Introduction to Modern Algebra

Part X. Automorphisms and Galois Theory X.50. Splitting Fields

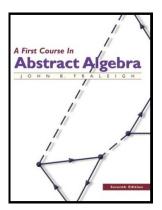


Table of contents

1 Theorem 50.3.

2 Corollary 50.6.

3 Corollary 50.7.

2 / 11

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (\Rightarrow) Let E be a splitting field over F in \overline{F} of $\{f_i(x) \mid i \in I\}$. Let σ be an automorphism of \overline{F} leaving F fixed. Let $\{\alpha_j \mid j \in J\}$ be the set of all zeros in \overline{F} of all the polynomials $f_i(x)$ for $i \in I$.

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (\Rightarrow) Let E be a splitting field over F in \bar{F} of $\{f_i(x) \mid i \in I\}$. Let σ be an automorphism of \bar{F} leaving F fixed. Let $\{\alpha_j \mid j \in J\}$ be the set of all zeros in \bar{F} of all the polynomials $f_i(x)$ for $i \in I$. By Theorem 29.18, for a given α_j the field $F(\alpha_j)$ has as elements all expressions of the form

$$g(\alpha_j) = a_0 + a_1 \alpha_j + a_2 \alpha_j^2 + \dots + a_{n_j - 1} \alpha_j^{n_j - 1}$$
 (1)

where n_i is the degree of $irr(\alpha_i, F)$ and each $a_k \in F$.

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (\Rightarrow) Let E be a splitting field over F in \bar{F} of $\{f_i(x) \mid i \in I\}$. Let σ be an automorphism of \bar{F} leaving F fixed. Let $\{\alpha_j \mid j \in J\}$ be the set of all zeros in \bar{F} of all the polynomials $f_i(x)$ for $i \in I$. By Theorem 29.18, for a given α_j the field $F(\alpha_j)$ has as elements all expressions of the form

$$g(\alpha_j) = a_0 + a_1 \alpha_j + a_2 \alpha_j^2 + \dots + a_{n_j - 1} \alpha_j^{n_j - 1}$$
 (1)

where n_j is the degree of $irr(\alpha_i, F)$ and each $a_k \in F$. Consider the set S of all finite sums and finite products of elements of the form $g(\alpha_j)$ where $j \in J$. Then $S \subseteq E$ is closed under addition and multiplication, it contains 0,1, and is closed under the process of taking additive inverses (just replace the coefficients of $g(\alpha_j)$ with their additive inverses).

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (\Rightarrow) Let E be a splitting field over F in \bar{F} of $\{f_i(x) \mid i \in I\}$. Let σ be an automorphism of \bar{F} leaving F fixed. Let $\{\alpha_j \mid j \in J\}$ be the set of all zeros in \bar{F} of all the polynomials $f_i(x)$ for $i \in I$. By Theorem 29.18, for a given α_j the field $F(\alpha_j)$ has as elements all expressions of the form

$$g(\alpha_j) = a_0 + a_1 \alpha_j + a_2 \alpha_j^2 + \dots + a_{n_j - 1} \alpha_j^{n_j - 1}$$
 (1)

where n_j is the degree of $irr(\alpha_i, F)$ and each $a_k \in F$. Consider the set S of all finite sums and finite products of elements of the form $g(\alpha_j)$ where $j \in J$. Then $S \subseteq E$ is closed under addition and multiplication, it contains 0,1, and is closed under the process of taking additive inverses (just replace the coefficients of $g(\alpha_j)$ with their additive inverses).

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (Continued) Since each element of S is in some finite extension of F, say $F(\alpha_{j_1},\alpha_{j_2},...,\alpha_{j_r})$, then for any $s\in S$ $s\neq 0$, $s\in F(\alpha_{j_1},\alpha_{j_2},...,\alpha_{j_r})$ we have $s^{-1}\in F(\alpha_{j_1},\alpha_{j_2},...,\alpha_{j_r})$ and $s^{-1}\in S$. So S is a subfield of E and S contains all α_j for $j\in J$. Since E is the splitting of $\{f_i(x)\mid i\in I\}$ over F, then E is the smallest subfield of \overline{F} containing F and all α_j for $j\in J$ (by definition of "splitting field"), so it must be that S=F since S is a subfield of E containing all α_j for $j\in J$.

