Introduction to Modern Algebra

Part IX. Factorization IX.47. Gaussian Integers and Multiplicative Norms

Lemma 47.3

Lemma 47.3. $\mathbb{Z}[i]$ is an integral domain.

Proof. "Cleary" $\mathbb{Z}[i]$ is a commutative ring with unity 1. We now show that $\mathbb{Z}[i]$ has no divisors of 0. If $\alpha\beta = 0$ then by Lemma 47.2 Parts (2) and (3)

$$N(\alpha)N(\beta) = N(\alpha\beta) = N(0) = 0$$
(1)

Lemma 47.3

Lemma 47.3. $\mathbb{Z}[i]$ is an integral domain.

Proof. "Cleary" $\mathbb{Z}[i]$ is a commutative ring with unity 1. We now show that $\mathbb{Z}[i]$ has no divisors of 0. If $\alpha\beta = 0$ then by Lemma 47.2 Parts (2) and (3)

$$N(\alpha)N(\beta) = N(\alpha\beta) = N(0) = 0$$
(1)

Since $N(\alpha)$ and $N(\beta)$ are nonnegative real numbers then either $N(\alpha) = 0$ or $N(\beta) = 0$. By Lemma 47.2 Part (2), this means that either $\alpha = 0$ or $\beta = 0$. So $\mathbb{Z}[i]$ is a commutative ring with unity and no divisors of 0; that is, $\mathbb{Z}[i]$ is an integral domain.

Lemma 47.3

Lemma 47.3. $\mathbb{Z}[i]$ is an integral domain.

Proof. "Cleary" $\mathbb{Z}[i]$ is a commutative ring with unity 1. We now show that $\mathbb{Z}[i]$ has no divisors of 0. If $\alpha\beta = 0$ then by Lemma 47.2 Parts (2) and (3)

$$N(\alpha)N(\beta) = N(\alpha\beta) = N(0) = 0$$
(1)

Since $N(\alpha)$ and $N(\beta)$ are nonnegative real numbers then either $N(\alpha) = 0$ or $N(\beta) = 0$. By Lemma 47.2 Part (2), this means that either $\alpha = 0$ or $\beta = 0$. So $\mathbb{Z}[i]$ is a commutative ring with unity and no divisors of 0; that is, $\mathbb{Z}[i]$ is an integral domain.

Theorem 47.4

Theorem 47.4. The function v given by $v(\alpha) = N(\alpha)$ for nonzero $\alpha \in \mathbb{Z}[i]$ is a Euclidean norm in $\mathbb{Z}[i]$ and so $\mathbb{Z}[i]$ is a Euclidean domain.

Proof. For all $\beta = b_1 + b_2 i \neq 0$ in $\mathbb{Z}[i]$ we have $N(b_1 + b_2 i) = b_1^2 + b_2^2 = 1$. Then for all $\alpha, \beta in\mathbb{Z}[i]$ where $\alpha \neq 0 \neq \beta$ we have

 $N(\alpha) \le N(\alpha)N(\beta)$ since $N(\beta) \ge 1$ = $N(\alpha\beta)$ by Lemma 47.2(3)

so Condition 2 for a Euclidean norm in Definition 46.1 holds.

Theorem 47.4

Theorem 47.4. The function v given by $v(\alpha) = N(\alpha)$ for nonzero $\alpha \in \mathbb{Z}[i]$ is a Euclidean norm in $\mathbb{Z}[i]$ and so $\mathbb{Z}[i]$ is a Euclidean domain.

Proof. For all $\beta = b_1 + b_2 i \neq 0$ in $\mathbb{Z}[i]$ we have $N(b_1 + b_2 i) = b_1^2 + b_2^2 = 1$. Then for all $\alpha, \beta in \mathbb{Z}[i]$ where $\alpha \neq 0 \neq \beta$ we have

$$N(\alpha) \le N(\alpha)N(\beta) \text{ since } N(\beta) \ge 1$$

= $N(\alpha\beta)$ by Lemma 47.2(3) (2)

so Condition 2 for a Euclidean norm in Definition 46.1 holds.

