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Theorem 50.3.

Theorem 50.3.

Theorem. 50.3. A field E , where F ≤ E ≤ F̄ , is a splitting field over F if
and only if every automorphism of F̄ leaving F fixed maps E onto itself
(and this induces an automorphism of E leaving F fixed).

Proof. (⇒) Let E be a splitting field over F in F̄ of {fi (x) | i ∈ I}. Let σ
be an automorphism of F̄ leaving F fixed. Let {αj | j ∈ J} be the set of all
zeros in F̄ of all the polynomials fi (x) for i ∈ I .

By Theorem 29.18, for a
given αj the field F (αj) has as elements all expressions of the form

g(αj) = a0 + a1αj + a2α
2
j + ... + anj−1α

nj−1
j (1)

where nj is the degree of irr(αi ,F ) and each ak ∈ F . Consider the set S of
all finite sums and finite products of elements of the form g(αj) where
j ∈ J. Then S ⊆ E is closed under addition and multiplication, it contains
0,1, and is closed under the process of taking additive inverses (just
replace the coefficients of g(αj) with their additive inverses).
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Theorem 50.3.

Theorem 50.3. (Continued)

Theorem. 50.3. A field E , where F ≤ E ≤ F̄ , is a splitting field over F if
and only if every automorphism of F̄ leaving F fixed maps E onto itself
(and this induces an automorphism of E leaving F fixed).

Proof. (Continued) Since each element of S is in some finite extension
of F , say F (αj1 , αj2 , ..., αjr ), then for any s ∈ S s 6= 0,
s ∈ F (αj1 , αj2 , ..., αjr ) we have s−1 ∈ F (αj1 , αj2 , ..., αjr ) and s−1 ∈ S . So S
is a subfield of E and S contains all αj for j ∈ J. Since E is the splitting
of {fi (x) | i ∈ I} over F , then E is the smallest subfield of F̄ containing F
and all αj for j ∈ J (by definition of ”splitting field”), so it must be that
S = F since S is a subfield of E containing all αj for j ∈ J.
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Theorem 50.3.

Theorem 50.3. (Continued)

Theorem. 50.3. A field E , where F ≤ E ≤ F̄ , is a splitting field over F if
and only if every automorphism of F̄ leaving F fixed maps E onto itself
(and this induces an automorphism of E leaving F fixed).

Proof. (Continued) Since S consists of all finite sums of finite products
of elements of the form g(αj) for all j ∈ J (where each g is a polynomial
function with coefficients from F ), then E also satisfies this — we ay that
{αj | j ∈ J} generates E over F (in the sense of taking finite sums and
finite products, not in the sense of vector spaces discusses in the past). So
for σ an automorphism of F̄ which fixes F , the value of σ on E is
determined by the value of σ(αj) for j ∈ J. By Corollary 48.5, σ(αj) must
be the conjugate of αj and so σ(αj) must also be a zero of irr(αj ,F ).

By
Theorem 29.13, the polynomial irr(αj ,F ) ∈ F [x ] divides fi (x) for which
fi (αj) = 0.
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Theorem. 50.3. A field E , where F ≤ E ≤ F̄ , is a splitting field over F if
and only if every automorphism of F̄ leaving F fixed maps E onto itself
(and this induces an automorphism of E leaving F fixed).

Proof. (Continued) So fi (σ(αj)) = 0 also and hence σ(αj) ∈ E . [Here,
we see that automorphism of F̄ which fixes F is mapping the zeros of
irr(αj ,F ) to themselves — that is, σ is permuting the zeros of irr(αj ,F ).]

So σ[E ] is some subfield of E (as an automorphism of F̄ , we know that σ
is one to one and has the homomorphism property with respect to + and
·, but we do not know that σ is onto when restricted to E ).

We can
replace σ with σ−1 above (σ−1 is also an automorphism of F̄ which fixes
F ) to conclude that σ−1[E ] is also a subfield of E . Let e ∈ E . Then
σ−1(e) ∈ E and so σ(σ−1(e)) = e. So σ maps E onto E and σ[E ] = E .
Hence σ is an automorphism of E which leaves F fixed.
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Corollary 50.6.

Corollary 50.6.

Corollary. 50.6. If E ≤ F̄ is a splitting field over F , then every irreducible
polynomial in F [x ] having a zero in E splits in E .

