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Theorem 49.3

Theorem 49.3

Theorem 49.3. Let E be an algebraic extension of a field F . Let σ be an
isomorphism of F onto a field F ′. Let F̄ ′ be an algebraic closure of F ′.
Then σ can be extended to an isomorphism τ of E onto a subfield F̄ ′ such
that τ(a) = σ(a) for all a ∈ F .

Proof. Consider all pairs (L, λ) where L is a field such that F ≤ L ≤ E
and λ is an isomorphism of L onto a subfield of F̄ ′ such that λ(a) = σ(a)
for all a ∈ F . Let S be the set of all such pairs. S is nonempty since
(F , σ) ∈ S .

Define ≤ on S as (L1, λ1) ≤ (L2, λ2) if L1 ≤ L2 and
λ1(a)λ2(a) for all a ∈ L1 (in which case λ2 extends λ1 from L1 to L2).
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Theorem 49.3

Theorem 49.3 (continued 1)

Theorem 49.3. Let E be an algebraic extension of a field F . Let σ be an
isomorphism of F onto a field F ′. Let F̄ ′ be an algebraic closure of F ′.
Then σ can be extended to an isomorphism τ of E onto a subfield F̄ ′ such
that τ(a) = σ(a) for all a ∈ F .

Proof (continued). Claim ≤ is a partial ordering of S .
For any (L, λ) ∈ S we have L ≤ L and λ(a) = σ(a) for all a ∈ F ≤ L, so
(L, λ) ≤ (L, λ) and ≤ is reflexive. If (L1, λ1) ≤ (L2, λ2) and
(L2, λ2) ≤ (L1, λ1) then L1 ≤ L2 and L2 ≤ L1, so L1 = L2.

Also,
λ1(a) = λ2(a) for all a ∈ F . So (L1, λ1) = (L2, λ2) and ≤ is
antisymmetric.
Suppose (L1, λ1) ≤ (L2, λ2) and (L2, λ2) ≤ (L3, λ3). Then L1 ≤ L2 ≤ L3

and so L1 ≤ L3. Also, λ1(a) = λ2(a) = λ3(a) for all a ∈ F . So
(L1, λ1) ≤ (L3, λ3) and ≤ is transitive.
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Theorem 49.3 (continued 2)

Theorem 49.3. Let E be an algebraic extension of a field F . Let σ be an
isomorphism of F onto a field F ′. Let F̄ ′ be an algebraic closure of F ′.
Then σ can be extended to an isomorphism τ of E onto a subfield F̄ ′ such
that τ(a) = σ(a) for all a ∈ F .

Proof (continued). Let T = {(Hi , λi ) | i ∈ I} be a chain in S . Claim
H =

⋃
i∈I Hi is a subfield of E .

Let a, b ∈ H where a ∈ Hi and b ∈ Hj . Then either Hi ≤ Hj or Hj ≤ Hi

since T is a chain (definition of “chain”). WLOG, say Hi ≤ Hj then
a, b ∈ Hj , so a± b, ab, and a/b for b 6= 0 are in Hj since Hj is a field.

Since Hj ⊆ H, then a± b, ab, a/b ∈ H. Therefore, H is a field. Since for
each i ∈ I we have F ⊆ Hi ⊆ E then F ⊆ H ⊆ E . So H is a subfield of E .
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Theorem 49.3. (continued 3)

Theorem 49.3. Let E be an algebraic extension of a field F . Let σ be an
isomorphism of F onto a field F ′. Let F̄ ′ be an algebraic closure of F ′.
Then σ can be extended to an isomorphism τ of E onto a subfield F̄ ′ such
that τ(a) = σ(a) for all a ∈ F .

