### Introduction to Modern Algebra

Part VII. Advanced Group Theory VII.39. Free Groups



#### Table of contents

1 Theorem 39.12.

2 Theorem 39.13.

3 Gallian's "Universal Quotient Group Property."

**Theorem. 39.12.** Let G be a group generated by  $A = \{a_i \mid i \in I\}$  and let G' be any group. If  $a_i'$  for  $i \in I$  are any elements in G', not necessarily distinct, then there is at most one homomorphism  $\phi : \to G'$  such that  $\phi(a_i) = a_i'$ . If G is free on A, then there exists exactly one such homomorphism.

**Proof.** Suppose  $\phi$  is a homomorphism from G into G' such that  $\phi(a_i) = a_i'$  (we show that there is not a second such homomorphism).

**Theorem. 39.12.** Let G be a group generated by  $A = \{a_i \mid i \in I\}$  and let G' be any group. If  $a_i'$  for  $i \in I$  are any elements in G', not necessarily distinct, then there is at most one homomorphism  $\phi : \to G'$  such that  $\phi(a_i) = a_i'$ . If G is free on A, then there exists exactly one such homomorphism.

**Proof.** Suppose  $\phi$  is a homomorphism from G into G' such that  $\phi(a_i) = a_i'$  (we show that there is not a second such homomorphism). Since A is a generating set for G, then by Theorem 7.6, for any  $x \in G$  we have  $x = \prod_{j \in J} a_{i_j}^{n_j}$  for some finite set of indices J, where the  $a_{i_j}$  need not be distinct.

**Theorem. 39.12.** Let G be a group generated by  $A = \{a_i \mid i \in I\}$  and let G' be any group. If  $a_i'$  for  $i \in I$  are any elements in G', not necessarily distinct, then there is at most one homomorphism  $\phi : \to G'$  such that  $\phi(a_i) = a_i'$ . If G is free on A, then there exists exactly one such homomorphism.

**Proof.** Suppose  $\phi$  is a homomorphism from G into G' such that  $\phi(a_i)=a_i'$  (we show that there is not a second such homomorphism). Since A is a generating set for G, then by Theorem 7.6, for any  $x\in G$  we have  $x=\prod_{j\in J}a_{i_j}^{n_j}$  for some finite set of indices J, where the  $a_{i_j}$  need not be distinct. Since  $\phi$  is a homomorphism then

$$\phi(x) = \phi(\prod_{j \in J} a_{i_j}^{n_j}) = \prod_{j \in J} \phi(a_{i_j}^{n_j})$$

$$= \prod_{i \in J} \phi(a_{i_i})^{n_i} = \prod_{i \in J} (a'_{i_i})^{n_i}$$
(1)

**Theorem. 39.12.** Let G be a group generated by  $A = \{a_i \mid i \in I\}$  and let G' be any group. If  $a_i'$  for  $i \in I$  are any elements in G', not necessarily distinct, then there is at most one homomorphism  $\phi : \to G'$  such that  $\phi(a_i) = a_i'$ . If G is free on A, then there exists exactly one such homomorphism.

**Proof.** Suppose  $\phi$  is a homomorphism from G into G' such that  $\phi(a_i)=a_i'$  (we show that there is not a second such homomorphism). Since A is a generating set for G, then by Theorem 7.6, for any  $x\in G$  we have  $x=\prod_{j\in J}a_{i_j}^{n_j}$  for some finite set of indices J, where the  $a_{i_j}$  need not be distinct. Since  $\phi$  is a homomorphism then

$$\phi(x) = \phi(\prod_{j \in J} a_{i_j}^{n_j}) = \prod_{j \in J} \phi(a_{i_j}^{n_j})$$

$$= \prod_{i \in J} \phi(a_{i_i})^{n_i} = \prod_{i \in J} (a'_{i_i})^{n_i}$$
(1)

**Theorem. 39.12.** Let G be a group generated by  $A = \{a_i \mid i \in I\}$  and let G' be any group. If  $a_i'$  for  $i \in I$  are any elements in G', not necessarily distinct, then there is at most one homomorphism  $\phi : \to G'$  such that  $\phi(a_i) = a_i'$ . If G is free on A, then there exists exactly one such homomorphism.

**Proof (Continued).** So homomorphism  $\phi$  is completely determined by its values on the elements of set A. Therefore there is at most one homomorphism mapping  $a_i$  to  $a'_i$ ,  $i \in I$ .

Now suppose G is free on A; that is G = F[A]. For  $X = \prod_{j \in J} a_{i_j}^{n_j} \in G$ , define  $\psi : G \to G'$  by  $\psi(X) = \prod_{j \in J} (a'_{i_j})^{n_j}$ . (Notice that  $\psi$  is well defined since G = F[A] consists only of reduced words and so different products of the form of X yield different elements of F[A].)

**Theorem. 39.12.** Let G be a group generated by  $A = \{a_i \mid i \in I\}$  and let G' be any group. If  $a_i'$  for  $i \in I$  are any elements in G', not necessarily distinct, then there is at most one homomorphism  $\phi : \to G'$  such that  $\phi(a_i) = a_i'$ . If G is free on A, then there exists exactly one such homomorphism.

