Introduction to Modern Algebra

Part IX. Factorization

IX.47. Gaussian Integers and Multiplicative Norms
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Lemma 47.3

Lemma 47.3. Z[i] is an integral domain.
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Lemma 47.3

Lemma 47.3. Z[i] is an integral domain.

Proof. “Cleary” Z[i] is a commutative ring with unity 1. We now show
that Z[i] has no divisors of 0. If @3 = 0 then by Lemma 47.2 Parts (2)

and (3)
N(a)N(B) = N(ap) = N(0) =0 (1)
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Lemma 47.3

Lemma 47.3. Z[i] is an integral domain.

Proof. “Cleary” Z[i] is a commutative ring with unity 1. We now show
that Z[i] has no divisors of 0. If @3 = 0 then by Lemma 47.2 Parts (2)
and (3)

N(a)N(B) = N(a) = N(0) =0 (1)

Since N(«) and N(3) are nonnegative real numbers then either N(a) =0
or N(B) = 0. By Lemma 47.2 Part (2), this means that either « = 0 or

B =0. So Z][i] is a commutative ring with unity and no divisors of 0; that
is, Z[i] is an integral domain. O
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Theorem 47.4

Theorem 47.4. The function v given by v(«) = N(«) for nonzero
a € Z[i] is a Euclidean norm in Z[i] and so Z[i] is a Euclidean domain.
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Theorem 47.4

Theorem 47.4

Theorem 47.4. The function v given by v(«) = N(«) for nonzero
a € Z[i] is a Euclidean norm in Z[i] and so Z[i] is a Euclidean domain.

Proof. For all 5= by + boi # 0 in Z[i] we have

N(by + bai) = b? + b3 = 1. Then for all o, BinZ[i] where v # 0 # 3 we
have

N(a) < N(a)N(B3) since N(B) > 1 2)
= N(af3) by Lemma 47.2(3)

so Condition 2 for a Euclidean norm in Definition 46.1 holds.
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Theorem 47.4 (continued 1)

Theorem 47.4. The function v given by v(«) = N(«) for nonzero
a € Z[i] is a Euclidean norm in Z[i] and so Z[i] is a Euclidean domain.

Proof (Continued). We now show that N satisfies Condition 1 (the

division algorithm). Let «, 5 € Z[i] with a = a1 + a2i and 3 = by + bai
where 3 # 0.
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Theorem 47.4 (continued 1)

Theorem 47.4. The function v given by v(«) = N(«) for nonzero
a € Z[i] is a Euclidean norm in Z[i] and so Z[i] is a Euclidean domain.

Proof (Continued). We now show that N satisfies Condition 1 (the
division algorithm). Let «, 5 € Z[i] with a = a1 + a2i and 3 = by + bai
where 3 # 0. We need to find o and p in Z[i] such that a = Bo + p where
either p =0 or N(p) < N(B) = b? + b3. Let o/ = r + si where

r = (a1by + axby)/(b? + b3) (see equation (7) on page 15 of the book), so
r,s € Q.
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Theorem 47.4 (continued 1)

Theorem 47.4. The function v given by v(«) = N(«) for nonzero
a € Z[i] is a Euclidean norm in Z[i] and so Z[i] is a Euclidean domain.

Proof (Continued). We now show that N satisfies Condition 1 (the
division algorithm). Let «, 5 € Z[i] with a = a1 + a2i and 3 = by + bai
where 3 # 0. We need to find o and p in Z[i] such that a = Bo + p where
either p =0 or N(p) < N(B) = b? + b3. Let o/ = r + si where

r = (a1by + axby)/(b? + b3) (see equation (7) on page 15 of the book), so
r,s € Q. Let g1 and g» be integers as close as possible to r and s,
respectively (so g is either |r] or [r] and g is either [s| or [s]). Let
0c=q1+ qzi and p=a — Bo. Then a = o + p.
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Theorem 47.4. (continued 2)

Theorem 47.4. The function v given by v(«) = N(«) for nonzero
a € Z[i] is a Euclidean norm in Z[i] and so Z[i] is a Euclidean domain.