Theorem 47.4 (continued 1)

Theorem 47.4. The function v given by $v(\alpha) = N(\alpha)$ for nonzero $\alpha \in \mathbb{Z}[i]$ is a Euclidean norm in $\mathbb{Z}[i]$ and so $\mathbb{Z}[i]$ is a Euclidean domain.

Proof (Continued). We now show that *N* satisfies Condition 1 (the division algorithm). Let $\alpha, \beta \in \mathbb{Z}[i]$ with $\alpha = a_1 + a_2i$ and $\beta = b_1 + b_2i$ where $\beta \neq 0$. We need to find σ and ρ in $\mathbb{Z}[i]$ such that $\alpha = \beta\sigma + \rho$ where either $\rho = 0$ or $N(\rho) < N(\beta) = b_1^2 + b_2^2$. Let $\alpha/\beta = r + si$ where $r = (a_1b_1 + a_2b_2)/(b_1^2 + b_2^2)$ (see equation (7) on page 15 of the book), so $r, s \in \mathbb{Q}$.

Theorem 47.4 (continued 1)

Theorem 47.4. The function v given by $v(\alpha) = N(\alpha)$ for nonzero $\alpha \in \mathbb{Z}[i]$ is a Euclidean norm in $\mathbb{Z}[i]$ and so $\mathbb{Z}[i]$ is a Euclidean domain.

Proof (Continued). We now show that *N* satisfies Condition 1 (the division algorithm). Let $\alpha, \beta \in \mathbb{Z}[i]$ with $\alpha = a_1 + a_2i$ and $\beta = b_1 + b_2i$ where $\beta \neq 0$. We need to find σ and ρ in $\mathbb{Z}[i]$ such that $\alpha = \beta\sigma + \rho$ where either $\rho = 0$ or $N(\rho) < N(\beta) = b_1^2 + b_2^2$. Let $\alpha/\beta = r + si$ where $r = (a_1b_1 + a_2b_2)/(b_1^2 + b_2^2)$ (see equation (7) on page 15 of the book), so $r, s \in \mathbb{Q}$. Let q_1 and q_2 be integers as close as possible to r and s, respectively (so q_1 is either $\lfloor r \rfloor$ or $\lceil r \rceil$ and q_2 is either $\lfloor s \rfloor$ or $\lceil s \rceil$). Let $\sigma = q_1 + q_2i$ and $\rho = \alpha - \beta\sigma$. Then $\alpha = \beta\sigma + \rho$.

Theorem 47.4 (continued 1)

Theorem 47.4. The function v given by $v(\alpha) = N(\alpha)$ for nonzero $\alpha \in \mathbb{Z}[i]$ is a Euclidean norm in $\mathbb{Z}[i]$ and so $\mathbb{Z}[i]$ is a Euclidean domain.

Proof (Continued). We now show that *N* satisfies Condition 1 (the division algorithm). Let $\alpha, \beta \in \mathbb{Z}[i]$ with $\alpha = a_1 + a_2i$ and $\beta = b_1 + b_2i$ where $\beta \neq 0$. We need to find σ and ρ in $\mathbb{Z}[i]$ such that $\alpha = \beta\sigma + \rho$ where either $\rho = 0$ or $N(\rho) < N(\beta) = b_1^2 + b_2^2$. Let $\alpha/\beta = r + si$ where $r = (a_1b_1 + a_2b_2)/(b_1^2 + b_2^2)$ (see equation (7) on page 15 of the book), so $r, s \in \mathbb{Q}$. Let q_1 and q_2 be integers as close as possible to r and s, respectively (so q_1 is either $\lfloor r \rfloor$ or $\lceil r \rceil$ and q_2 is either $\lfloor s \rfloor$ or $\lceil s \rceil$). Let $\sigma = q_1 + q_2i$ and $\rho = \alpha - \beta\sigma$. Then $\alpha = \beta\sigma + \rho$.