Proof. If E is a splitting field over F in F̄ , then by Theorem 50.3a (the
part for which we have given a proof), every automorphism of F̄ induces
an automorphism of E .

Let f (x) ∈ F [x ] be irreducible and let f (x) have a
zero α in E . If β is any zero of f in F̄ (that is, β is a conjugate of α),
then by Theorem 48.3 (The Conjugation Isomorphisms Theorem), there is
a conjugation isomorphism Ψα,β of F (α) onto F (β) which fixes F . By
Theorem 49.3 (The Isomorphism Extension Theorem — we are really
using Corollary 49.4), Ψα,β can be extended to an isomorphism τ of F̄ into
a subfield of F̄ which fixes F . Now τ−1 : τ [F̄ ] → F̄ (not necessarily onto)
is an isomorphism of τ [F̄ ] with a subfield of F̄ which fixes F (and maps β
to α) and by Theorem 49.3 (The Isomorphism Extension Theorem), τ−1

can be extended from τ [F̄ ] to all of F̄ and τ1−[F̄ ] is a subfield of F̄ .
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Corollary 50.6.

Corollary 50.6. (Continued)

Corollary. 50.6. If E ≤ F̄ is a splitting field over F , then every irreducible
polynomial in F [x ] having a zero in E splits in E .

Proof. (Continued) Since τ is defined on all of F̄ , then the range of τ−1

is all of F̄ . Hence, as in the proof of Theorem 50.3(a), τ [τ−1[F̄ ]] = F̄ and
so τ is an automorphism of F̄ which fixes F . As commented earlier, by
Theorem 50.3(a), τ induces an automorphism of E , and we have
τ(α) = β ∈ E . Since β is an arbitrary zero of f (x), then all zeroes of f (x)
are in E . That is, E splits f (x).
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Corollary 50.7.

Corollary 50.7.

Corollary. 50.7. If E ≤ F̄ is a splitting field over F , then every isomorphic
mapping of E onto a subfield of F̄ leaving F fixed is actually and
automorphism of E . In particular, if E is a splitting field of finite degree
over F , then {E : F} = |G (E/F )|, where G (E/F ) is the group of
automorphisms of E leaving F fixed.

Proof. Every isomorphism σ mapping E onto a subfield of F̄ leaving F
fixed, can be extended to an isomrophism τ of F̄ with a subfield of F̄ by
Theorem 49.3 (The Isomorphism Extension Theorem). By the argument in
the proof of Corollary 50.6 (and considering τ−1), we see that τ is onto F̄
and so τ is an automorphism of F̄ .

Since E is a splitting field over F (by
hypothesis), then by Theorem 50.3, τ restricted to E (that is σ since τ is
an extension of σ) is an automorphism of E . That is, σ is an
automorphism of E and the first claim holds.
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Corollary 50.7.

Corollary 50.7. (Continued)

Corollary. 50.7. If E ≤ F̄ is a splitting field over F , then every isomorphic
mapping of E onto a subfield of F̄ leaving F fixed is actually and
automorphism of E . In particular, if E is a splitting field of finite degree
over F , then {E : F} = |G (E/F )|, where G (E/F ) is the group of
automorphisms of E leaving F fixed.

Proof. (Continued) Since {E : F} is by definition, the number of
different isomorphic mappings of E onto a subfield of F̄ leaving F fixed, as
shown above, such isomorphic mappings are all automorphisms of E (and
of course an automorphism of E leaving F fixed is such a mapping). Since
G (E/F ) is the group of automorphisms of E leaving F fixed, the result
follows.
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Corollary 50.7.

Corollary 50.7. (Continued)

Corollary. 50.7. If E ≤ F̄ is a splitting field over F , then every isomorphic
mapping of E onto a subfield of F̄ leaving F fixed is actually and
automorphism of E . In particular, if E is a splitting field of finite degree
over F , then {E : F} = |G (E/F )|, where G (E/F ) is the group of
automorphisms of E leaving F fixed.

Proof. (Continued) Since {E : F} is by definition, the number of
different isomorphic mappings of E onto a subfield of F̄ leaving F fixed, as
shown above, such isomorphic mappings are all automorphisms of E (and
of course an automorphism of E leaving F fixed is such a mapping). Since
G (E/F ) is the group of automorphisms of E leaving F fixed, the result
follows.
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