**Proof (Continued).** So homomorphism  $\phi$  is completely determined by its values on the elements of set A. Therefore there is at most one homomorphism mapping  $a_i$  to  $a_i'$ ,  $i \in I$ . Now suppose G is free on A; that is G = F[A]. For  $x = \prod_{j \in J} a_{i_j}^{n_j} \in G$ , define  $\psi: G \to G'$  by  $\psi(x) = \prod_{j \in J} (a_{i_j}')^{n_j}$ . (Notice that  $\psi$  is well defined since G = F[A] consists only of reduced words and so different products of

the form of x yield different elements of F[A].)

**Theorem. 39.12.** Let G be a group generated by  $A = \{a_i \mid i \in I\}$  and let G' be any group. If  $a_i'$  for  $i \in I$  are any elements in G', not necessarily distinct, then there is at most one homomorphism  $\phi : \to G'$  such that  $\phi(a_i) = a_i'$ . If G is free on A, then there exists exactly one such homomorphism.

**Proof (Continued).** Since the rules for computation involving exponents in G' are formally the same as those involving exponents in G' (that is, the elementary contractions on the  $a_{i_j}$  in G exactly correspond to the elementary contractions on the  $a'_{i_j}$  in G'). So  $\psi(xy) = \psi(x)\psi(y)$  for all  $x, y \in G$  and  $\psi$  is a homomorphism.

**Theorem. 39.12.** Let G be a group generated by  $A = \{a_i \mid i \in I\}$  and let G' be any group. If  $a'_i$  for  $i \in I$  are any elements in G', not necessarily distinct, then there is at most one homomorphism  $\phi:\to G'$  such that  $\phi(a_i) = a_i'$ . If G is free on A, then there exists exactly one such homomorphism.

**Proof (Continued).** Since the rules for computation involving exponents in G' are formally the same as those involving exponents in G' (that is, the elementary contractions on the  $a_{i_i}$  in G exactly correspond to the elementary contractions on the  $a_{i}'$  in G'). So  $\psi(xy) = \psi(x)\psi(y)$  for all  $x, y \in G$  and  $\psi$  is a homomorphism.

**Theorem. 39.13.** Every group G' is a homomorphic image of a free group G.

**Proof.** Let  $G' = \{a'_i | i \in I\}$ , and let  $A = \{a_i | i \in I\}$  be a set with the same number of elements as G'. Let G = F[A] (so G is the free group generated by set A).

**Theorem. 39.13.** Every group G' is a homomorphic image of a free group G.

**Proof.** Let  $G' = \{a'_i \mid i \in I\}$ , and let  $A = \{a_i \mid i \in I\}$  be a set with the same number of elements as G'. Let G = F[A] (so G is the free group generated by set A). Since G is free, by Theorem 39.12 there exists a homomorphism  $\psi$  mapping G into G' such that  $\psi(a_i) = a'_i$  for  $i \in I$ .

**Theorem. 39.13.** Every group G' is a homomorphic image of a free group G.

**Proof.** Let  $G' = \{a'_i | i \in I\}$ , and let  $A = \{a_i | i \in I\}$  be a set with the same number of elements as G'. Let G = F[A] (so G is the free group generated by set A). Since G is free, by Theorem 39.12 there exists a homomorphism  $\psi$  mapping G into G' such that  $\psi(a_i) = a'_i$  for  $i \in I$ . Since |G'| = |A'|, then  $\psi$  is onto G' and  $\psi[G] = G'$ .

**Theorem. 39.13.** Every group G' is a homomorphic image of a free group G.

**Proof.** Let  $G' = \{a'_i | i \in I\}$ , and let  $A = \{a_i | i \in I\}$  be a set with the same number of elements as G'. Let G = F[A] (so G is the free group generated by set A). Since G is free, by Theorem 39.12 there exists a homomorphism  $\psi$  mapping G into G' such that  $\psi(a_i) = a_i'$  for  $i \in I$ . Since |G'| = |A'|, then  $\psi$  is onto G' and  $\psi[G] = G'$ .

## Gallian's "Universal Quotient Group Property."

**Theorem. Gallian's "Universal Quotient Group Property."** Every group is isomorphic to a quotient group of a free group.

**Proof.** Let G' be a group. By Theorem 39.13, there is a free group G and a homomorphism  $\psi$  such that  $\psi[G] = G'$ . Let  $K = Ker(\psi)$ . Then by the First Isomorphism Theorem (Theorem 34.2), there is a unique isomorphism  $\mu: G/K \to \psi[G]$ .

## Gallian's "Universal Quotient Group Property."

**Theorem. Gallian's "Universal Quotient Group Property."** Every group is isomorphic to a quotient group of a free group.

**Proof.** Let G' be a group. By Theorem 39.13, there is a free group G and a homomorphism  $\psi$  such that  $\psi[G] = G'$ . Let  $K = Ker(\psi)$ . Then by the First Isomorphism Theorem (Theorem 34.2), there is a unique isomorphism  $\mu: G/K \to \psi[G]$ . So  $\mu$  is an isomorphism from the quotient group G/K of the free group G to group G',  $\mu: G/K \to G'$ .

## Gallian's "Universal Quotient Group Property."

**Theorem. Gallian's "Universal Quotient Group Property."** Every group is isomorphic to a quotient group of a free group.

**Proof.** Let G' be a group. By Theorem 39.13, there is a free group G and a homomorphism  $\psi$  such that  $\psi[G] = G'$ . Let  $K = Ker(\psi)$ . Then by the First Isomorphism Theorem (Theorem 34.2), there is a unique isomorphism  $\mu: G/K \to \psi[G]$ . So  $\mu$  is an isomorphism from the quotient group G/K of the free group G to group G',  $\mu: G/K \to G'$ .