Theorem 47.4. (continued 2)

Theorem 47.4. The function v given by $v(\alpha) = N(\alpha)$ for nonzero $\alpha \in \mathbb{Z}[i]$ is a Euclidean norm in $\mathbb{Z}[i]$ and so $\mathbb{Z}[i]$ is a Euclidean domain.

Proof (Continued). If $\rho = 0$ we are done. Otherwise, by construction of σ we have $|r - q_1| \le 1/2$ and $|s - q_2| \le 1/2$, so $N(\alpha/\beta - \sigma) = N((r+si) - (q_1+q_2i)) = N((r-q_1) + (s-q_2)i) \le \frac{1}{2}^2 + \frac{1}{2}^2 = \frac{1}{2}$. Thus

$$N(\rho) = N(\alpha - \beta\sigma) = N(\beta(\alpha/\beta - \sigma))$$

= $N(\beta)N(\alpha/\beta - \sigma)$ by Lemma 47.2(3)
 $\leq N(\beta) \cdot \frac{1}{2}$ (3)

So $N(\rho) < N(\beta)$ and Condition 2 follows.

Theorem 47.4. (continued 2)

Theorem 47.4. The function v given by $v(\alpha) = N(\alpha)$ for nonzero $\alpha \in \mathbb{Z}[i]$ is a Euclidean norm in $\mathbb{Z}[i]$ and so $\mathbb{Z}[i]$ is a Euclidean domain.

Proof (Continued). If $\rho = 0$ we are done. Otherwise, by construction of σ we have $|r - q_1| \le 1/2$ and $|s - q_2| \le 1/2$, so $N(\alpha/\beta - \sigma) = N((r+si)-(q_1+q_2i)) = N((r-q_1)+(s-q_2)i) \le \frac{1}{2}^2 + \frac{1}{2}^2 = \frac{1}{2}$. Thus

$$N(\rho) = N(\alpha - \beta\sigma) = N(\beta(\alpha/\beta - \sigma))$$

= $N(\beta)N(\alpha/\beta - \sigma)$ by Lemma 47.2(3)
 $\leq N(\beta) \cdot \frac{1}{2}$ (3)

So $N(\rho) < N(\beta)$ and Condition 2 follows.

Theorem 47.7

Theorem 47.7. If *D* is an integral domain with a multiplicative norm *N*, then N(1) = 1 and |N(u)| = 1 for every unit $u \in D$. If, furthermore, every α satisfying $|N(\alpha)| = 1$ is a unit in *D*, then an element $\pi \in D$ with $|N(\pi)| = p$ for a prime $p \in \mathbb{Z}$ is an irreducible of *D*.

Proof. Let *D* be an integral domain with a multiplicative norm *N*. Then N(1) = N((1)(1)) = N(1)N(1) and so N(1) is either 0 or 1. By Property 1 of the definition of the multiplicative norm, we have that N(1) = 1.

Theorem 47.7. If *D* is an integral domain with a multiplicative norm *N*, then N(1) = 1 and |N(u)| = 1 for every unit $u \in D$. If, furthermore, every α satisfying $|N(\alpha)| = 1$ is a unit in *D*, then an element $\pi \in D$ with $|N(\pi)| = p$ for a prime $p \in \mathbb{Z}$ is an irreducible of *D*.

Proof. Let *D* be an integral domain with a multiplicative norm *N*. Then N(1) = N((1)(1)) = N(1)N(1) and so N(1) is either 0 or 1. By Property 1 of the definition of the multiplicative norm, we have that N(1) = 1. If $u \in D$ is a unit then $1 = N(1) = N(uu^{-1}) = N(u)N(u^{-1})$. Since N(u) is an integer then $N(u) = \pm 1$ and |N(u)| = 1.

Theorem 47.7. If *D* is an integral domain with a multiplicative norm *N*, then N(1) = 1 and |N(u)| = 1 for every unit $u \in D$. If, furthermore, every α satisfying $|N(\alpha)| = 1$ is a unit in *D*, then an element $\pi \in D$ with $|N(\pi)| = p$ for a prime $p \in \mathbb{Z}$ is an irreducible of *D*.