Proof (continued). Define λ : H → F̄ ′ as λ(c) = λi (c) for each c ∈ H
where c ∈ Hi . We need to show that λ is well defined (and hence
independent of the choice of Hi ). Notice that if c ∈ Hi and c ∈ Hj then
either (Hi , λi ) ≤ (Hj , λj) or (Hj , λj) ≤ (Hi , λi ) since T is a chain. In either
case λi (c) = λj(c) and so λ(c) is well defined.
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Theorem 49.3 (continued 4)

Theorem 49.3. Let E be an algebraic extension of a field F . Let σ be an
isomorphism of F onto a field F ′. Let F̄ ′ be an algebraic closure of F ′.
Then σ can be extended to an isomorphism τ of E onto a subfield F̄ ′ such
that τ(a) = σ(a) for all a ∈ F .

Proof (continued). Claim λ : H → F̄ ′ is an isomorphism of H onto a
subfield λ[H] of F̄ ′. If a, b ∈ H then there is (as above) an Hj such that
a, b ∈ Hj and

λ(a + b) = λj(a + b) = λj(a) + λ(b) since λj is an isomorphism

= λ(a) + λ(b)

λ(ab) = λj(ab) = λj(a)λ(b) sinceλj is an isomorphism

= λ(a)λ(b)

(1)

So λ has the homomorphism property with respect to addition and
multiplication.
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Theorem 49.3 (continued 5)

Theorem 49.3. Let E be an algebraic extension of a field F . Let σ be an
isomorphism of F onto a field F ′. Let F̄ ′ be an algebraic closure of F ′.
Then σ can be extended to an isomorphism τ of E onto a subfield F̄ ′ such
that τ(a) = σ(a) for all a ∈ F .

Proof (continued). Next, if λ(a) = 0 for a ∈ H, then a ∈ Hi for some
i ∈ I and so λi (a) = λ(a) = 0 implies that a = 0 since λi is an
isomorphism and hence one to one (by Corollary 13.18). Therefore (by
Corollary 13.18) Ker(λ) = 0 and λ is onto λ[H] and therefore λ is an
isomorphism with λ[H] a subfield of F̄ ′.
Since each λi fixes F , then λ fixes F . So (H, λ) ∈ S . By construction
(since Hi ⊆ H for all i ∈ I ), (H, λ) is an upper bound for chain T .

Since
T was an arbitrary chain, then every chain in S has an upper bound in S .
So S satisfies the hypotheses of Zorn’s Lemma.
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Theorem 49.3 (continued 5)
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Theorem 49.3

Theorem 49.3 (continued 6)

Theorem 49.3. Let E be an algebraic extension of a field F . Let σ be an
isomorphism of F onto a field F ′. Let F̄ ′ be an algebraic closure of F ′.
Then σ can be extended to an isomorphism τ of E onto a subfield F̄ ′ such
that τ(a) = σ(a) for all a ∈ F .

Proof. (Continued) Applying Zorn’s Lemma, there is a maximal element
of S , say (K , τ). Denote τ [K ] as K ′ and so K ′ ≤ F̄ ′. ASSUME K 6= E .
Let α ∈ E/K . Since E is an algebraic extension of F , α is algebraic over
K . Let p(x) = irr(α,K ).

Consider the evaluation homomorphism
ϕα : K [x ] → K (α) (so the symbol x is simply replaced by α; see Theorem
22.4, “The Evaluation Homomorphisms for Field Theory”).
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Theorem 49.3

Theorem 49.3 (continued 7)

Theorem 49.3. Let E be an algebraic extension of a field F . Let σ be an
isomorphism of F onto a field F ′. Let F̄ ′ be an algebraic closure of F ′.
Then σ can be extended to an isomorphism τ of E onto a subfield F̄ ′ such
that τ(a) = σ(a) for all a ∈ F .

Proof (continued). Let ψα be the canonical isomorphism mapping
K [x ]/〈p(x)〉 onto K (α) which corresponds to ϕα. The elements of
K [x ]/〈p(x)〉 are cosets of 〈p(x)〉, say of the form r(x) + 〈p(x)〉. Since
p(α) = 0, then ψα(r(x) + 〈p(x)〉) = r(α) ∈ K (α). Notice that ψα is one
to one since it maps cosets to elements of K (α) (whereas ϕα is not one to
one; it maps elements from the same cosets of 〈p(x)〉 onto the same
element of K (α)).
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Theorem 49.3

Theorem 49.3 (continued 8)

Theorem 49.3. Let E be an algebraic extension of a field F . Let σ be an
isomorphism of F onto a field F ′. Let F̄ ′ be an algebraic closure of F ′.
Then σ can be extended to an isomorphism τ of E onto a subfield F̄ ′ such
that τ(a) = σ(a) for all a ∈ F .

