Introduction to Modern Algebra

Part VII. Advanced Group Theory VII.39. Free Groups

Theorem. 39.12. Let G be a group generated by $A = \{a_i \,|\, i \in I\}$ and let G' be any group. If a'_i for $i \in I$ are any elements in G' , not necessarily distinct, then there is at most one homomorphism $\phi : \rightarrow G'$ such that $\phi(a_i) = a'_i$. If G is free on A, then there exists exactly one such homomorphism.

Proof. Suppose ϕ is a homomorphism from G into G' such that $\phi(a_i) = a'_i$ (we show that there is not a second such homomorphism).

Theorem. 39.12. Let G be a group generated by $A = \{a_i \,|\, i \in I\}$ and let G' be any group. If a'_i for $i \in I$ are any elements in G' , not necessarily distinct, then there is at most one homomorphism $\phi : \rightarrow G'$ such that $\phi(a_i) = a'_i$. If G is free on A, then there exists exactly one such homomorphism.

Proof. Suppose ϕ is a homomorphism from G into G' such that $\phi(a_i) = a'_i$ (we show that there is not a second such homomorphism). Since A is a generating set for G, then by Theorem 7.6, for any $x \in G$ we have $x = \prod_{j \in J} a_{i_j}^{n_j}$ $\frac{\mu_j}{\mu_j}$ for some finite set of indices J , where the a_{i_j} need not be distinct.

Theorem. 39.12. Let G be a group generated by $A = \{a_i \,|\, i \in I\}$ and let G' be any group. If a'_i for $i \in I$ are any elements in G' , not necessarily distinct, then there is at most one homomorphism $\phi : \rightarrow G'$ such that $\phi(a_i) = a'_i$. If G is free on A, then there exists exactly one such homomorphism.

Proof. Suppose ϕ is a homomorphism from G into G' such that $\phi(a_i) = a'_i$ (we show that there is not a second such homomorphism). Since A is a generating set for G, then by Theorem 7.6, for any $x \in G$ we have $x=\prod_{j\in J}a_{i_j}^{n_j}$ $\frac{\mu_j}{\mu_j}$ for some finite set of indices J , where the a_{i_j} need not be distinct. Since ϕ is a homomorphism then

$$
\phi(x) = \phi(\prod_{j \in J} a_{i_j}^{n_j}) = \prod_{j \in J} \phi(a_{i_j}^{n_j})
$$

$$
= \prod_{j \in J} \phi(a_{i_j})^{n_j} = \prod_{j \in J} (a_{i_j}')^{n_j}
$$
(1)

Theorem. 39.12. Let G be a group generated by $A = \{a_i \,|\, i \in I\}$ and let G' be any group. If a'_i for $i \in I$ are any elements in G' , not necessarily distinct, then there is at most one homomorphism $\phi : \rightarrow G'$ such that $\phi(a_i) = a'_i$. If G is free on A, then there exists exactly one such homomorphism.

Proof. Suppose ϕ is a homomorphism from G into G' such that $\phi(a_i) = a'_i$ (we show that there is not a second such homomorphism). Since A is a generating set for G, then by Theorem 7.6, for any $x \in G$ we have $x=\prod_{j\in J}a_{i_j}^{n_j}$ $\frac{\mu_j}{\mu_j}$ for some finite set of indices J , where the a_{i_j} need not be distinct. Since ϕ is a homomorphism then

$$
\phi(x) = \phi(\prod_{j \in J} a_{i_j}^{n_j}) = \prod_{j \in J} \phi(a_{i_j}^{n_j})
$$

$$
= \prod_{j \in J} \phi(a_{i_j})^{n_j} = \prod_{j \in J} (a_{i_j}')^{n_j}
$$
(1)

Theorem. 39.12. Let G be a group generated by $A = \{a_i \,|\, i \in I\}$ and let G' be any group. If a'_i for $i \in I$ are any elements in G' , not necessarily distinct, then there is at most one homomorphism $\phi : \rightarrow G'$ such that $\phi(\mathsf{a}_i) = \mathsf{a}'_i$. If G is free on A, then there exists exactly one such homomorphism.

Proof (Continued). So homomorphism ϕ is completely determined by its values on the elements of set A. Therefore there is at most one homomorphism mapping a_i to a'_i , $i \in I$. Now suppose G is free on A; that is $G = F[A]$. For $x = \prod_{j \in J} a_{i_j}^{n_j}$ $j_j^{ij} \in G$, define $\psi:G\to G'$ by $\psi(\mathsf{x})=\prod_{j\in J} (a'_{i_j})^{n_j}.$ (Notice that ψ is well defined since $G = F[A]$ consists only of reduced words and so different products of the form of x yield different elements of $F[A]$.)

Theorem. 39.12. Let G be a group generated by $A = \{a_i \,|\, i \in I\}$ and let G' be any group. If a'_i for $i \in I$ are any elements in G' , not necessarily distinct, then there is at most one homomorphism $\phi : \rightarrow G'$ such that $\phi(\mathsf{a}_i) = \mathsf{a}'_i$. If G is free on A, then there exists exactly one such homomorphism.

