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Theorem 49.3

Theorem 49.3 (continued 1)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Claim < is a partial ordering of S.

For any (L,\) € S we have L < L and A\(a) = o(a) for allae F < L, so
(L,X\) < (L, \) and < is reflexive. If (L1, A1) < (L2, A2) and

(Lg,)\z) < (Lla/\l) then L1 < L2 and L2 < L1, SO L1 = L2. AlSO,

A(a) = Aa(a) for all a€ F. So (L1,A1) = (L2, \2) and < is
antisymmetric.

Suppose (Ll, )\1) < (Lg,)\z) and (LQ,)\Q) < (L3,)\3). Then L1 < L2 < L3
and so L; < L3. Also, A1(a) = X2(a) = A3(a) for all a€ F. So

(L1, A1) < (L3, A3) and < is transitive.
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Theorem 49.3

Theorem 49.3. Let E be an algebraic extension of a field F. Let ¢ be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof. Consider all pairs (L, A) where L is a field such that F < L < E
and X is an isomorphism of L onto a subfield of F’ such that A(a) = o(a)
for all a € F. Let S be the set of all such pairs. S is nonempty since
(F,0) € S. Define <on S as (L1, A1) < (L2, \2) if L1 < Ly and
A1(a)A2(a) for all a € Ly (in which case A\, extends A\; from L; to Ly).
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Theorem 49.3 (continued 2)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Let T = {(H;,\;)|i € I} be a chainin S. Claim

H = ;¢ Hi is a subfield of E.

Let a. b € H where a € H; and b € H;. Then either H; < H; or H; < H;
since T is a chain (definition of “chain). WLOG, say H; < H; then
a,be€ Hj, soax b, ab, and a/b for b # 0 are in H; since H; is a field.
Since H; C H, then a=+ b, ab, a/b € H. Therefore, H is a field. Since for
each i€l we have F C H; C E then F C HC E. So H is a subfield of E.
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Theorem 49.3. (continued 3)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Define A\ : H — F’ as A\(c) = \;(c) for each c € H
where ¢ € H;. We need to show that A is well defined (and hence
independent of the choice of H;). Notice that if ¢ € H; and ¢ € H; then
either (H;, \;) < (Hj, Aj) or (Hj, Aj) < (H;, \i) since T is a chain. In either
case \i(c) = Aj(c) and so A(c) is well defined.

Theorem 49.3

Theorem 49.3 (continued 5)

Theorem 49.3. Let E be an algebraic extension of a field F. Let ¢ be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Next, if A\(a) =0 for a € H, then a € H; for some

i € 1 and so \;j(a) = A\(a) = 0 implies that a = 0 since J\; is an
isomorphism and hence one to one (by Corollary 13.18). Therefore (by
Corollary 13.18) Ker(A) = 0 and \ is onto A[H] and therefore \ is an
isomorphism with A\[H] a subfield of F'.

Since each \; fixes F, then A fixes F. So (H,\) € S. By construction
(since H; € H for all i € 1), (H, \) is an upper bound for chain T. Since
T was an arbitrary chain, then every chain in S has an upper bound in S.
So S satisfies the hypotheses of Zorn's Lemma.
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Theorem 49.3

Theorem 49.3 (continued 4)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Claim A: H — F’ is an isomorphism of H onto a
subfield A[H] of F’. If a,b € H then there is (as above) an H; such that
a,b € H; and

Aa+ b) = Aj(a+ b) = Aj(a) + A(b) since A; is an isomorphism
= Aa) + (b
A(ab) = Aj(ab) = Aj(a)A(b) since); is an isomorphism

= Ma)\(b)

(1)

So A has the homomorphism property with respect to addition and
multiplication.
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Theorem 49.3

Theorem 49.3 (continued 6)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof. (Continued) Applying Zorn's Lemma, there is a maximal element
of S, say (K, 7). Denote 7[K] as K’ and so K’ < F’. ASSUME K +# E.
Let a € E/K. Since E is an algebraic extension of F, « is algebraic over
K. Let p(x) = irr(a, K). Consider the evaluation homomorphism

o @ K[x] = K(«) (so the symbol x is simply replaced by a; see Theorem
22.4, “The Evaluation Homomorphisms for Field Theory”).
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Theorem 49.3 (continued 7)

Theorem 49.3. Let E be an algebraic extension of a field F. Let ¢ be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Let v, be the canonical isomorphism mapping
K[x]/{p(x)) onto K(«) which corresponds to . The elements of
K[x]/(p(x)) are cosets of (p(x)), say of the form r(x) + (p(x)). Since

p(a) =0, then ¥, (r(x) + (p(x))) = r(a) € K(«). Notice that 1, is one
to one since it maps cosets to elements of K(«) (whereas ¢, is not one to
one; it maps elements from the same cosets of (p(x)) onto the same
element of K(«)).
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Theorem 49.3 (continued 9)

Theorem 49.3. Let E be an algebraic extension of a field F. Let ¢ be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Then 7y, : K(a) — K'(a') is an isomorphism
of K(a) onto a subfield K’(a’) of F/, since K < K(a) and 745
“extends” 7 from K (and so 1751 (a) = 7(a) = o(a) for all a € F).