Proof (continued). If p(x) = a0 + a1x + a2x
2 + · · ·+ anx

n, consider
q(x) = τ(a0) + τ(a1)x + τ(a2)x

2 + · · ·+ τ(an)x
n ∈ K ′[x ] = τ [K ][x ] where

τ is from the maximal element (K , τ) of S . Since τ is an isomorphism,
q(x) is irreducible in K ′[x ]. Since K ′ ≤ F̄ ′, there is a zero α′ of q(x) in F̄ ′.

Similar to above, let ψα′ : K ′[x ]/〈q(x)〉 → K ′(α′). Finally, let
τ̄ : K [x ]/〈p(x)〉 → K ′[x ]/〈q(x)〉 be an isomorphism “extending” τ from K
to K [x ]/〈p(x)〉 (since K ∼= K ′ and τ ”maps” p(x) ∈ K [x ] to q(x) ∈ K ′[x ],
then such an isomorphic relation exists). We have
τ(x + 〈p(x)〉) = x + 〈q(x)〉, for example.
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Theorem 49.3 (continued 9)

Theorem 49.3. Let E be an algebraic extension of a field F . Let σ be an
isomorphism of F onto a field F ′. Let F̄ ′ be an algebraic closure of F ′.
Then σ can be extended to an isomorphism τ of E onto a subfield F̄ ′ such
that τ(a) = σ(a) for all a ∈ F .

Proof (continued). Then ψα′ τ̄ψ−1
α : K (α) → K ′(α′) is an isomorphism

of K (α) onto a subfield K ′(α′) of F̄ ′, since K ≤ K (α) and ψα′ τ̄ψ−1
α

“extends” τ from K (and so ψα′ τ̄ψ−1
α (a) = τ(a) = σ(a) for all a ∈ F ).

So (K , τ) < (K (α), ψα′τψ−1
α ), which is a contradiction to the maximality

of (K , τ). Therefore the assumption that K 6= E is false and K = E .

So τ
is an isomorphism of E = K onto a subfield τ(E ) = τ(K ) of F̄ ′ such that
τ(a) = σ(a) on F , and the result follows.
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Theorem 49.7

Theorem 49.7

Theorem 49.7. Let E be a finite extension of field F . Let σ be an
isomorphism of F onto a field F ′, and let F̄ ′ be an algebraic closure of F ′.
Then the number of extensions of σ to an isomorphism τ of E onto a
subfield of F̄ ′ is finite, and independent of F ′, F̄ ′, and σ. That is, the
number of extensions is completely determined by the two fields E and F .

Proof. Consider two isomorphisms σ1 : F → F ′
1 and σ2 : F → F ′

2 and let

F̄1
′
and F̄2

′
be the algebraic closures of F ′

1 and F ′
2 respectively. Then

σ2σ
−1
1 : F ′

1 → F ′
2 is an isomorphism.

By Corollary 49.5, since F ′
1
∼= F ′

2,
then F̄ ′

1
∼= F̄ ′

2 and by the Isomorphism Extension Theorem (Theorem 49.3)
there is an isomorphism λ : F̄ ′

1 → F̄ ′
2 which extends the isomorphism

σ2σ
−1
1 : F ′

1 → F ′
2. Also by the Isomorphism Extension Theorem (Since E is

an extension field of F ) there are isomorphisms τ1 extending σ1 such that
τ1 : E → τ1[E ] ⊂ F̄1

′
.
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Theorem 49.7

Theorem 49.7 (continued 1)

Theorem 49.7. Let E be a finite extension of field F . Let σ be an
isomorphism of F onto a field F ′, and let F̄ ′ be an algebraic closure of F ′.
Then the number of extensions of σ to an isomorphism τ of E onto a
subfield of F̄ ′ is finite, and independent of F ′, F̄ ′, and σ. That is, the
number of extensions is completely determined by the two fields E and F .

