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Theorem 49.3

Theorem 49.3. Let E be an algebraic extension of a field F. Let ¢ be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.
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Theorem 49.3

Theorem 49.3. Let E be an algebraic extension of a field F. Let ¢ be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof. Consider all pairs (L, A) where L is a field such that F < L < E
and X is an isomorphism of L onto a subfield of F’ such that A(a) = o(a)

for all a € F. Let S be the set of all such pairs. S is nonempty since
(F,o)€S.
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Theorem 49.3

Theorem 49.3. Let E be an algebraic extension of a field F. Let ¢ be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof. Consider all pairs (L, A) where L is a field such that F < L < E
and X is an isomorphism of L onto a subfield of F’ such that A(a) = o(a)
for all a € F. Let S be the set of all such pairs. S is nonempty since
(F,0) € S. Define <on S as (L1,A1) < (Lp, \2) if L1 < L and
A1(a)A2(a) for all a € Ly (in which case Ay extends A1 from L; to Lp).
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Theorem 49.3

Theorem 49.3 (continued 1)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.

Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Claim < is a partial ordering of S.
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Theorem 49.3 (continued 1)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Claim < is a partial ordering of S.

For any (L,\) € S we have L < L and A(a) =o(a) forallac F <L, so
(L, \) < (L,\) and < is reflexive. If (L1, A1) < (L2, \2) and

(LQ’)\Q) (Lla/\l) then L1 < lp and L, <Ly, s0 L1 = Lo.
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Theorem 49.3 (continued 1)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Claim < is a partial ordering of S.

For any (L,\) € S we have L < L and A(a) =o(a) forallac F <L, so
(L, \) < (L,\) and < is reflexive. If (L1, A1) < (L2, \2) and

(LQ’)\Q) (Lla/\l) then L1 < [, and [, < L4, so L1 = Ly. Also,

A1(a) = Ao(a) forall ae F. So (L1, A1) = (L2, \2) and < is
antisymmetric.
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Theorem 49.3 (continued 1)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Claim < is a partial ordering of S.

For any (L,\) € S we have L < L and A(a) =o(a) forallac F <L, so
(L, \) < (L,\) and < is reflexive. If (L1, A1) < (L2, \2) and

(LQ’)\Q) (Lla/\l) then L1 < [, and [, < L4, so L1 = Ly. Also,

A1(a) = Ao(a) forall ae F. So (L1, A1) = (L2, \2) and < is
antisymmetric.

Suppose (Lla/\l) (LQ,)\Q) and (Lz,/\z) (L3,)\3) Then Ll < L2 < L3
and so L < L3. Also, A\1(a) = Az2(a) = A3(a) forallae F. So
(L1,M\1) < (L3, A3) and < is transitive.
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Theorem 49.3

Theorem 49.3 (continued 2)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.

Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Let T = {(H;,\;)|/ € I} be a chain in S. Claim
H = ¢, Hi is a subfield of E.
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Theorem 49.3 (continued 2)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Let T = {(H;,\;)|7/ € I} be a chainin S. Claim
H = ¢, Hi is a subfield of E.

Let a, b € H where a € H; and b € H;. Then either H; < H; or H; < H;
since T is a chain (definition of “chain™). WLOG, say H; < H; then
a,be H;j, soaxb, ab, and a/b for b# 0 are in H; since H; is a field.
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Theorem 49.3 (continued 2)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Let T = {(H;,\;)|7/ € I} be a chainin S. Claim

H = ¢, Hi is a subfield of E.