So (K,7) < (K(a),%a751), which is a contradiction to the maximality
of (K, 7). Therefore the assumption that K # E is false and K = E. So 7
is an isomorphism of E = K onto a subfield 7(E) = 7(K) of F’ such that
7(a) = o(a) on F, and the result follows. O
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Theorem 49.3

Theorem 49.3 (continued 8)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). If p(x) = ag + a1x + axx? + - - - + a,x", consider
q(x) = 7(a0) + 7(a1)x + T(a2)x* + - - - + 7(an)x" € K'[x] = 7[K][x] where
7 is from the maximal element (K, 7) of S. Since 7 is an isomorphism,
q(x) is irreducible in K'[x]. Since K’ < F’, there is a zero o/ of q(x) in F'.
Similar to above, let ¢y : K'[x]/(q(x)) — K’'(¢/). Finally, let

7 K[x]/(p(x)) — K'[x]/{q(x)) be an isomorphism “extending” 7 from K
to K[x]/{p(x)) (since K = K’ and 7 "maps” p(x) € K|[x] to q(x) € K'[x],
then such an isomorphic relation exists). We have

T(x + (p(x))) = x + (g(x)), for example.
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Theorem 49.7

Theorem 49.7

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F'.
Then the number of extensions of o to an isomorphism 7 of E onto a
subfield of F’ is finite, and independent of F’, F’, and o. That is, the
number of extensions is completely determined by the two fields £ and F.

Proof Con5|der two isomorphisms o1 : F — F{ and 05 : F — F} and let
F," and )’ be the algebraic closures of F{ and F} respectively. Then
0207 1 F] — F} is an isomorphism. By Corollary 49.5, since F| = F},
then F/ =2 F} and by the Isomorphism Extension Theorem (Theorem 49.3)
there is an isomorphism A : I-:{ — I-:é which extends the isomorphism
o207t F] — F}. Also by the Isomorphism Extension Theorem (Since E is
an extension field of F) there are isomorphisms 71 extending o1 such that

1 E— Tl[E] C 1E1,.
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Theorem 49.7 (continued 1)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F'.
Then the number of extensions of o to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F’, F’, and 0. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). Now for each such 71 we can define 7, = A1 where
™ E— TQ[E] C 1E2/.

Since A extends 0201_1 and 7 extends o1, then 7 = A7y extends o».
Similarly, we could have defined 71 in terms of 7 as 71 = A\™1m. So for
each 71 : E — 1 [E] C F, thereisam : E — m[E] C F,' and conversely.
So there is a one to one correspondence between such 71 and 7,
independent of F/ and F’. So the number of extensions of ¢ to an
isomorphism 7 of E onto a subfield of F’ is independent of F/, F/, and o.

Theorem 49.7

Theorem 49.7 (continued 2)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F'.
Then the number of extensions of ¢ to an isomorphism 7 of E onto a
subfield of F' is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). We now show that the number of extensions of o is
finite. Since E is a finite extension of F, then E = F(a1, ag, ..., a;) for
some a1, o, ...,y in E, by Theorem 31.11.

For a; € {1, a2, ..., an}, let irr(ay, F) = ajo + ajix + aipx? + ... + ajm x™
where ajx € F. Then

ajo + ain (i) + ain(@i)? + ... + ajm, ()™ = 0 and so

T(a,'o + a;l(a;) + a;2(a;)2 + ...+ a,-m,.(oz,-)’"f) = T(O) or

7(aio) + 7(ain)7((«i)) + +... + 7(aim,)(7(a;))™ =0 or

o(ajo) + o(ain)7((ei)) + ... + o(aim,;)(7(aj))™ = 0 since T extends o and
ajx € F.
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Theorem 49.7 Corollary 49.10

Theorem 49.7 (continued 3)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F'.
Then the number of extensions of ¢ to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F’, F’, and 0. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). So the only possible value for 7(«;) is as a zero of
o(aio) + o(ain)x + o(ain)x* + ... + o(aim,)x™ € F[x] and hence there are
only m; possible values for 7(«;). Therefore the number of values of 7 on

a1, Q0, ..., q, are finite and since a basis for E = F(ag, ag, ..., ap,) is

1, a1,a0,...,ap, then there are only a finite number of extensions of ¢ to

E. O
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Corollary 49.10

Corollary 49.10. If F < E < K where K is a finite extension field of the
field F, then {K: F} ={K: E}{E : F}.

Proof. Let o : F — F (into) be an isomorphism of E with o[E] < F
which fixes F. By definition, there are {E : F} such o. Let 7: K — F be
an isomorphism of K with 7[K] < F which fixes E. By definition, there
are {K : E} such 7. Next, the mapping

7(x) if x e K\E )

u(x) = {O‘T(X) ifx € E
is an isomorphism of K with u[K] which fixes F.
So the number of such vis {K: F} = {K : E}{E : F} by the
Multiplication Rule. O
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