Theorem 47.4. The function \(\nu(\alpha) = N(\alpha) \) for nonzero \(\alpha \in \mathbb{Z}[i] \) is a Euclidean norm in \(\mathbb{Z}[i] \) and so \(\mathbb{Z}[i] \) is a Euclidean domain.

Proof. For all \(\beta = b_1 + b_2 i \neq 0 \) in \(\mathbb{Z}[i] \) we have
\[
N(b_1 + b_2 i) = b_1^2 + b_2^2 = \mathbb{1}.
\]
Then for all \(\alpha, \beta \in \mathbb{Z}[i] \) where \(\alpha \neq 0 \neq \beta \) we have
\[
N(\alpha) \leq N(\alpha N(\beta)) \quad \text{since} \quad N(\beta) \geq 1
\]
\[
= N(\alpha \beta) \quad \text{By Lemma 47.2 (3)}
\]
so Condition 2 for a Euclidean norm in Definition 46.1 holds.
Theorem 47.4. (Continued)

Theorem. 47.4. The function \(\nu(\alpha) = N(\alpha) \) for nonzero \(\alpha \in \mathbb{Z}[i] \) is a Euclidean norm in \(\mathbb{Z}[i] \) and so \(\mathbb{Z}[i] \) is a Euclidean domain.

Proof (Continued). If \(\rho = 0 \) we are done. Otherwise, by construction of \(\sigma \) we have \(|r - q_1| \leq 1/2 \) and \(|s - q_2| \leq 1/2 \), so

\[
N(\alpha / \beta - \sigma) = N((r + si) - (q_1 + q_2 i)) = N((r - q_1) + (s - q_2)i) \leq \frac{1^2}{2} + \frac{1^2}{2} = \frac{1}{2}.
\]

Thus

\[
N(\rho) = N(\alpha - \beta \sigma) = N(\beta (\alpha / \beta - \sigma)) = N(\beta) N(\alpha / \beta - \sigma) \quad \text{By Lemma 47.2(3)}
\]

\[
\leq N(\beta) \cdot \frac{1}{2}
\]

So \(N(\rho) < N(\beta) \) and Condition 2 follows.

Theorem 47.7. (Continued)

Theorem 47.7. If \(D \) is an integral domain with a multiplicative norm \(N \), then \(N(1) = 1 \) and \(|N(u)| = 1 \) for every unit \(u \in D \). If, furthermore, every \(\alpha \) satisfying \(|N(\alpha)| = 1 \) is a unit in \(D \), then an element \(\pi \in D \) with \(|N(\pi)| = p \) for a prime \(p \in \mathbb{Z} \) is an irreducible of \(D \).

Proof. Let \(D \) be an integral domain with a multiplicative norm \(N \). Then \(N(1) = N((1)(1)) = N(1)N(1) \) and so \(N(1) \) is either 0 or 1. By Condition (1) we have that \(N(1) = 1 \). If \(u \in D \) is a unit then \(1 = N(1) = N(uu^{-1}) = N(u)N(u^{-1}) \). Since \(N(u) \) is an integer then \(N(u) = \pm 1 \) and \(|N(u)| = 1 \).

Theorem 47.10. Fermat’s \(p = a^2 + b^2 \) Theorem

Theorem 47.10. Fermat’s \(p = a^2 + b^2 \) Theorem Let \(p \) be an odd prime in \(\mathbb{Z} \). Then \(p = a^2 + b^2 \) for integers \(a, b \in \mathbb{Z} \) if and only if \(p \equiv 1 \pmod{4} \).

Proof. First, suppose \(p = a^2 + b^2 \). Now \(a \) and \(b \) cannot both be even or both be odd since this would give \(p \) even (notice that we hypothesize an odd prime). If \(a = 2r \) (even) and \(b = 2s + 1 \) (odd), then

\[
a^2 + b^2 = 4r^2 + 4rs + 1 \equiv 1 \pmod{4}
\]

and \(p \equiv 1 \pmod{4} \).
Theorem 47.10. Fermat’s $p = a^2 + b^2$ Theorem (Continued)

Theorem 47.10. Fermat’s $p = a^2 + b^2$ Theorem Let p be an odd prime in \mathbb{Z}. Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof. (Continued) Second, assume $p \equiv 1 \pmod{4}$. Now consider the multiplicative group of nonzero elements of \mathbb{Z}_p. This is a cyclic group and has order $p - 1$. Since 4 is a divisor of $p - 1$, then this cyclic group has an element n of multiplicative order 4 (the multiplicative group is isomorphic to U_{p-1} and $\exp(2\pi i (p-1)/4i)$ is of order 40. Then n^2 is of multiplicative order 2. So $n^2 = -1$ in \mathbb{Z}_p (or $n^2 = p - 1$). So in \mathbb{Z} we have $n^2 \equiv -1 \pmod{p}$ and $n^2 + 1 \in \mathbb{Z}$ is a multiple of p.

Theorem 47.10. Fermat’s $p = a^2 + b^2$ Theorem (Continued)

Theorem 47.10. Fermat’s $p = a^2 + b^2$ Theorem Let p be an odd prime in \mathbb{Z}. Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof. (Continued) Viewing p and $n^2 + 1$ in $\mathbb{Z}[i]$ we see that p divides $n^2 + 1 = (n + 1)(n - 1)$. Assume p is irreducible in $\mathbb{Z}[i]$. Then p would have to divide either $n + 1$ or $n - 1$ by Lemma 45.13 (since \mathbb{Z} is a PID — see p391). If p divides $n + 1$, then $n + 1 \equiv p(a + bi)$ for some $a, b \in \mathbb{Z}$. But then we need $pb = 1$ (equating “imaginary parts”). An irreducible is, by definition, not a unit — since p is irreducible by assumption, then p is not a unit so $1 = pb$ is a contradiction. Similarly, if p divides $n - 1$ then we need $-1 = pb$ or $1 \equiv p(-b)$, again a contradiction. These contradictions imply that the assumption that p is irreducible in $\mathbb{Z}[i]$ is false, and p is not irreducible.