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (Continued) Since each element of S is in some finite extension of F, say $F(\alpha_{j_1},\alpha_{j_2},...,\alpha_{j_r})$, then for any $s\in S$ $s\neq 0$, $s\in F(\alpha_{j_1},\alpha_{j_2},...,\alpha_{j_r})$ we have $s^{-1}\in F(\alpha_{j_1},\alpha_{j_2},...,\alpha_{j_r})$ and $s^{-1}\in S$. So S is a subfield of E and S contains all α_j for $j\in J$. Since E is the splitting of $\{f_i(x)\mid i\in I\}$ over F, then E is the smallest subfield of \overline{F} containing F and all α_j for $j\in J$ (by definition of "splitting field"), so it must be that S=F since S is a subfield of E containing all α_j for $j\in J$.

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (Continued) Since S consists of all finite sums of finite products of elements of the form $g(\alpha_j)$ for all $j \in J$ (where each g is a polynomial function with coefficients from F), then E also satisfies this — we ay that $\{\alpha_j \mid j \in J\}$ generates E over F (in the sense of taking finite sums and finite products, not in the sense of vector spaces discusses in the past). So for σ an automorphism of \bar{F} which fixes F, the value of σ on E is determined by the value of $\sigma(\alpha_j)$ for $j \in J$. By Corollary 48.5, $\sigma(\alpha_j)$ must be the conjugate of α_j and so $\sigma(\alpha_j)$ must also be a zero of $irr(\alpha_j, F)$.

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (Continued) Since S consists of all finite sums of finite products of elements of the form $g(\alpha_j)$ for all $j \in J$ (where each g is a polynomial function with coefficients from F), then E also satisfies this — we ay that $\{\alpha_j \mid j \in J\}$ generates E over F (in the sense of taking finite sums and finite products, not in the sense of vector spaces discusses in the past). So for σ an automorphism of \bar{F} which fixes F, the value of σ on E is determined by the value of $\sigma(\alpha_j)$ for $j \in J$. By Corollary 48.5, $\sigma(\alpha_j)$ must be the conjugate of α_j and so $\sigma(\alpha_j)$ must also be a zero of $irr(\alpha_j, F)$. By Theorem 29.13, the polynomial $irr(\alpha_j, F) \in F[x]$ divides $f_i(x)$ for which $f_i(\alpha_j) = 0$.

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (Continued) Since S consists of all finite sums of finite products of elements of the form $g(\alpha_j)$ for all $j \in J$ (where each g is a polynomial function with coefficients from F), then E also satisfies this — we ay that $\{\alpha_j \mid j \in J\}$ generates E over F (in the sense of taking finite sums and finite products, not in the sense of vector spaces discusses in the past). So for σ an automorphism of \bar{F} which fixes F, the value of σ on E is determined by the value of $\sigma(\alpha_j)$ for $j \in J$. By Corollary 48.5, $\sigma(\alpha_j)$ must be the conjugate of α_j and so $\sigma(\alpha_j)$ must also be a zero of $irr(\alpha_j, F)$. By Theorem 29.13, the polynomial $irr(\alpha_j, F) \in F[x]$ divides $f_i(x)$ for which $f_i(\alpha_j) = 0$.

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (Continued) So $f_i(\sigma(\alpha_j)) = 0$ also and hence $\sigma(\alpha_j) \in E$. [Here, we see that automorphism of \overline{F} which fixes F is mapping the zeros of $irr(\alpha_j, F)$ to themselves — that is, σ is permuting the zeros of $irr(\alpha_j, F)$.] So $\sigma[E]$ is some subfield of E (as an automorphism of \overline{F} , we know that σ is one to one and has the homomorphism property with respect to + and \cdot , but we do not know that σ is onto when restricted to E).

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (Continued) So $f_i(\sigma(\alpha_i)) = 0$ also and hence $\sigma(\alpha_i) \in E$. [Here, we see that automorphism of F which fixes F is mapping the zeros of $irr(\alpha_i, F)$ to themselves — that is, σ is permuting the zeros of $irr(\alpha_i, F)$. So $\sigma[E]$ is some subfield of E (as an automorphism of \overline{F} , we know that σ is one to one and has the homomorphism property with respect to + and \cdot , but we do not know that σ is onto when restricted to E). We can replace σ with σ^{-1} above (σ^{-1} is also an automorphism of \bar{F} which fixes F) to conclude that $\sigma^{-1}[E]$ is also a subfield of E.