Proof (Continued). If p = 0 we are done. Otherwise, by construction of
o we have |[r —qi1| <1/2and |s — q2| <1/2, so

N(o/f—0) = N((r+si)—(q1+ai)) = N((r—a1)+(s—a2)i) <

12 _ 1
+5 =3
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Theorem 47.4. (continued 2)

Theorem 47.4. The function v given by v(«) = N(«) for nonzero
a € Z[i] is a Euclidean norm in Z[i] and so Z[i] is a Euclidean domain.

Proof (Continued). If p = 0 we are done. Otherwise, by construction of
o we have |[r —qi1| <1/2and |s — q2| <1/2, so

N(o/B—0) = N((r+si)—(q1+g2i)) = N((r—q1)+(s—g2)i) < %24—%2 =1
Thus
N(p) = N(o = po) = N(B(er/ 8 — o))
= N(B)N(a/B — o) by Lemma 47.2(3) (3)
< N(B)- %
So N(p) < N(3) and Condition 2 follows. O
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Theorem 47.7

Theorem 47.7. If D is an integral domain with a multiplicative norm N,
then N(1) =1 and |N(u)| =1 for every unit u € D. If, furthermore, every
«a satisfying [N(a)| = 1 is a unit in D, then an element 7 € D with

|N(7)| = p for a prime p € Z is an irreducible of D.
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Theorem 47.7

Theorem 47.7

Theorem 47.7. If D is an integral domain with a multiplicative norm N,
then N(1) =1 and |N(u)| =1 for every unit u € D. If, furthermore, every
«a satisfying [N(a)| = 1 is a unit in D, then an element 7 € D with

|N(7)| = p for a prime p € Z is an irreducible of D.

Proof. Let D be an integral domain with a multiplicative norm N. Then
N(1) = N((1)(1)) = N(1)N(1) and so N(1) is either 0 or 1. By Property
1 of the definition of the multiplicative norm, we have that N(1) = 1.
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Theorem 47.7

Theorem 47.7. If D is an integral domain with a multiplicative norm N,
then N(1) =1 and |N(u)| =1 for every unit u € D. If, furthermore, every
«a satisfying [N(a)| = 1 is a unit in D, then an element 7 € D with

|N(7)| = p for a prime p € Z is an irreducible of D.

Proof. Let D be an integral domain with a multiplicative norm N. Then
N(1) = N((1)(1)) = N(1)N(1) and so N(1) is either 0 or 1. By Property
1 of the definition of the multiplicative norm, we have that N(1) = 1. If
u € D is a unit then 1 = N(1) = N(uu=t) = N(u)N(u™1). Since N(u) is
an integer then N(u) = £1 and |N(u)| = 1.
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Theorem 47.7 (continued)

Theorem 47.7. If D is an integral domain with a multiplicative norm N,
then N(1) =1 and |N(u)| =1 for every unit u € D. If, furthermore, every
« satisfying [N(a)| = 1 is a unit in D, then an element 7 € D with

|N(7)| = p for a prime p € Z is an irreducible of D.

Proof (continued). Now suppose that the units of D are exactly the
elements of norm 1. Let m € D be such that |[N(7)| = p where p € Z is
prime.
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Theorem 47.7 (continued)

Theorem 47.7. If D is an integral domain with a multiplicative norm N,
then N(1) =1 and |N(u)| =1 for every unit u € D. If, furthermore, every
« satisfying [N(a)| = 1 is a unit in D, then an element 7 € D with

|N(7)| = p for a prime p € Z is an irreducible of D.