Let a, b € H where a € H; and b € H;. Then either H; < H; or H; < H;
since T is a chain (definition of “chain™). WLOG, say H; < H; then
a,be H;j, soaxb, ab, and a/b for b# 0 are in H; since H; is a field.
Since H; C H, then a+ b, ab, a/b € H. Therefore, H is a field. Since for
each i € | we have F C H; C E then F C H C E. So H is a subfield of E.
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Theorem 49.3. (continued 3)

Theorem 49.3. Let E be an algebraic extension of a field F. Let ¢ be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Define A : H — F’ as \(c) = \;(c) for each c € H
where ¢ € H;. We need to show that A is well defined (and hence
independent of the choice of H;).
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Theorem 49.3. (continued 3)

Theorem 49.3. Let E be an algebraic extension of a field F. Let ¢ be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Define A : H — F’ as \(c) = \;(c) for each c € H
where ¢ € H;. We need to show that A is well defined (and hence
independent of the choice of H;). Notice that if c € H; and ¢ € H; then
either (H;, \;) < (Hj, A\j) or (H}, Aj) < (H;, Aj) since T is a chain. In either
case \i(c) = Aj(c) and so A(c) is well defined.
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Theorem 49.3 (continued 4)

Theorem 49.3. Let E be an algebraic extension of a field F. Let ¢ be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Claim A\ : H — F’ is an isomorphism of H onto a
subfield A[H] of .
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Theorem 49.3 (continued 4)

Theorem 49.3. Let E be an algebraic extension of a field F. Let ¢ be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Claim A\ : H — F’ is an isomorphism of H onto a
subfield A[H] of F’. If a,b € H then there is (as above) an H; such that
a,b € H; and

Xa+ b) = Aj(a+ b) = Aj(a) + A(b) since A is an isomorphism
= A(a) + A(b
A(ab) = Aj(ab) = Aj(a)A(b) since); is an isomorphism
= A(a)A(b)

(1)

So A has the homomorphism property with respect to addition and
multiplication.
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Theorem 49.3 (continued 5)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Next, if A(a) = 0 for a € H, then a € H; for some
i € I and so \j(a) = A\(a) = 0 implies that a = 0 since J\; is an
isomorphism and hence one to one (by Corollary 13.18). Therefore (by
Corollary 13.18) Ker(A) =0 and X is onto A[H] and therefore \ is an
isomorphism with A[H] a subfield of F’.
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Theorem 49.3 (continued 5)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Next, if A(a) = 0 for a € H, then a € H; for some
i € I and so \j(a) = A\(a) = 0 implies that a = 0 since J\; is an
isomorphism and hence one to one (by Corollary 13.18). Therefore (by
Corollary 13.18) Ker(A) =0 and X is onto A[H] and therefore \ is an
isomorphism with A[H] a subfield of F’.

Since each ); fixes F, then A fixes F. So (H,\) € S. By construction
(since H; C H for all i € 1), (H, \) is an upper bound for chain T.
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Theorem 49.3 (continued 5)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Next, if A(a) = 0 for a € H, then a € H; for some

i € I and so \j(a) = A\(a) = 0 implies that a = 0 since J\; is an
isomorphism and hence one to one (by Corollary 13.18). Therefore (by
Corollary 13.18) Ker(A) =0 and X is onto A[H] and therefore \ is an
isomorphism with A[H] a subfield of F’.

Since each ); fixes F, then A fixes F. So (H,\) € S. By construction
(since H; C H for all i € 1), (H, A) is an upper bound for chain T. Since
T was an arbitrary chain, then every chain in S has an upper bound in S.
So S satisfies the hypotheses of Zorn's Lemma.
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Theorem 49.3 (continued 6)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof. (Continued) Applying Zorn's Lemma, there is a maximal element
of S, say (K, 7). Denote 7[K] as K" and so K’ < F’.
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Theorem 49.3 (continued 6)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof. (Continued) Applying Zorn's Lemma, there is a maximal element
of S, say (K, 7). Denote 7[K] as K’ and so K’ < F’. ASSUME K # E.
Let « € E/K. Since E is an algebraic extension of F, « is algebraic over
K. Let p(x) = irr(a, K).
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Theorem 49.3 (continued 6)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F’.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof. (Continued) Applying Zorn's Lemma, there is a maximal element
of S, say (K, 7). Denote 7[K] as K’ and so K’ < F’. ASSUME K # E.
Let « € E/K. Since E is an algebraic extension of F, « is algebraic over
K. Let p(x) = irr(a, K). Consider the evaluation homomorphism

o K[x] = K(«) (so the symbol x is simply replaced by «; see Theorem
22.4, “The Evaluation Homomorphisms for Field Theory™).
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Theorem 49.3