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (Continued) So $f_i(\sigma(\alpha_j))=0$ also and hence $\sigma(\alpha_j)\in E$. [Here, we see that automorphism of \bar{F} which fixes F is mapping the zeros of $irr(\alpha_j,F)$ to themselves — that is, σ is permuting the zeros of $irr(\alpha_j,F)$.] So $\sigma[E]$ is some subfield of E (as an automorphism of \bar{F} , we know that σ is one to one and has the homomorphism property with respect to + and \cdot , but we do not know that σ is onto when restricted to E). We can replace σ with σ^{-1} above $(\sigma^{-1}$ is also an automorphism of \bar{F} which fixes F) to conclude that $\sigma^{-1}[E]$ is also a subfield of E. Let $e\in E$. Then $\sigma^{-1}(e)\in E$ and so $\sigma(\sigma^{-1}(e))=e$. So σ maps E onto E and $\sigma[E]=E$.

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (Continued) So $f_i(\sigma(\alpha_j))=0$ also and hence $\sigma(\alpha_j)\in E$. [Here, we see that automorphism of \bar{F} which fixes F is mapping the zeros of $irr(\alpha_j,F)$ to themselves — that is, σ is permuting the zeros of $irr(\alpha_j,F)$.] So $\sigma[E]$ is some subfield of E (as an automorphism of \bar{F} , we know that σ is one to one and has the homomorphism property with respect to + and \cdot , but we do not know that σ is onto when restricted to E). We can replace σ with σ^{-1} above $(\sigma^{-1}$ is also an automorphism of \bar{F} which fixes F) to conclude that $\sigma^{-1}[E]$ is also a subfield of E. Let $e \in E$. Then $\sigma^{-1}(e) \in E$ and so $\sigma(\sigma^{-1}(e)) = e$. So σ maps E onto E and $\sigma(E) = E$. Hence σ is an automorphism of E which leaves F fixed.

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (Continued) So $f_i(\sigma(\alpha_j))=0$ also and hence $\sigma(\alpha_j)\in E$. [Here, we see that automorphism of \bar{F} which fixes F is mapping the zeros of $irr(\alpha_j,F)$ to themselves — that is, σ is permuting the zeros of $irr(\alpha_j,F)$.] So $\sigma[E]$ is some subfield of E (as an automorphism of \bar{F} , we know that σ is one to one and has the homomorphism property with respect to + and \cdot , but we do not know that σ is onto when restricted to E). We can replace σ with σ^{-1} above $(\sigma^{-1}$ is also an automorphism of \bar{F} which fixes F) to conclude that $\sigma^{-1}[E]$ is also a subfield of E. Let $e \in E$. Then $\sigma^{-1}(e) \in E$ and so $\sigma(\sigma^{-1}(e)) = e$. So σ maps E onto E and $\sigma[E] = E$. Hence σ is an automorphism of E which leaves F fixed.

Theorem. 50.3. A field E, where $F \leq E \leq \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself (and this induces an automorphism of E leaving F fixed).

Proof. (Continued) (\Leftarrow)

7 / 11

Corollary. 50.6. If $E \leq \overline{F}$ is a splitting field over F, then every irreducible polynomial in F[x] having a zero in E splits in E.

Proof. If E is a splitting field over F in \overline{F} , then by Theorem 50.3a (the part for which we have given a proof), every automorphism of \overline{F} induces an automorphism of E.

Corollary. 50.6. If $E \leq \overline{F}$ is a splitting field over F, then every irreducible polynomial in F[x] having a zero in E splits in E.

Proof. If E is a splitting field over F in \bar{F} , then by Theorem 50.3a (the part for which we have given a proof), every automorphism of \bar{F} induces an automorphism of E. Let $f(x) \in F[x]$ be irreducible and let f(x) have a zero α in E. If β is any zero of f in \bar{F} (that is, β is a conjugate of α), then by Theorem 48.3 (The Conjugation Isomorphisms Theorem), there is a conjugation isomorphism $\Psi_{\alpha,\beta}$ of $F(\alpha)$ onto $F(\beta)$ which fixes F.