Proof (continued). Now suppose that the units of D are exactly the
elements of norm 1. Let m € D be such that |[N(7)| = p where p € Z is
prime. Then if 7 = a3 we have p = |N(7)| = |N(a)N(B)| so either
|IN(c)| =1 or [N(3)| =1 since p is prime. By hypothesis then either « or
(B is a unit of D. So m = a3 implies either o or § is a unit; that is, 7 is
irreducible. O
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Theorem 47.10. Fermat's p = a®> + b?> Theorem

Theorem 47.10. Fermat’s p = a® + b2 Theorem. Let p be an odd
prime in Z. Then p = a® 4 b? for integers a, b € Z if and only if p =1
(mod 4).
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Theorem 47.10. Fermat's p = a® + b* Theorem

Theorem 47.10. Fermat's p = a®> + b?> Theorem

Theorem 47.10. Fermat’s p = a® + b2 Theorem. Let p be an odd
prime in Z. Then p = a® 4 b? for integers a, b € Z if and only if p =1
(mod 4).

Proof. First, suppose p = a®> + b?>. Now a and b cannot both be even or

both be odd since this would give p even (notice that we hypothesize an
odd prime).
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Theorem 47.10. Fermat's p = a®> + b?> Theorem

Theorem 47.10. Fermat’s p = a® + b2 Theorem. Let p be an odd
prime in Z. Then p = a® 4 b? for integers a, b € Z if and only if p =1
(mod 4).

Proof. First, suppose p = a®> + b?>. Now a and b cannot both be even or
both be odd since this would give p even (notice that we hypothesize an
odd prime). If a = 2r (even) and b = 25 + 1 (odd), then
?+b>=4r>+r(s®>+s)+1=1(mod 4) and p =1 (mod 4).
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Theorem 47.10. Fermat's p = a® + b* Theorem

Theorem 47.10. Fermat's p = a® + b® Theorem (continued

1)

Theorem 47.10. Fermat’s p = a® + b2 Theorem. Let p be an odd
prime in Z. Then p = a® + b? for integers a, b € Z if and only if p =1
(mod 4).

Proof (continued). Second, assume p =1 (mod 4). Now consider the

multiplicative group of nonzero elements of Z,. This is a cyclic group and
has order p — 1.
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Theorem 47.10. Fermat's p = a® + b® Theorem (continued

1)

Theorem 47.10. Fermat’s p = a® + b2 Theorem. Let p be an odd
prime in Z. Then p = a® + b? for integers a, b € Z if and only if p =1
(mod 4).

Proof (continued). Second, assume p =1 (mod 4). Now consider the
multiplicative group of nonzero elements of Z,. This is a cyclic group and
has order p — 1. Since 4 is a divisor of p — 1, then this cyclic group has an
element n of multiplicative order 4 (the multiplicative group is isomorphic
to Up—1 and exp(27i(p — 1)/4) is of order 4. Then n? is of multiplicative
order 2.
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Theorem 47.10. Fermat's p = a® + b® Theorem (continued

1)

Theorem 47.10. Fermat’s p = a® + b2 Theorem. Let p be an odd
prime in Z. Then p = a® + b? for integers a, b € Z if and only if p =1
(mod 4).

Proof (continued). Second, assume p =1 (mod 4). Now consider the
multiplicative group of nonzero elements of Z,. This is a cyclic group and
has order p — 1. Since 4 is a divisor of p — 1, then this cyclic group has an
element n of multiplicative order 4 (the multiplicative group is isomorphic
to Up—1 and exp(27i(p — 1)/4) is of order 4. Then n? is of muItipIicative
order 2. So n*> = —1in Z, (or n> = p—1). So in Z we have n®> = —1
(mod p) and n? +1 € Z is a multiple of p.

Introduction to Modern Algebra March 22, 2024 10 / 12



Theorem 47.10. Fermat's p = a® + b* Theorem

Theorem 47.10. Fermat's p = a® + b® Theorem (continued
2)

Theorem. 47.10. Fermat’s p = a? + b? Theorem Let p be an odd

prime in Z. Then p = a® + b? for integers a, b € Z if and only if
p=1(mod4).