Proof (Continued). So homomorphism ϕ is completely determined by its values on the elements of set A. Therefore there is at most one homomorphism mapping a_i to a'_i , $i \in I$. Now suppose G is free on A; that is $G = F[A]$. For $x = \prod_{j \in J} a_{i_j}^{n_j}$ $j_j^{n_j} \in G$, define $\psi: \mathsf{G} \to \mathsf{G}'$ by $\psi(\mathsf{x}) = \prod_{j \in J} (\mathsf{a}'_{i_j})^{n_j}.$ (Notice that ψ is well defined since $G = F[A]$ consists only of reduced words and so different products of the form of x yield different elements of $F[A]$.)

Theorem. 39.12. Let G be a group generated by $A = \{a_i \,|\, i \in I\}$ and let G' be any group. If a'_i for $i \in I$ are any elements in G' , not necessarily distinct, then there is at most one homomorphism $\phi : \rightarrow G'$ such that $\phi(\mathsf{a}_i) = \mathsf{a}'_i$. If G is free on A, then there exists exactly one such homomorphism.

Proof (Continued). Since the rules for computation involving exponents in G' are formally the same as those involving exponents in G' (that is, the elementary contractions on the a_{i_j} in \emph{G} exactly correspond to the elementary contractions on the $\bm{\mathsf{a}}'_{\bm{\mathsf{I}}_j}$ in $\bm{\mathsf{G}}'$). So $\psi(\mathsf{x}\mathsf{y}) = \psi(\mathsf{x})\psi(\mathsf{y})$ for all $x, y \in G$ and ψ is a homomorphism.

Theorem. 39.12. Let G be a group generated by $A = \{a_i \,|\, i \in I\}$ and let G' be any group. If a'_i for $i \in I$ are any elements in G' , not necessarily distinct, then there is at most one homomorphism $\phi : \rightarrow G'$ such that $\phi(\mathsf{a}_i) = \mathsf{a}'_i$. If G is free on A, then there exists exactly one such homomorphism.

Proof (Continued). Since the rules for computation involving exponents in G' are formally the same as those involving exponents in G' (that is, the elementary contractions on the a_{i_j} in \emph{G} exactly correspond to the elementary contractions on the $a^{j}_{i_j}$ in G'). So $\psi(xy) = \psi(x)\psi(y)$ for all $x, y \in G$ and ψ is a homomorphism.

Proof. Let $G' = \{a'_i | i \in I\}$, and let $A = \{a_i | i \in I\}$ be a set with the same number of elements as $G'.$ Let $G=F[A]$ (so G is the free group generated by set A).

Proof. Let $G' = \{a'_i | i \in I\}$, and let $A = \{a_i | i \in I\}$ be a set with the same number of elements as $G'.$ Let $\mathit{G} = \mathit{F}[A]$ (so G is the free group **generated by set A).** Since G is free, by Theorem 39.12 there exists a homomorphism ψ mapping G into G' such that $\psi(a_i) = a'_i$ for $i \in I$.

Proof. Let $G' = \{a'_i | i \in I\}$, and let $A = \{a_i | i \in I\}$ be a set with the same number of elements as $G'.$ Let $\mathit{G} = \mathit{F}[A]$ (so G is the free group generated by set A). Since G is free, by Theorem 39.12 there exists a homomorphism ψ mapping G into G' such that $\psi(\mathsf{a}_i) = \mathsf{a}_i'$ for $i \in I$. Since $|G'| = |A'|$, then ψ is onto G' and $\psi[G] = G'.$

Proof. Let $G' = \{a'_i | i \in I\}$, and let $A = \{a_i | i \in I\}$ be a set with the same number of elements as $G'.$ Let $\mathit{G} = \mathit{F}[A]$ (so G is the free group generated by set A). Since G is free, by Theorem 39.12 there exists a homomorphism ψ mapping G into G' such that $\psi(\mathsf{a}_i) = \mathsf{a}_i'$ for $i \in I$. Since $|G'| = |A'|$, then ψ is onto G' and $\psi[G] = G'.$

Theorem. Gallian's "Universal Quotient Group Property." Every group is isomorphic to a quotient group of a free group.

Proof. Let G' be a group. By Theorem 39.13, there is a free group G and a homomorphism ψ such that $\psi[\bar G]=G'.$ Let $K=Ker(\psi).$ Then by the First Isomorphism Theorem (Theorem 34.2), there is a unique isomorphism $\mu: G/K \to \psi[G]$.

Theorem. Gallian's "Universal Quotient Group Property." Every group is isomorphic to a quotient group of a free group.

Proof. Let G' be a group. By Theorem 39.13, there is a free group G and a homomorphism ψ such that $\psi[\bar G]=G'.$ Let $\bar K=Ker(\psi).$ Then by the First Isomorphism Theorem (Theorem 34.2), there is a unique **isomorphism** $\mu : G/K \to \psi[G]$. So μ is an isomorphism from the quotient group G/K of the free group G to group $G',\ \mu:G/K\to G'.$

Theorem. Gallian's "Universal Quotient Group Property." Every group is isomorphic to a quotient group of a free group.

Proof. Let G' be a group. By Theorem 39.13, there is a free group G and a homomorphism ψ such that $\psi[\bar G]=G'.$ Let $\bar K=Ker(\psi).$ Then by the First Isomorphism Theorem (Theorem 34.2), there is a unique isomorphism $\mu : G/K \to \psi[G]$. So μ is an isomorphism from the quotient group G/K of the free group G to group $G',\, \mu : G/K \to G'.$