Corollary. 50.6. If $E \leq \overline{F}$ is a splitting field over F, then every irreducible polynomial in F[x] having a zero in E splits in E.

Proof. If E is a splitting field over F in \bar{F} , then by Theorem 50.3a (the part for which we have given a proof), every automorphism of \bar{F} induces an automorphism of E. Let $f(x) \in F[x]$ be irreducible and let f(x) have a zero α in E. If β is any zero of f in \bar{F} (that is, β is a conjugate of α), then by Theorem 48.3 (The Conjugation Isomorphisms Theorem), there is a conjugation isomorphism $\Psi_{\alpha,\beta}$ of $F(\alpha)$ onto $F(\beta)$ which fixes F. By Theorem 49.3 (The Isomorphism Extension Theorem — we are really using Corollary 49.4), $\Psi_{\alpha,\beta}$ can be extended to an isomorphism τ of \bar{F} into a subfield of \bar{F} which fixes F.

Corollary. 50.6. If $E \leq \overline{F}$ is a splitting field over F, then every irreducible polynomial in F[x] having a zero in E splits in E.

Proof. If E is a splitting field over F in \bar{F} , then by Theorem 50.3a (the part for which we have given a proof), every automorphism of \bar{F} induces an automorphism of E. Let $f(x) \in F[x]$ be irreducible and let f(x) have a zero α in E. If β is any zero of f in \overline{F} (that is, β is a conjugate of α), then by Theorem 48.3 (The Conjugation Isomorphisms Theorem), there is a conjugation isomorphism $\Psi_{\alpha,\beta}$ of $F(\alpha)$ onto $F(\beta)$ which fixes F. By Theorem 49.3 (The Isomorphism Extension Theorem — we are really using Corollary 49.4), $\Psi_{\alpha,\beta}$ can be extended to an isomorphism τ of \bar{F} into a subfield of \bar{F} which fixes F. Now $\tau^{-1}:\tau[\bar{F}]\to \bar{F}$ (not necessarily onto) is an isomorphism of $\tau[\bar{F}]$ with a subfield of \bar{F} which fixes F (and maps β to α) and by Theorem 49.3 (The Isomorphism Extension Theorem), τ^{-1} can be extended from $\tau[\bar{F}]$ to all of \bar{F} and $\tau^{1-}[\bar{F}]$ is a subfield of \bar{F} .

Corollary. 50.6. If $E \leq \overline{F}$ is a splitting field over F, then every irreducible polynomial in F[x] having a zero in E splits in E.

Proof. If E is a splitting field over F in \bar{F} , then by Theorem 50.3a (the part for which we have given a proof), every automorphism of \bar{F} induces an automorphism of E. Let $f(x) \in F[x]$ be irreducible and let f(x) have a zero α in E. If β is any zero of f in \overline{F} (that is, β is a conjugate of α), then by Theorem 48.3 (The Conjugation Isomorphisms Theorem), there is a conjugation isomorphism $\Psi_{\alpha,\beta}$ of $F(\alpha)$ onto $F(\beta)$ which fixes F. By Theorem 49.3 (The Isomorphism Extension Theorem — we are really using Corollary 49.4), $\Psi_{\alpha,\beta}$ can be extended to an isomorphism τ of \bar{F} into a subfield of \bar{F} which fixes F. Now $\tau^{-1}:\tau[\bar{F}]\to \bar{F}$ (not necessarily onto) is an isomorphism of $\tau[\bar{F}]$ with a subfield of \bar{F} which fixes F (and maps β to α) and by Theorem 49.3 (The Isomorphism Extension Theorem), τ^{-1} can be extended from $\tau[\bar{F}]$ to all of \bar{F} and $\tau^{1-}[\bar{F}]$ is a subfield of \bar{F} .

Corollary 50.6. (Continued)

Corollary. 50.6. If $E \leq \overline{F}$ is a splitting field over F, then every irreducible polynomial in F[x] having a zero in E splits in E.

