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Lemma 47.3

Lemma 47.3

Lemma 47.3. Z[i ] is an integral domain.

Proof. “Cleary” Z[i ] is a commutative ring with unity 1. We now show
that Z[i ] has no divisors of 0. If αβ = 0 then by Lemma 47.2 Parts (2)
and (3)

N(α)N(β) = N(αβ) = N(0) = 0 (1)

Since N(α) and N(β) are nonnegative real numbers then either N(α) = 0
or N(β) = 0. By Lemma 47.2 Part (2), this means that either α = 0 or
β = 0. So Z[i ] is a commutative ring with unity and no divisors of 0; that
is, Z[i ] is an integral domain.
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Theorem 47.4

Theorem 47.4

Theorem 47.4. The function v given by v(α) = N(α) for nonzero
α ∈ Z[i ] is a Euclidean norm in Z[i ] and so Z[i ] is a Euclidean domain.

Proof. For all β = b1 + b2i 6= 0 in Z[i ] we have
N(b1 + b2i) = b2

1 + b2
2 = 1. Then for all α, βinZ[i ] where α 6= 0 6= β we

have

N(α) ≤ N(α)N(β) since N(β) ≥ 1

= N(αβ) by Lemma 47.2(3)
(2)

so Condition 2 for a Euclidean norm in Definition 46.1 holds.
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Theorem 47.4

Theorem 47.4 (continued 1)

Theorem 47.4. The function v given by v(α) = N(α) for nonzero
α ∈ Z[i ] is a Euclidean norm in Z[i ] and so Z[i ] is a Euclidean domain.

Proof (Continued). We now show that N satisfies Condition 1 (the
division algorithm). Let α, β ∈ Z[i ] with α = a1 + a2i and β = b1 + b2i
where β 6= 0. We need to find σ and ρ in Z[i ] such that α = βσ + ρ where
either ρ = 0 or N(ρ) < N(β) = b2

1 + b2
2. Let α/β = r + si where

r = (a1b1 + a2b2)/(b2
1 + b2

2) (see equation (7) on page 15 of the book), so
r , s ∈ Q.

Let q1 and q2 be integers as close as possible to r and s,
respectively (so q1 is either brc or dre and q2 is either bsc or dse). Let
σ = q1 + q2i and ρ = α− βσ. Then α = βσ + ρ.
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Theorem 47.4

Theorem 47.4. (continued 2)

Theorem 47.4. The function v given by v(α) = N(α) for nonzero
α ∈ Z[i ] is a Euclidean norm in Z[i ] and so Z[i ] is a Euclidean domain.

Proof (Continued). If ρ = 0 we are done. Otherwise, by construction of
σ we have |r − q1| ≤ 1/2 and |s − q2| ≤ 1/2, so

N(α/β−σ) = N((r+si)−(q1+q2i)) = N((r−q1)+(s−q2)i) ≤ 1
2

2
+1

2

2
= 1

2 .
Thus

N(ρ) = N(α− βσ) = N(β(α/β − σ))

= N(β)N(α/β − σ) by Lemma 47.2(3)

≤ N(β) · 1

2

(3)

So N(ρ) < N(β) and Condition 2 follows.
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Theorem 47.7

Theorem 47.7

Theorem 47.7. If D is an integral domain with a multiplicative norm N,
then N(1) = 1 and |N(u)| = 1 for every unit u ∈ D. If, furthermore, every
α satisfying |N(α)| = 1 is a unit in D, then an element π ∈ D with
|N(π)| = p for a prime p ∈ Z is an irreducible of D.

Proof. Let D be an integral domain with a multiplicative norm N. Then
N(1) = N((1)(1)) = N(1)N(1) and so N(1) is either 0 or 1. By Property
1 of the definition of the multiplicative norm, we have that N(1) = 1.

If
u ∈ D is a unit then 1 = N(1) = N(uu−1) = N(u)N(u−1). Since N(u) is
an integer then N(u) = ±1 and |N(u)| = 1.
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Theorem 47.7

Theorem 47.7 (continued)

Theorem 47.7. If D is an integral domain with a multiplicative norm N,
then N(1) = 1 and |N(u)| = 1 for every unit u ∈ D. If, furthermore, every
α satisfying |N(α)| = 1 is a unit in D, then an element π ∈ D with
|N(π)| = p for a prime p ∈ Z is an irreducible of D.