Proof. Let *D* be an integral domain with a multiplicative norm *N*. Then N(1) = N((1)(1)) = N(1)N(1) and so N(1) is either 0 or 1. By Property 1 of the definition of the multiplicative norm, we have that N(1) = 1. If $u \in D$ is a unit then $1 = N(1) = N(uu^{-1}) = N(u)N(u^{-1})$. Since N(u) is an integer then $N(u) = \pm 1$ and |N(u)| = 1.

Theorem 47.7 (continued)

Theorem 47.7. If *D* is an integral domain with a multiplicative norm *N*, then N(1) = 1 and |N(u)| = 1 for every unit $u \in D$. If, furthermore, every α satisfying $|N(\alpha)| = 1$ is a unit in *D*, then an element $\pi \in D$ with $|N(\pi)| = p$ for a prime $p \in \mathbb{Z}$ is an irreducible of *D*.

Proof (continued). Now suppose that the units of *D* are exactly the elements of norm ± 1 . Let $\pi \in D$ be such that $|N(\pi)| = p$ where $p \in \mathbb{Z}$ is prime. Then if $\pi = \alpha\beta$ we have $p = |N(\pi)| = |N(\alpha)N(\beta)|$ so either $|N(\alpha)| = 1$ or $|N(\beta)| = 1$ since *p* is prime. By hypothesis then either α or β is a unit of *D*. So $\pi = \alpha\beta$ implies either α or β is a unit; that is, π is irreducible.

Theorem 47.7 (continued)

Theorem 47.7. If *D* is an integral domain with a multiplicative norm *N*, then N(1) = 1 and |N(u)| = 1 for every unit $u \in D$. If, furthermore, every α satisfying $|N(\alpha)| = 1$ is a unit in *D*, then an element $\pi \in D$ with $|N(\pi)| = p$ for a prime $p \in \mathbb{Z}$ is an irreducible of *D*.

Proof (continued). Now suppose that the units of *D* are exactly the elements of norm ± 1 . Let $\pi \in D$ be such that $|N(\pi)| = p$ where $p \in \mathbb{Z}$ is prime. Then if $\pi = \alpha\beta$ we have $p = |N(\pi)| = |N(\alpha)N(\beta)|$ so either $|N(\alpha)| = 1$ or $|N(\beta)| = 1$ since *p* is prime. By hypothesis then either α or β is a unit of *D*. So $\pi = \alpha\beta$ implies either α or β is a unit; that is, π is irreducible.

Theorem 47.10. Fermat's $p = a^2 + b^2$ Theorem

Theorem 47.10. Fermat's $p = a^2 + b^2$ **Theorem.** Let *p* be an odd prime in \mathbb{Z} . Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof. First, suppose $p = a^2 + b^2$. Now *a* and *b* cannot both be even or both be odd since this would give *p* even (notice that we hypothesize an odd prime).

Theorem 47.10. Fermat's $p = a^2 + b^2$ Theorem

Theorem 47.10. Fermat's $p = a^2 + b^2$ **Theorem.** Let *p* be an odd prime in \mathbb{Z} . Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof. First, suppose $p = a^2 + b^2$. Now *a* and *b* cannot both be even or both be odd since this would give *p* even (notice that we hypothesize an odd prime). If a = 2r (even) and b = 2s + 1 (odd), then $a^2 + b^2 = 4r^2 + r(s^2 + s) + 1 \equiv 1 \pmod{4}$ and $p \equiv 1 \pmod{4}$.

Theorem 47.10. Fermat's $p = a^2 + b^2$ Theorem

Theorem 47.10. Fermat's $p = a^2 + b^2$ **Theorem.** Let *p* be an odd prime in \mathbb{Z} . Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof. First, suppose $p = a^2 + b^2$. Now *a* and *b* cannot both be even or both be odd since this would give *p* even (notice that we hypothesize an odd prime). If a = 2r (even) and b = 2s + 1 (odd), then $a^2 + b^2 = 4r^2 + r(s^2 + s) + 1 \equiv 1 \pmod{4}$ and $p \equiv 1 \pmod{4}$.

