Introduction to Modern Algebra

Part IX. Factorization

IX.46. Euclidean Domains
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Theorem. 46.4. Every Euclidean domain is a PID.
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Theorem. 46.4. Every Euclidean domain is a PID.

Proof. Let D be a Euclidean domain with a Euclidean norm v and let N

be an ideal in D. If N = {0}, then N = (0) and N is principal. Suppose
that N # {0}. Then there exists b # 0 in N.
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Theorem 46.4.

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. Let D be a Euclidean domain with a Euclidean norm v and let N
be an ideal in D. If N = {0}, then N = (0) and N is principal. Suppose
that N # {0}. Then there exists b # 0 in N. Choose a nonzero b € N
such that v(b) is minimal among all v(n) for n € N (this can be done
since v is defined on the nonzero elements of D and v takes on
nonnegative integer values).
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Theorem 46.4.

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. Let D be a Euclidean domain with a Euclidean norm v and let N
be an ideal in D. If N = {0}, then N = (0) and N is principal. Suppose
that N # {0}. Then there exists b # 0 in N. Choose a nonzero b € N
such that v(b) is minimal among all v(n) for n € N (this can be done
since v is defined on the nonzero elements of D and v takes on
nonnegative integer values). We now show that (b) = N. Let a € N. By
Condition 1 for a Euclidean domain, there exists g and r in D such that
a = bq + r where either r =0 or v(r) < v(b).
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Theorem 46.4.

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. Let D be a Euclidean domain with a Euclidean norm v and let N
be an ideal in D. If N = {0}, then N = (0) and N is principal. Suppose
that N # {0}. Then there exists b # 0 in N. Choose a nonzero b € N
such that v(b) is minimal among all v(n) for n € N (this can be done
since v is defined on the nonzero elements of D and v takes on
nonnegative integer values). We now show that (b) = N. Let a € N. By
Condition 1 for a Euclidean domain, there exists g and r in D such that
a = bq + r where either r =0 or v(r) < v(b). Now r = a — bqg where
a,be N. We have b(—q) = —bg € N since N is an ideal (recall N is an
ideal if xN C N and Ny C N for all x,y € D).
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Theorem 46.4. (Continued)

Theorem. 46.4. Every Euclidean domain is a PID.
Proof. (Continued) So r = a— bg € N ("clearly” N is closed under

addition by the definition of ideal). But then v(r) < v(b) is impossible
since v(b) is maximal over all nonzero elements of N, under r = 0.
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Theorem 46.4. (Continued)

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. (Continued) So r = a— bg € N ("clearly” N is closed under
addition by the definition of ideal). But then v(r) < v(b) is impossible
since v(b) is maximal over all nonzero elements of N, under r = 0. Then
a= bg and a € (b). Therefore N = (b), that is N is a principal ideal, and
D is a PID. O]
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Theorem 46.6.

Theorem. 46.6. For a Euclidean domain with a Euclidean norm v, v(1) is
minimal among all v(a) nonzero a € D, and u € D is a unit if and only if

v(u) = v(1).
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Theorem 46.6.

Theorem. 46.6. For a Euclidean domain with a Euclidean norm v, v(1) is
minimal among all v(a) nonzero a € D, and u € D is a unit if and only if

v(u) = v(1).

Proof. Condition 2 implies that for nonzero a € D we have
v(1) < v(1a) = v(a), so v(1) is minimal. Next, if u is a unit in D, with
inverse u™1, then v(u) < v(uu~! = v(1) and since v(1) is minimal then

v(u) = v(1).
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Theorem 46.6.

Theorem. 46.6. For a Euclidean domain with a Euclidean norm v, v(1) is
minimal among all v(a) nonzero a € D, and u € D is a unit if and only if

v(u) = v(1).

Proof. Condition 2 implies that for nonzero a € D we have
v(1) < v(1a) = v(a), so v(1) is minimal. Next, if u is a unit in D, with
inverse u™1, then v(u) < v(uu~! = v(1) and since v(1) is minimal then

v(u) = v(1).

