 since r_1 = a - bq_1. (2) But if d_1 \mid r_1 and d_1 \mid b then d_1 \mid (bq_1 + r_1) and so d_1 \mid a since a = bq_1 + r_1.
```

Theorem. 46.9. Euclidean Algorithm

Proof. Since $v(r_i) < v(r_{i-1})$ and $v(r_i)$ is a nonnegative integer, then after some finite number of steps we must arrive at a point where we cannot have $v(r_s) < v(r_{s-1})$ and so $r_s = 0$. If $r_1 = 0$ then $a = bq_1$ and b is a gcd of a and b. Suppose $r_1 \neq 0$. (1) Then if $d \mid a$ and $d \mid b$ we have $d \mid (a - bq_1)$ and so $d \mid r_1$ since $r_1 = a - bq_1$. (2) But if $d_1 \mid r_1$ and $d_1 \mid b$ then $d_1 \mid (bq_1 + r_1)$ and so $d_1 \mid a$ since $a = bq_1 + r_1$. These two conditions show that the set of commons divisors of a and b is the same set as the set of commons divisors of b and $a = bq_1 + cq_1$.

Theorem. 46.9. Euclidean Algorithm

Proof. Since $v(r_i) < v(r_{i-1})$ and $v(r_i)$ is a nonnegative integer, then after some finite number of steps we must arrive at a point where we cannot have $v(r_s) < v(r_{s-1})$ and so $r_s = 0$. If $r_1 = 0$ then $a = bq_1$ and b is a gcd of a and b. Suppose $r_1 \neq 0$. (1) Then if $d \mid a$ and $d \mid b$ we have $d \mid (a - bq_1)$ and so $d \mid r_1$ since $r_1 = a - bq_1$. (2) But if $d_1 \mid r_1$ and $d_1 \mid b$ then $d_1 \mid (bq_1 + r_1)$ and so $d_1 \mid a$ since $a = bq_1 + r_1$. These two conditions show that the set of commons divisors of a and b is the same set as the set of commons divisors of b and r_1 . In general, we have hypothesized that $r_{i-1} = r_i q_{i+1} + r_{i+1}$ so we similarly have (replacing a with r_{i-1} , b with r_i , q_1 with q_{i+1} , and r_1 with r_{i+1}) that if $r_{i+1} \neq 0$ then the set of common divisors of r_{i-1} and r_i is the same as the set of commons divisors of r_i and r_{i+1} .

Theorem. 46.9. Euclidean Algorithm

Proof. Since $v(r_i) < v(r_{i-1})$ and $v(r_i)$ is a nonnegative integer, then after some finite number of steps we must arrive at a point where we cannot have $v(r_s) < v(r_{s-1})$ and so $r_s = 0$. If $r_1 = 0$ then $a = bq_1$ and b is a gcd of a and b. Suppose $r_1 \neq 0$. (1) Then if $d \mid a$ and $d \mid b$ we have $d \mid (a - bq_1)$ and so $d \mid r_1$ since $r_1 = a - bq_1$. (2) But if $d_1 \mid r_1$ and $d_1 \mid b$ then $d_1 \mid (bq_1 + r_1)$ and so $d_1 \mid a$ since $a = bq_1 + r_1$. These two conditions show that the set of commons divisors of a and b is the same set as the set of commons divisors of b and r_1 . In general, we have hypothesized that $r_{i-1} = r_i q_{i+1} + r_{i+1}$ so we similarly have (replacing a with r_{i-1} , b with r_i , q_1 with q_{i+1} , and r_1 with r_{i+1}) that if $r_{i+1} \neq 0$ then the set of common divisors of r_{i-1} and r_i is the same as the set of commons divisors of r_i and r_{i+1} .

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) So inductively, the set of common divisors of a and b (say, when i=D set $r_{-1}=a$ and $r_0=b$) is the same as the set of common divisors of r_{s-2} and r_{s-1} (with i=s-2), where r_s is the first r_i equal to 0. Then a gcd of r_{s-2} and r_{s-1} is also a gcd of a and b. But we have

$$r_{s-2} = r_{s-1}q_s + r_s = q_s r_{s-1} (1)$$

since $r_s = 0$, a a gcd of r_{s-2} and r_{s-1} in r_{s-1} .