Proof (continued). Now suppose that the units of D are exactly the
elements of norm ±1. Let π ∈ D be such that |N(π)| = p where p ∈ Z is
prime. Then if π = αβ we have p = |N(π)| = |N(α)N(β)| so either
|N(α)| = 1 or |N(β)| = 1 since p is prime. By hypothesis then either α or
β is a unit of D. So π = αβ implies either α or β is a unit; that is, π is
irreducible.

() Introduction to Modern Algebra March 22, 2024 8 / 12



Theorem 47.7

Theorem 47.7 (continued)
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Theorem 47.10. Fermat’s p = a2 + b2 Theorem

Theorem 47.10. Fermat’s p = a2 + b2 Theorem

Theorem 47.10. Fermat’s p = a2 + b2 Theorem. Let p be an odd
prime in Z. Then p = a2 + b2 for integers a, b ∈ Z if and only if p ≡ 1
(mod 4).

Proof. First, suppose p = a2 + b2. Now a and b cannot both be even or
both be odd since this would give p even (notice that we hypothesize an
odd prime).

If a = 2r (even) and b = 2s + 1 (odd), then
a2 + b2 = 4r2 + r(s2 + s) + 1 ≡ 1 (mod 4) and p ≡ 1 (mod 4).
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Theorem 47.10. Fermat’s p = a2 + b2 Theorem

Theorem 47.10. Fermat’s p = a2 + b2 Theorem (continued
1)

Theorem 47.10. Fermat’s p = a2 + b2 Theorem. Let p be an odd
prime in Z. Then p = a2 + b2 for integers a, b ∈ Z if and only if p ≡ 1
(mod 4).

Proof (continued). Second, assume p ≡ 1 (mod 4). Now consider the
multiplicative group of nonzero elements of Zp. This is a cyclic group and
has order p − 1. Since 4 is a divisor of p − 1, then this cyclic group has an
element n of multiplicative order 4 (the multiplicative group is isomorphic
to Up−1 and exp(2πi(p − 1)/4) is of order 4. Then n2 is of multiplicative
order 2.

So n2 = −1 in Zp (or n2 = p − 1). So in Z we have n2 ≡ −1
(mod p) and n2 + 1 ∈ Z is a multiple of p.
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Theorem 47.10. Fermat’s p = a2 + b2 Theorem

Theorem 47.10. Fermat’s p = a2 + b2 Theorem (continued
2)

Theorem. 47.10. Fermat’s p = a2 + b2 Theorem Let p be an odd
prime in Z. Then p = a2 + b2 for integers a, b ∈ Z if and only if
p ≡ 1 (mod 4).

Proof (continued). Viewing p and n2 + 1 in Z[i ] we see that p divides
n2 + 1 = (n + 1)(n − i). ASSUME p is irreducible in Z[i ]. Then p would
have to divide either n + 1 or n − i by Lemma 45.13 (since Z is a PID. see
papge 391 of the book). If p divides n + i , then n + i ≡ p(a + bi) for some
a, bZ. But then we need pb = 1 (equating imaginary parts).

An
irreducible is, by definition, not a unit; since p is irreducible by assumption,
then p is not a unit so 1 = pb is a contradiction. Similarly, if p divides
n − i then we need −1 = pb or 1 ≡ p(−b), again a contradiction. These
CONTRADICTIONS imply that the assumption that p is irreducible in
Z[i ] is false, and p is not irreducible.
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Theorem 47.10. Fermat’s p = a2 + b2 Theorem

Theorem 47.10. Fermat’s p = a2 + b2 Theorem (continued
3)

Theorem 47.10. Fermat’s p = a2 + b2 Theorem. Let p be an odd
prime in Z. Then p = a2 + b2 for integers a, b ∈ Z if and only if
p ≡ 1 (mod 4).

Proof (continued). Since p is not irreducible in Z[i ], then
p = (a + bi)(c + di) where neither a + bi nor c + di is a unit. Using the
multiplicative norm on Z[i ] we have N(p) = N(a + bi)N(c + di) or
p2 = (a2 + b2)(c2 + d2) where, by Theorem 47.7, neither a2 + b2 = 1 nor
c2 + d2 = 1. But we hypothesized that p is a prime in Z, so we must have
that p = a2 + b2. [We also have p = c2 + d2. Since
p = (a + bi)(c + di) = a2 + b2 = (a + bi)(a − bi), it must be that
a − bi = c + di and c = a and d = b. Of course, if p = a2 + b2 then
p = (±a)2 + (±b)2.]
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