Now suppose v(u) = v(1) for nonzero u € D. Then by Condition 1 there
exists q,v € D such that 1 = uq + r where either r =0 or v(v) < v(u).
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Theorem 46.6.

Theorem. 46.6. For a Euclidean domain with a Euclidean norm v, v(1) is
minimal among all v(a) nonzero a € D, and u € D is a unit if and only if

v(u) = v(1).

Proof. Condition 2 implies that for nonzero a € D we have
v(1) < v(1a) = v(a), so v(1) is minimal. Next, if u is a unit in D, with
inverse u™1, then v(u) < v(uu~! = v(1) and since v(1) is minimal then

v(u) = v(1).

Now suppose v(u) = v(1) for nonzero u € D. Then by Condition 1 there
exists q,v € D such that 1 = uq + r where either r =0 or v(v) < v(u).
But since v(1) = v(u) is minimal, then it must be that r =0 and 1 = ugq

So g is an inverse of u and u is a unit. O
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Theorem 46.9. Euclidean Algorithm

Theorem. 46.9. Euclidean Algorithm Let D be a Euclidean domain
with a Euclidean norm v, and let a and b be nonzero elements of D. Let
r1 be as in Condition 1 for a Euclidean norm, that is a = bg; + r1 where
either 1 =0 or v(r1) < v(b). If n #0, let r» be such that b= rgx +
where either r, = 0 or v(r2) < v(r1). Recursively, let riy1 be such that
ri—1 = rigi+1 + ri+1 where either riy; = 0 or v(riy1) < v(ri). Then the
sequence ry, rp, ... must terminate with some 3 = 0. If n =0, then b is a
gcd of aand b. If r; £ 0 and rs = 0 is the first r; = 0 then a gcd of a and
bis rs_1. Furthermore, if d is a gcd of a and b, then there exist A and p
in D such that d = Aa+ ub.
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Theorem 46.9. Euclidean Algorithm

Theorem. 46.9. Euclidean Algorithm

Proof. Since v(r;) < v(ri_1) and v(r;) is a nonnegative integer, then after
some finite number of steps we must arrive at a point where we cannot
have v(rs) < v(rs—1) and so rs = 0.
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Theorem 46.9. Euclidean Algorithm

Theorem. 46.9. Euclidean Algorithm

Proof. Since v(r;) < v(ri_1) and v(r;) is a nonnegative integer, then after
some finite number of steps we must arrive at a point where we cannot
have v(rs) < v(rs—1) and so rs = 0.

If 1 =0 then a= bg; and b is a gcd of a and b. Suppose r; # 0. (1)
Then if d | aand d | b we have d | (a— bgy) and so d | r; since
rn=a—baq. (2) But if di ‘ r and dp ’ b then d; ‘ (bq1 + rl) and so d; | a
since a = bgy + .
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Theorem 46.9. Euclidean Algorithm

Theorem. 46.9. Euclidean Algorithm

Proof. Since v(r;) < v(ri_1) and v(r;) is a nonnegative integer, then after
some finite number of steps we must arrive at a point where we cannot
have v(rs) < v(rs—1) and so rs = 0.

If 1 =0 then a= bg; and b is a gcd of a and b. Suppose r; # 0. (1)
Then if d | aand d | b we have d | (a— bgy) and so d | r; since
rn=a—baq. (2) But if di ‘ r and dp ’ b then d; ‘ (bq1 + rl) and so d; | a
since a = bqi + r1. These two conditions show that the set of commons
divisors of a and b is the same set as the set of commons divisors of b and
rn.
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Theorem. 46.9. Euclidean Algorithm

Proof. Since v(r;) < v(ri_1) and v(r;) is a nonnegative integer, then after
some finite number of steps we must arrive at a point where we cannot
have v(rs) < v(rs—1) and so rs = 0.