Theorem 47.10. Fermat's $p = a^2 + b^2$ Theorem (continued 1)

Theorem 47.10. Fermat's $p = a^2 + b^2$ **Theorem.** Let *p* be an odd prime in \mathbb{Z} . Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof (continued). Second, assume $p \equiv 1 \pmod{4}$. Now consider the multiplicative group of nonzero elements of \mathbb{Z}_p . This is a cyclic group and has order p-1. Since 4 is a divisor of p-1, then this cyclic group has an element *n* of multiplicative order 4 (the multiplicative group is isomorphic to U_{p-1} and $exp(2\pi i(p-1)/4)$ is of order 4. Then n^2 is of multiplicative order 2.

Theorem 47.10. Fermat's $p = a^2 + b^2$ Theorem (continued 1)

Theorem 47.10. Fermat's $p = a^2 + b^2$ **Theorem.** Let *p* be an odd prime in \mathbb{Z} . Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof (continued). Second, assume $p \equiv 1 \pmod{4}$. Now consider the multiplicative group of nonzero elements of \mathbb{Z}_p . This is a cyclic group and has order p-1. Since 4 is a divisor of p-1, then this cyclic group has an element n of multiplicative order 4 (the multiplicative group is isomorphic to U_{p-1} and $exp(2\pi i(p-1)/4)$ is of order 4. Then n^2 is of multiplicative order 2. So $n^2 = -1$ in \mathbb{Z}_p (or $n^2 = p-1$). So in \mathbb{Z} we have $n^2 \equiv -1 \pmod{p}$ and $n^2 + 1 \in \mathbb{Z}$ is a multiple of p.

Theorem 47.10. Fermat's $p = a^2 + b^2$ Theorem (continued 1)

Theorem 47.10. Fermat's $p = a^2 + b^2$ **Theorem.** Let *p* be an odd prime in \mathbb{Z} . Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof (continued). Second, assume $p \equiv 1 \pmod{4}$. Now consider the multiplicative group of nonzero elements of \mathbb{Z}_p . This is a cyclic group and has order p-1. Since 4 is a divisor of p-1, then this cyclic group has an element n of multiplicative order 4 (the multiplicative group is isomorphic to U_{p-1} and $exp(2\pi i(p-1)/4)$ is of order 4. Then n^2 is of multiplicative order 2. So $n^2 = -1$ in \mathbb{Z}_p (or $n^2 = p-1$). So in \mathbb{Z} we have $n^2 \equiv -1 \pmod{p}$ and $n^2 + 1 \in \mathbb{Z}$ is a multiple of p.

()

Theorem 47.10. Fermat's $p = a^2 + b^2$ Theorem (continued 2)

Theorem. 47.10. Fermat's $\mathbf{p} = \mathbf{a}^2 + \mathbf{b}^2$ **Theorem** Let p be an odd prime in \mathbb{Z} . Then $p = \mathbf{a}^2 + \mathbf{b}^2$ for integers $\mathbf{a}, \mathbf{b} \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof (continued). Viewing p and $n^2 + 1$ in $\mathbb{Z}[i]$ we see that p divides $n^2 + 1 = (n+1)(n-i)$. ASSUME p is irreducible in $\mathbb{Z}[i]$. Then p would have to divide either n + 1 or n - i by Lemma 45.13 (since \mathbb{Z} is a PID. see paper 391 of the book). If p divides n + i, then $n + i \equiv p(a + bi)$ for some $a, b\mathbb{Z}$. But then we need pb = 1 (equating imaginary parts).

