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Theorem 46.4.

Theorem 46.4.

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. Let D be a Euclidean domain with a Euclidean norm v and let N
be an ideal in D. If N = {0}, then N = 〈0〉 and N is principal. Suppose
that N 6= {0}. Then there exists b 6= 0 in N.

Choose a nonzero b ∈ N
such that v(b) is minimal among all v(n) for n ∈ N (this can be done
since v is defined on the nonzero elements of D and v takes on
nonnegative integer values). We now show that 〈b〉 = N. Let a ∈ N. By
Condition 1 for a Euclidean domain, there exists q and r in D such that
a = bq + r where either r = 0 or v(r) < v(b). Now r = a − bq where
a, b ∈ N. We have b(−q) = −bq ∈ N since N is an ideal (recall N is an
ideal if xN ⊆ N and Ny ⊆ N for all x , y ∈ D).
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Theorem 46.4.

Theorem 46.4. (Continued)

Theorem. 46.4. Every Euclidean domain is a PID.

Proof. (Continued) So r = a − bq ∈ N (”clearly” N is closed under
addition by the definition of ideal). But then v(r) < v(b) is impossible
since v(b) is maximal over all nonzero elements of N, under r = 0. Then
a = bq and a ∈ 〈b〉. Therefore N = 〈b〉, that is N is a principal ideal, and
D is a PID.
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Theorem 46.6.

Theorem 46.6.

Theorem. 46.6. For a Euclidean domain with a Euclidean norm v , v(1) is
minimal among all v(a) nonzero a ∈ D, and u ∈ D is a unit if and only if
v(u) = v(1).

Proof. Condition 2 implies that for nonzero a ∈ D we have
v(1) ≤ v(1a) = v(a), so v(1) is minimal. Next, if u is a unit in D, with
inverse u−1, then v(u) ≤ v(uu−1 = v(1) and since v(1) is minimal then
v(u) = v(1).

Now suppose v(u) = v(1) for nonzero u ∈ D. Then by Condition 1 there
exists q, v ∈ D such that 1 = uq + r where either r = 0 or v(v) < v(u).
But since v(1) = v(u) is minimal, then it must be that r = 0 and 1 = uq.
So g is an inverse of u and u is a unit.
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Theorem 46.9. Euclidean Algorithm

Theorem 46.9. Euclidean Algorithm

Theorem. 46.9. Euclidean Algorithm Let D be a Euclidean domain
with a Euclidean norm v , and let a and b be nonzero elements of D. Let
r1 be as in Condition 1 for a Euclidean norm, that is a = bq1 + r1 where
either r1 = 0 or v(r1) < v(b). If r1 6= 0, let r2 be such that b = r1q2 + r2
where either r2 = 0 or v(r2) < v(r1). Recursively, let ri+1 be such that
ri−1 = riqi+1 + ri+1 where either ri+1 = 0 or v(ri+1) < v(ri ). Then the
sequence r1, r2, ... must terminate with some r3 = 0. If r1 = 0, then b is a
gcd of a and b. If r1 6= 0 and rs = 0 is the first ri = 0 then a gcd of a and
b is rs−1. Furthermore, if d is a gcd of a and b, then there exist λ and µ
in D such that d = λa + µb.
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Theorem 46.9. Euclidean Algorithm

Theorem. 46.9. Euclidean Algorithm

Proof. Since v(ri ) < v(ri−1) and v(ri ) is a nonnegative integer, then after
some finite number of steps we must arrive at a point where we cannot
have v(rs) < v(rs−1) and so rs = 0.
If r1 = 0 then a = bq1 and b is a gcd of a and b. Suppose r1 6= 0. (1)
Then if d | a and d | b we have d | (a − bq1) and so d | r1 since
r1 = a− bq1. (2) But if d1 | r1 and d1 | b then d1 | (bq1 + r1) and so d1 | a
since a = bq1 + r1.

These two conditions show that the set of commons
divisors of a and b is the same set as the set of commons divisors of b and
r1. In general, we have hypothesized that ri−1 = riqi+1 + ri+1 so we
similarly have (replacing a with ri−1, b with ri , q1 with qi+1, and r1 with
ri+1) that if ri+1 6= 0 then the set of common divisors of ri−1 and ri is the
same as the set of commons divisors of ri and ri+1.
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Theorem 46.9. Euclidean Algorithm

Theorem 46.9. Euclidean Algorithm (Continued)

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) So inductively, the set of common divisors of a and
b (say, when i = D set r−1 = a and r0 = b) is the same as the set of
common divisors of rs−2 and rs−1 (with i = s − 2), where rs is the first ri
equal to 0. Then a gcd of rs−2 and rs−1 is also a gcd of a and b. But we
have

rs−2 = rs−1qs + rs = qsrs−1 (1)

since rs = 0, a a gcd of rs−2 and rs−1 in rs−1.
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Theorem 46.9. Euclidean Algorithm

Theorem 46.9. Euclidean Algorithm (Continued)

Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) Now for the ”furthermore” claim. That is, if d is a
gcd of ’a’ and b then d = λa + µb for some λ, µ ∈ D. If d = b (and
r1 = 0) then d = 0a + 1b and we are done. If d = rs then working
backward through the equations given above, we can inductively express
each ri in the form ri = λi ri−1 + µi ri−2 for some λi , µi ∈ D (namely, since
we hypothesize ri−1 = riqi+1 + ri+1 OR ri−2 = ri−1qi + ri , we have
ri = −qi ri−1 + ri−2, so we take λi = −qi and µi = 1).

So we have

d = rs−1 = λs−1rs−2 + µs−1rs−3

= λs−1(λs−2rs−3 + µs−2rs−4) + µs−1rs−3

= (λs−1λs−2 + µs−1)rs−3 + µs−2rs−4

(2)

which can be written in the form of a ”linear combination” of rs−3 and
rs−4, then as a ”linear combination of rs−4 and rs−5.
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Theorem. 46.9. Euclidean Algorithm

Proof. (Continued) Continuing this process (inductively) we get d as a
linear combination of a = r−1 and b = r0: d = λa + µb for some λ, µ ∈ D.
Finally, if d ′ is any other gcd of a and b then d ′ = du for some unit u ∈ D
(see the note after Definition 45.19), so d ′ = (λu)a + (µu)b.
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