Proof (continued). Viewing p and n? + 1 in Z[i] we see that p divides
n?>+1=(n+1)(n—i). ASSUME p is irreducible in Z[i]. Then p would

have to divide either n+ 1 or n — i by Lemma 45.13 (since Z is a PID. see
papge 391 of the book).

Introduction to Modern Algebra March 22, 2024 11 /12



Theorem 47.10. Fermat's p = a® + b* Theorem

Theorem 47.10. Fermat's p = a® + b® Theorem (continued
2)

Theorem. 47.10. Fermat’s p = a2 + b2 Theorem Let p be an odd

prime in Z. Then p = a® + b? for integers a, b € Z if and only if
p=1(mod4).

Proof (continued). Viewing p and n? + 1 in Z[i] we see that p divides
n?>+1=(n+1)(n—i). ASSUME p is irreducible in Z[i]. Then p would
have to divide either n+ 1 or n — i by Lemma 45.13 (since Z is a PID. see
papge 391 of the book). If p divides n+ i, then n+ i = p(a+ bi) for some
a, bZ. But then we need pb = 1 (equating imaginary parts).
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Theorem 47.10. Fermat's p = a® + b* Theorem

Theorem 47.10. Fermat's p = a® + b® Theorem (continued
2)

Theorem. 47.10. Fermat’s p = a? + b? Theorem Let p be an odd

prime in Z. Then p = a® + b? for integers a, b € Z if and only if
p=1(mod4).

Proof (continued). Viewing p and n? + 1 in Z[i] we see that p divides
n?>+1=(n+1)(n—i). ASSUME p is irreducible in Z[i]. Then p would
have to divide either n+ 1 or n — i by Lemma 45.13 (since Z is a PID. see
papge 391 of the book). If p divides n+ i, then n+ i = p(a+ bi) for some
a, bZ. But then we need pb = 1 (equating imaginary parts). An
irreducible is, by definition, not a unit; since p is irreducible by assumption,
then p is not a unit so 1 = pb is a contradiction. Similarly, if p divides

n — i then we need —1 = pb or 1 = p(—b), again a contradiction. These
CONTRADICTIONS imply that the assumption that p is irreducible in
Z|i] is false, and p is not irreducible.
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Theorem 47.10. Fermat's p = a® + b* Theorem

Theorem 47.10. Fermat's p = a® + b® Theorem (continued
3)

Theorem 47.10. Fermat’s p = a2 + b? Theorem. Let p be an odd

prime in Z. Then p = a® + b for integers a, b € Z if and only if
p =1(mod4).

Proof (continued). Since p is not irreducible in Z[i], then
p = (a+ bi)(c + di) where neither a+ bi nor ¢ + di is a unit. Using the
multiplicative norm on Z[i] we have N(p) = N(a + bi)N(c + di) or

p? = (a® + b?)(c? + d?) where, by Theorem 47.7, neither a®> + b?> = 1 nor
c?+d?=1.
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Theorem 47.10. Fermat's p = a® + b* Theorem

Theorem 47.10. Fermat's p = a® + b® Theorem (continued
3)

Theorem 47.10. Fermat’s p = a2 + b? Theorem. Let p be an odd
prime in Z. Then p = a® + b for integers a, b € Z if and only if
p =1(mod4).

Proof (continued). Since p is not irreducible in Z[i], then

p = (a+ bi)(c + di) where neither a+ bi nor ¢ + di is a unit. Using the
multiplicative norm on Z[i] we have N(p) = N(a + bi)N(c + di) or

p? = (a® + b?)(c? + d?) where, by Theorem 47.7, neither a®> + b?> = 1 nor
c? 4+ d? = 1. But we hypothesized that p is a prime in Z, so we must have
that p = a® + b?. [We also have p = c? + d°. Since

p = (a+ bi)(c+ di) = a® + b?> = (a+ bi)(a — bi), it must be that
a—bi=c+diand c =aand d = b. Of course, if p= a® + b? then

p = (£a)? + (£b)?2] O
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