If 1 =0 then a= bg; and b is a gcd of a and b. Suppose r; # 0. (1)
Then if d | aand d | b we have d | (a— bgy) and so d | r; since
rn=a—baq. (2) But if di ‘ r and dp ’ b then d; ‘ (bq1 + rl) and so d; | a
since a = bqi + r1. These two conditions show that the set of commons
divisors of a and b is the same set as the set of commons divisors of b and
r1. In general, we have hypothesized that r;_1 = rjgj+1 + ri;1 so we
similarly have (replacing a with r;_1, b with r;, g1 with g;11, and r; with
ri+1) that if ripz1 # 0 then the set of common divisors of r;_; and r; is the
same as the set of commons divisors of r; and rj;1.
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Theorem 46.9. Euclidean Algorithm (Continued)

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) So inductively, the set of common divisors of a and
b (say, when i = D set r—; = a and ry = b) is the same as the set of
common divisors of rs_p and rs_1 (with i = s — 2), where r; is the first r;
equal to 0.
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Theorem 46.9. Euclidean Algorithm (Continued)

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) So inductively, the set of common divisors of a and
b (say, when i = D set r—; = a and ry = b) is the same as the set of
common divisors of rs_p and rs_1 (with i = s — 2), where r; is the first r;
equal to 0. Then a gcd of rs_» and rs_7 is also a gcd of a and b. But we
have

rs—2 = rs—1qs + rs = Qsts—1 (1)

since rs =0, aagced of rs_p and rs_1 in rs_1.
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Theorem 46.9. Euclidean Algorithm (Continued)

Theorem. 46.9. Euclidean Algorithm
Proof. (Continued) Now for the "furthermore” claim. That is, if d is a

ged of 'a’ and b then d = Aa+ ub for some \,p € D. If d = b (and
ri = 0) then d = 0a+ 1b and we are done.
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Theorem 46.9. Euclidean Algorithm (Continued)

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) Now for the "furthermore” claim. That is, if d is a
ged of 'a’ and b then d = Aa+ ub for some \,p € D. If d = b (and

ri = 0) then d = 0a+ 1b and we are done. If d = rs then working
backward through the equations given above, we can inductively express
each r; in the form r; = \jri_1 + piri—p for some A, uj € D (namely, since
we hypothesize r; 1 = rigj11 + rix1 OR ri_o = ri_1q9; + r;, we have

ri = —qjti—1 + ri—p, so we take \; = —gq; and u; = 1).
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Theorem 46.9. Euclidean Algorithm (Continued)

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) Now for the "furthermore” claim. That is, if d is a
ged of 'a’ and b then d = Aa+ ub for some \,p € D. If d = b (and

ri = 0) then d = 0a+ 1b and we are done. If d = rs then working
backward through the equations given above, we can inductively express
each r; in the form r; = \jri_1 + piri—p for some A, uj € D (namely, since
we hypothesize r; 1 = rigj11 + rix1 OR ri_o = ri_1q9; + r;, we have

ri = —qiri—1 + ri—2, so we take \; = —q; and p; = 1). So we have

d=rs_1=As—1rs—2 + Hs—1Fs—3
= )\571()\5721’573 + /-1572//574) + fhs—1rs—3 (2)
= (As—1As—2 4 ps—1)rs—3 + fs—2rs—4
which can be written in the form of a "linear combination” of rs_3 and

rs—4, then as a "linear combination of rs_4 and rs_s.
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Theorem 46.9. Euclidean Algorithm

Theorem 46.9. Euclidean Algorithm (Continued)

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) Continuing this process (inductively) we get d as a

linear combination of a=r_1 and b= ry: d = Aa+ ub for some A\, u € D.
Finally, if d’ is any other gcd of a and b then d’ = du for some unit u € D
(see the note after Definition 45.19), so d’ = (Au)a + (uu)b. O
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