Theorem 47.10. Fermat's $p = a^2 + b^2$ Theorem (continued 2)

Theorem. 47.10. Fermat's $p = a^2 + b^2$ **Theorem** Let *p* be an odd prime in \mathbb{Z} . Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof (continued). Viewing p and $n^2 + 1$ in $\mathbb{Z}[i]$ we see that p divides $n^2 + 1 = (n+1)(n-i)$. ASSUME p is irreducible in $\mathbb{Z}[i]$. Then p would have to divide either n + 1 or n - i by Lemma 45.13 (since \mathbb{Z} is a PID. see papge 391 of the book). If p divides n + i, then $n + i \equiv p(a + bi)$ for some a, $b\mathbb{Z}$. But then we need pb = 1 (equating imaginary parts). An irreducible is, by definition, not a unit; since p is irreducible by assumption, then p is not a unit so 1 = pb is a contradiction. Similarly, if p divides n-i then we need -1 = pb or $1 \equiv p(-b)$, again a contradiction. These CONTRADICTIONS imply that the assumption that p is irreducible in $\mathbb{Z}[i]$ is false, and p is not irreducible.

Theorem 47.10. Fermat's $p = a^2 + b^2$ Theorem (continued 2)

Theorem. 47.10. Fermat's $p = a^2 + b^2$ **Theorem** Let *p* be an odd prime in \mathbb{Z} . Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof (continued). Viewing p and $n^2 + 1$ in $\mathbb{Z}[i]$ we see that p divides $n^2 + 1 = (n+1)(n-i)$. ASSUME p is irreducible in $\mathbb{Z}[i]$. Then p would have to divide either n + 1 or n - i by Lemma 45.13 (since \mathbb{Z} is a PID. see papge 391 of the book). If p divides n + i, then $n + i \equiv p(a + bi)$ for some $a, b\mathbb{Z}$. But then we need pb = 1 (equating imaginary parts). An irreducible is, by definition, not a unit; since p is irreducible by assumption, then p is not a unit so 1 = pb is a contradiction. Similarly, if p divides n - i then we need -1 = pb or $1 \equiv p(-b)$, again a contradiction. These CONTRADICTIONS imply that the assumption that p is irreducible in $\mathbb{Z}[i]$ is false, and p is not irreducible.

Theorem 47.10. Fermat's $p = a^2 + b^2$ Theorem (continued 3)

Theorem 47.10. Fermat's p = $a^2 + b^2$ **Theorem.** Let *p* be an odd prime in \mathbb{Z} . Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof (continued). Since *p* is not irreducible in $\mathbb{Z}[i]$, then p = (a + bi)(c + di) where neither a + bi nor c + di is a unit. Using the multiplicative norm on $\mathbb{Z}[i]$ we have N(p) = N(a + bi)N(c + di) or $p^2 = (a^2 + b^2)(c^2 + d^2)$ where, by Theorem 47.7, neither $a^2 + b^2 = 1$ nor $c^2 + d^2 = 1$. But we hypothesized that *p* is a prime in \mathbb{Z} , so we must have that $p = a^2 + b^2$. [We also have $p = c^2 + d^2$. Since $p = (a + bi)(c + di) = a^2 + b^2 = (a + bi)(a - bi)$, it must be that a - bi = c + di and c = a and d = b. Of course, if $p = a^2 + b^2$ then $p = (\pm a)^2 + (\pm b)^2$.] Theorem 47.10. Fermat's $p = a^2 + b^2$ Theorem (continued 3)

Theorem 47.10. Fermat's p = $a^2 + b^2$ **Theorem.** Let *p* be an odd prime in \mathbb{Z} . Then $p = a^2 + b^2$ for integers $a, b \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{4}$.

Proof (continued). Since *p* is not irreducible in $\mathbb{Z}[i]$, then p = (a + bi)(c + di) where neither a + bi nor c + di is a unit. Using the multiplicative norm on $\mathbb{Z}[i]$ we have N(p) = N(a + bi)N(c + di) or $p^2 = (a^2 + b^2)(c^2 + d^2)$ where, by Theorem 47.7, neither $a^2 + b^2 = 1$ nor $c^2 + d^2 = 1$. But we hypothesized that *p* is a prime in \mathbb{Z} , so we must have that $p = a^2 + b^2$. [We also have $p = c^2 + d^2$. Since $p = (a + bi)(c + di) = a^2 + b^2 = (a + bi)(a - bi)$, it must be that a - bi = c + di and c = a and d = b. Of course, if $p = a^2 + b^2$ then $p = (\pm a)^2 + (\pm b)^2$.]