Theorem 49.3 (continued 7)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Let v, be the canonical isomorphism mapping
K[x]/{p(x)) onto K(«) which corresponds to . The elements of
K[x]/{p(x)) are cosets of (p(x)), say of the form r(x) + (p(x)).
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Theorem 49.3 (continued 7)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Let v, be the canonical isomorphism mapping
K[x]/{p(x)) onto K(«) which corresponds to . The elements of
K[x]/{p(x)) are cosets of (p(x)), say of the form r(x) + (p(x)). Since

p(a) =0, then ¥, (r(x) + (p(x))) = r(a) € K(«). Notice that 1, is one
to one since it maps cosets to elements of K(«a) (whereas ¢, is not one to
one; it maps elements from the same cosets of (p(x)) onto the same
element of K(a)).
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Theorem 49.3 (continued 8)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). If p(x) = ag + a1x + axx? + - - - + a,x", consider

q(x) = 7(a0) + 7(a1)x + 7(a2)x* + - - - + 7(an)x" € K'[x] = 7[K][x] where
7 is from the maximal element (K, 7) of S.
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Theorem 49.3 (continued 8)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). If p(x) = ag + a1x + axx? + - - - + a,x", consider
q(x) = 7(a0) + 7(a1)x + 7(a2)x* + - - - + 7(an)x" € K'[x] = 7[K][x] where
7 is from the maximal element (K, 7) of S. Since 7 is an isomorphism,
q(x) is irreducible in K'[x]. Since K’ < F’, there is a zero o’ of q(x) in F'.
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Theorem 49.3 (continued 8)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). If p(x) = ag + a1x + axx? + - - - + a,x", consider
q(x) = 7(a0) + 7(a1)x + 7(a2)x* + - - - + 7(an)x" € K'[x] = 7[K][x] where
7 is from the maximal element (K, 7) of S. Since 7 is an isomorphism,
q(x) is irreducible in K'[x]. Since K’ < F’, there is a zero o’ of q(x) in F'.
Similar to above, let ¢y : K'[x]/{(q(x)) — K'(&/). Finally, let

7 K[x]/(p(x)) — K'[x]/(q(x)) be an isomorphism “extending” 7 from K
to K[x]/{p(x)) (since K = K’ and 7 "maps” p(x) € K[x] to q(x) € K'[x],
then such an isomorphic relation exists). We have

T(x + (p(x))) = x + (q(x)), for example.
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Theorem 49.3 (continued 9)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Then 1, 71,1 : K(a) — K’'(c/) is an isomorphism

of K(c) onto a subfield K'(a) of F’, since K < K(a) and 975"
“extends” 7 from K (and so v 7Y;1(a) = 7(a) = o(a) for all a € F).
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Theorem 49.3 (continued 9)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Then 1, 71,1 : K(a) — K’'(c/) is an isomorphism
of K(c) onto a subfield K'(a) of F’, since K < K(a) and 975"
“extends” 7 from K (and so v 7Y;1(a) = 7(a) = o(a) for all a € F).
So (K,7) < (K(a), %o T51), which is a contradiction to the maximality
of (K, 7). Therefore the assumption that K # E is false and K = E.
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Theorem 49.3 (continued 9)

Theorem 49.3. Let E be an algebraic extension of a field F. Let o be an
isomorphism of F onto a field F’. Let F’ be an algebraic closure of F'.
Then o can be extended to an isomorphism 7 of E onto a subfield F’ such
that 7(a) = o(a) for all a € F.