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) So inductively, the set of common divisors of a and b (say, when i=D set $r_{-1}=a$ and $r_0=b$) is the same as the set of common divisors of r_{s-2} and r_{s-1} (with i=s-2), where r_s is the first r_i equal to 0. Then a gcd of r_{s-2} and r_{s-1} is also a gcd of a and b. But we have

$$r_{s-2} = r_{s-1}q_s + r_s = q_s r_{s-1} (1)$$

since $r_s = 0$, a a gcd of r_{s-2} and r_{s-1} in r_{s-1} .

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) Now for the "furthermore" claim. That is, if d is a gcd of 'a' and b then $d=\lambda a+\mu b$ for some $\lambda,\mu\in D$. If d=b (and $r_1=0$) then d=0a+1b and we are done. If $d=r_s$ then working backward through the equations given above, we can inductively express each r_i in the form $r_i=\lambda_i r_{i-1}+\mu_i r_{i-2}$ for some $\lambda_i,\mu_i\in D$ (namely, since we hypothesize $r_{i-1}=r_iq_{i+1}+r_{i+1}$ OR $r_{i-2}=r_{i-1}q_i+r_i$, we have $r_i=-q_ir_{i-1}+r_{i-2}$, so we take $\lambda_i=-q_i$ and $\mu_i=1$).

9 / 10

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) Now for the "furthermore" claim. That is, if d is a gcd of 'a' and b then $d=\lambda a+\mu b$ for some $\lambda,\mu\in D$. If d=b (and $r_1=0$) then d=0a+1b and we are done. If $d=r_s$ then working backward through the equations given above, we can inductively express each r_i in the form $r_i=\lambda_i r_{i-1}+\mu_i r_{i-2}$ for some $\lambda_i,\mu_i\in D$ (namely, since we hypothesize $r_{i-1}=r_iq_{i+1}+r_{i+1}$ OR $r_{i-2}=r_{i-1}q_i+r_i$, we have $r_i=-q_ir_{i-1}+r_{i-2}$, so we take $\lambda_i=-q_i$ and $\mu_i=1$). So we have

$$d = r_{s-1} = \lambda_{s-1} r_{s-2} + \mu_{s-1} r_{s-3}$$

$$= \lambda_{s-1} (\lambda_{s-2} r_{s-3} + \mu_{s-2} r_{s-4}) + \mu_{s-1} r_{s-3}$$

$$= (\lambda_{s-1} \lambda_{s-2} + \mu_{s-1}) r_{s-3} + \mu_{s-2} r_{s-4}$$
(2)

which can be written in the form of a "linear combination" of r_{s-3} and r_{s-4} , then as a "linear combination of r_{s-4} and r_{s-5} .

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) Now for the "furthermore" claim. That is, if d is a gcd of 'a' and b then $d=\lambda a+\mu b$ for some $\lambda,\mu\in D$. If d=b (and $r_1=0$) then d=0a+1b and we are done. If $d=r_s$ then working backward through the equations given above, we can inductively express each r_i in the form $r_i=\lambda_i r_{i-1}+\mu_i r_{i-2}$ for some $\lambda_i,\mu_i\in D$ (namely, since we hypothesize $r_{i-1}=r_iq_{i+1}+r_{i+1}$ OR $r_{i-2}=r_{i-1}q_i+r_i$, we have $r_i=-q_ir_{i-1}+r_{i-2}$, so we take $\lambda_i=-q_i$ and $\mu_i=1$). So we have

$$d = r_{s-1} = \lambda_{s-1} r_{s-2} + \mu_{s-1} r_{s-3}$$

$$= \lambda_{s-1} (\lambda_{s-2} r_{s-3} + \mu_{s-2} r_{s-4}) + \mu_{s-1} r_{s-3}$$

$$= (\lambda_{s-1} \lambda_{s-2} + \mu_{s-1}) r_{s-3} + \mu_{s-2} r_{s-4}$$
(2)

which can be written in the form of a "linear combination" of r_{s-3} and r_{s-4} , then as a "linear combination of r_{s-4} and r_{s-5} .

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) Continuing this process (inductively) we get d as a linear combination of $a=r_{-1}$ and $b=r_0$: $d=\lambda a+\mu b$ for some $\lambda,\mu\in D$. Finally, if d' is any other gcd of a and b then d'=du for some unit $u\in D$ (see the note after Definition 45.19), so $d'=(\lambda u)a+(\mu u)b$.