Proof (continued). Now for each such τ1 we can define τ2 = λτ1 where
τ2 : E → τ2[E ] ⊂ F̄2

′
.

Since λ extends σ2σ
−1
1 and τ1 extends σ1, then τ2 = λτ1 extends σ2.

Similarly, we could have defined τ1 in terms of τ2 as τ1 = λ−1τ2.

So for
each τ1 : E → τ1[E ] ⊆ F̄1

′
there is a τ2 : E → τ2[E ] ⊆ F̄2

′
, and conversely.

So there is a one to one correspondence between such τ1 and τ2,
independent of F ′ and F̄ ′. So the number of extensions of σ to an
isomorphism τ of E onto a subfield of F̄ ′ is independent of F ′, F̄ ′, and σ.
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Theorem 49.7

Theorem 49.7 (continued 2)

Theorem 49.7. Let E be a finite extension of field F . Let σ be an
isomorphism of F onto a field F ′, and let F̄ ′ be an algebraic closure of F ′.
Then the number of extensions of σ to an isomorphism τ of E onto a
subfield of F̄ ′ is finite, and independent of F ′, F̄ ′, and σ. That is, the
number of extensions is completely determined by the two fields E and F .

Proof (continued). We now show that the number of extensions of σ is
finite. Since E is a finite extension of F , then E = F (α1, α2, ..., αn) for
some α1, α2, ..., αn in E , by Theorem 31.11.
For αi ∈ {α1, α2, ..., αn}, let irr(αi ,F ) = ai0 + ai1x + ai2x

2 + ...+ aimi
xmi

where aik ∈ F .

Then
ai0 + ai1(αi ) + ai2(αi )

2 + ...+ aimi
(αi )

mi = 0 and so
τ(ai0 + ai1(αi ) + ai2(αi )

2 + ...+ aimi
(αi )

mi ) = τ(0) or
τ(ai0) + τ(ai1)τ((αi )) + +...+ τ(aimi

)(τ(αi ))
mi = 0 or

σ(ai0) + σ(ai1)τ((αi )) + ...+ σ(aimi
)(τ(αi ))

mi = 0 since τ extends σ and
aik ∈ F .
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Theorem 49.7 (continued 2)
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Theorem 49.7

Theorem 49.7 (continued 3)

Theorem 49.7. Let E be a finite extension of field F . Let σ be an
isomorphism of F onto a field F ′, and let F̄ ′ be an algebraic closure of F ′.
Then the number of extensions of σ to an isomorphism τ of E onto a
subfield of F̄ ′ is finite, and independent of F ′, F̄ ′, and σ. That is, the
number of extensions is completely determined by the two fields E and F .

Proof (continued). So the only possible value for τ(αi ) is as a zero of
σ(ai0) + σ(ai1)x + σ(ai2)x

2 + ...+ σ(aimi
)xmi ∈ F [x ] and hence there are

only mi possible values for τ(αi ). Therefore the number of values of τ on
α1, α2, . . . , αn are finite and since a basis for E = F (α1, α2, . . . , αn) is
1, α1, α2, . . . , αn, then there are only a finite number of extensions of σ to
E .
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Corollary 49.10

Corollary 49.10

Corollary 49.10. If F ≤ E ≤ K where K is a finite extension field of the
field F , then {K : F} = {K : E}{E : F}.

Proof. Let σ : F → F̄ (into) be an isomorphism of E with σ[E ] ≤ F̄
which fixes F . By definition, there are {E : F} such σ. Let τ : K → F̄ be
an isomorphism of K with τ [K ] ≤ F̄ which fixes E . By definition, there
are {K : E} such τ .

Next, the mapping

u(x) =

{
στ(x) ifx ∈ E

τ(x) if x ∈ K\E
(2)

is an isomorphism of K with u[K ] which fixes F .
So the number of such u is {K : F} = {K : E}{E : F} by the
Multiplication Rule.
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