Proof (continued). Then 1, 71,1 : K(a) — K’'(c/) is an isomorphism
of K(c) onto a subfield K'(a) of F’, since K < K(a) and 975"
“extends” 7 from K (and so v 7Y;1(a) = 7(a) = o(a) for all a € F).
So (K,7) < (K(a), %o T51), which is a contradiction to the maximality
of (K, 7). Therefore the assumption that K # E is false and K = E. So 7
is an isomorphism of E = K onto a subfield 7(E) = 7(K) of F’ such that
7(a) = o(a) on F, and the result follows. O
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Theorem 49.7

Theorem 49.7

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F’.
Then the number of extensions of o to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.
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Theorem 49.7

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F’.
Then the number of extensions of o to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof. Consider two isomorphisms o1 : F — F{ and 02 : F — F} and let

I—=1/ and I—=2’ be the algebraic closures of F{ and F} respectively. Then
0201_1 : F{ — F} is an isomorphism.
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Theorem 49.7

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F’.
Then the number of extensions of o to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof. Consider two isomorphisms o1 : F — F{ and 02 : F — F} and let
I—=1/ and I—=2’ be the algebraic closures of F{ and F} respectively. Then
o207t 1 F| — F} is an isomorphism. By Corollary 49.5, since F] = F},
then F/ = F} and by the Isomorphism Extension Theorem (Theorem 49.3)
there is an isomorphism A : I-:1’ — I—:z’ which extends the isomorphism

1. s /
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Theorem 49.7

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F’.
Then the number of extensions of o to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof. Consider two isomorphisms o1 : F — F{ and 02 : F — F} and let
I—=1/ and I—=2’ be the algebraic closures of F{ and F} respectively. Then
o207t 1 F| — F} is an isomorphism. By Corollary 49.5, since F] = F},
then F/ = F} and by the Isomorphism Extension Theorem (Theorem 49.3)
there is an isomorphism A : I-:1’ — I—:z’ which extends the isomorphism
o207t 1 F] — F}. Also by the Isomorphism Extension Theorem (Since E is
an extension field of F) there are isomorphisms 71 extending o1 such that

mn:E— Tl[E] C F_ll.
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Theorem 49.7

Theorem 49.7 (continued 1)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F’.
Then the number of extensions of ¢ to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). Now for each such 71 we can define 75 = A7y where
™ E— 7'2[E] C F2,.
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Theorem 49.7 (continued 1)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F’.
Then the number of extensions of ¢ to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). Now for each such 71 we can define 7 = A1y where
™ E— 7'2[E] C F_zl.

Since \ extends 0201_1 and 71 extends o1, then 7 = A711 extends o5.
Similarly, we could have defined 71 in terms of 7 as 71 = A" 17,
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Theorem 49.7 (continued 1)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F’.
Then the number of extensions of ¢ to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). Now for each such 71 we can define 7 = A1y where
™ E— 7'2[E] C F_zl.

Since \ extends 0201_1 and 71 extends o1, then 7 = A711 extends o5.
Similarly, we could have defined 71 in terms of ™ as 71 = A~1m. So for
each 11 : E — m[E] C F' thereisam: E — m|E] C F,’ and conversely.
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Theorem 49.7 (continued 1)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F’.
Then the number of extensions of ¢ to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). Now for each such 71 we can define 7 = A1y where
™ E— 7'2[E] C F_2,.

Since \ extends 0201_1 and 71 extends o1, then 7 = A711 extends o5.
Similarly, we could have defined 71 in terms of ™ as 71 = A~1m. So for
each 11 : E — m[E] C F' thereisam: E — m|E] C F,’ and conversely.
So there is a one to one correspondence between such 71 and 7,
independent of F’ and F’. So the number of extensions of & to an
isomorphism 7 of E onto a subfield of F’ is independent of F/, F/, and o.
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Theorem 49.7 (continued 2)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F’.
Then the number of extensions of o to an isomorphism 7 of E onto a
subfield of F’ is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). We now show that the number of extensions of o is

finite. Since E is a finite extension of F, then E = F(aq, g, ..., ap) for
some a1, o, ...,a, in E, by Theorem 31.11.
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Theorem 49.7 (continued 2)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F’.
Then the number of extensions of o to an isomorphism 7 of E onto a
subfield of F’ is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). We now show that the number of extensions of o is
finite. Since E is a finite extension of F, then E = F(aq, g, ..., ap) for
some a1, o, ...,a, in E, by Theorem 31.11.

For a; € {1, 0, ..., an}, let irr(a, F) = ajo + ajix + ajpx® + ... + jm, XM
where aj, € F.
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Theorem 49.7 (continued 2)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F’.
Then the number of extensions of o to an isomorphism 7 of E onto a
subfield of F’ is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). We now show that the number of extensions of o is
finite. Since E is a finite extension of F, then E = F(aq, g, ..., ap) for
some a1, o, ...,a, in E, by Theorem 31.11.
For a; € {1, 0, ..., an}, let irr(a, F) = ajo + ajix + ajpx® + ... + jm, XM
where aj € F. Then
ajo + a;l(a;) + 3;2(04,')2 + ...+ a;m,.(a;)’"" =0 and so
T(a,'o + a,-l(a,-) + a,-g(a,-)2 + ...+ a,-m,.(a,-)’”") = 7'(0) or
7(aio) + 7(ai1)7((aj)) + +... + 7(aim,) (7(c;))™ =0 or
o(aio) + o(ain)7((e)) + ... + o(aim,)(7(cj))™ = 0 since T extends o and
aix € F.
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Theorem 49.7 (continued 3)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F'.
Then the number of extensions of ¢ to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). So the only possible value for 7(«;) is as a zero of

o(aio) + o(ain)x + o(ai2)x? + ... + o (aim, )x™ € F[x] and hence there are
only m; possible values for 7(c;).
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Theorem 49.7 (continued 3)

Theorem 49.7. Let E be a finite extension of field F. Let o be an
isomorphism of F onto a field F’, and let F’ be an algebraic closure of F'.
Then the number of extensions of ¢ to an isomorphism 7 of E onto a
subfield of F is finite, and independent of F/, F/, and o. That is, the
number of extensions is completely determined by the two fields E and F.

Proof (continued). So the only possible value for 7(«;) is as a zero of
o(aio) + o(ain)x + o(ai2)x? + ... + o (aim, )x™ € F[x] and hence there are
only m; possible values for 7(c;). Therefore the number of values of 7 on

a1, Q,...,a, are finite and since a basis for E = F(ag, ag, ..., ap) is
1, a1,a0,...,ap, then there are only a finite number of extensions of ¢ to
E. O]
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Corollary 49.10

Corollary 49.10. If F < E < K where K is a finite extension field of the
field F, then {K: F} ={K: E}{E : F}.
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Corollary 49.10

Corollary 49.10

Corollary 49.10. If F < E < K where K is a finite extension field of the
field F, then {K: F} ={K: E}{E : F}.

Proof. Let o : F — F (into) be an isomorphism of E with o[E] < F
which fixes F. By definition, there are {E : F} such 0. Let 7: K — F be

an isomorphism of K with 7[K] < F which fixes E. By definition, there
are {K : E} such .
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Corollary 49.10

Corollary 49.10. If F < E < K where K is a finite extension field of the
field F, then {K: F} ={K: E}{E : F}.

Proof. Let o : F — F (into) be an isomorphism of E with o[E] < F
which fixes F. By definition, there are {E : F} such 0. Let 7: K — F be
an isomorphism of K with 7[K] < F which fixes E. By definition, there
are {K : E} such 7. Next, the mapping

u(x) {O’T(X) ifx e E

7(x) if x e K\E )

is an isomorphism of K with u[K] which fixes F.
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Corollary 49.10

Corollary 49.10. If F < E < K where K is a finite extension field of the
field F, then {K: F} ={K: E}{E : F}.

Proof. Let o : F — F (into) be an isomorphism of E with o[E] < F
which fixes F. By definition, there are {E : F} such 0. Let 7: K — F be
an isomorphism of K with 7[K] < F which fixes E. By definition, there
are {K : E} such 7. Next, the mapping

ifx € E
u(x) = o1(x) !XE 2)
7(x) if x e K\E
is an isomorphism of K with u[K] which fixes F.
So the number of such vis {K: F} = {K : E}{E : F} by the
Multiplication Rule. Ul
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