Proof. (Continued) Since τ is defined on all of \bar{F} , then the range of τ^{-1} is all of \bar{F} . Hence, as in the proof of Theorem 50.3(a), $\tau[\tau^{-1}[\bar{F}]] = \bar{F}$ and so τ is an automorphism of \bar{F} which fixes F. As commented earlier, by Theorem 50.3(a), τ induces an automorphism of E, and we have $\tau(\alpha) = \beta \in E$. Since β is an arbitrary zero of f(x), then all zeroes of f(x) are in E. That is, E splits f(x).

Corollary 50.6. (Continued)

Corollary. 50.6. If $E \leq \overline{F}$ is a splitting field over F, then every irreducible polynomial in F[x] having a zero in E splits in E.

Proof. (Continued) Since τ is defined on all of \bar{F} , then the range of τ^{-1} is all of \bar{F} . Hence, as in the proof of Theorem 50.3(a), $\tau[\tau^{-1}[\bar{F}]] = \bar{F}$ and so τ is an automorphism of \bar{F} which fixes F. As commented earlier, by Theorem 50.3(a), τ induces an automorphism of E, and we have $\tau(\alpha) = \beta \in E$. Since β is an arbitrary zero of f(x), then all zeroes of f(x) are in E. That is, E splits f(x).

Corollary. 50.7. If $E \leq \bar{F}$ is a splitting field over F, then every isomorphic mapping of E onto a subfield of \bar{F} leaving F fixed is actually and automorphism of E. In particular, if E is a splitting field of finite degree over F, then $\{E:F\}=|G(E/F)|$, where G(E/F) is the group of automorphisms of E leaving F fixed.

Proof. Every isomorphism σ mapping E onto a subfield of \bar{F} leaving F fixed, can be extended to an isomrophism τ of \bar{F} with a subfield of \bar{F} by Theorem 49.3 (The Isomorphism Extension Theorem). By the argument in the proof of Corollary 50.6 (and considering τ^{-1}), we see that τ is onto \bar{F} and so τ is an automorphism of \bar{F} .

Corollary. 50.7. If $E \leq \bar{F}$ is a splitting field over F, then every isomorphic mapping of E onto a subfield of \bar{F} leaving F fixed is actually and automorphism of E. In particular, if E is a splitting field of finite degree over F, then $\{E:F\}=|G(E/F)|$, where G(E/F) is the group of automorphisms of E leaving F fixed.

Proof. Every isomorphism σ mapping E onto a subfield of \bar{F} leaving F fixed, can be extended to an isomrophism τ of \bar{F} with a subfield of \bar{F} by Theorem 49.3 (The Isomorphism Extension Theorem). By the argument in the proof of Corollary 50.6 (and considering τ^{-1}), we see that τ is onto \bar{F} and so τ is an automorphism of \bar{F} . Since E is a splitting field over F (by hypothesis), then by Theorem 50.3, τ restricted to E (that is σ since τ is an extension of σ) is an automorphism of E. That is, σ is an automorphism of E and the first claim holds.

Corollary. 50.7. If $E \leq \bar{F}$ is a splitting field over F, then every isomorphic mapping of E onto a subfield of \bar{F} leaving F fixed is actually and automorphism of E. In particular, if E is a splitting field of finite degree over F, then $\{E:F\}=|G(E/F)|$, where G(E/F) is the group of automorphisms of E leaving F fixed.

Proof. Every isomorphism σ mapping E onto a subfield of \bar{F} leaving F fixed, can be extended to an isomrophism τ of \bar{F} with a subfield of \bar{F} by Theorem 49.3 (The Isomorphism Extension Theorem). By the argument in the proof of Corollary 50.6 (and considering τ^{-1}), we see that τ is onto \bar{F} and so τ is an automorphism of \bar{F} . Since E is a splitting field over F (by hypothesis), then by Theorem 50.3, τ restricted to E (that is σ since τ is an extension of σ) is an automorphism of E. That is, σ is an automorphism of E and the first claim holds.

Corollary 50.7. (Continued)

Corollary. 50.7. If $E \leq \bar{F}$ is a splitting field over F, then every isomorphic mapping of E onto a subfield of \bar{F} leaving F fixed is actually and automorphism of E. In particular, if E is a splitting field of finite degree over F, then $\{E:F\}=|G(E/F)|$, where G(E/F) is the group of automorphisms of E leaving F fixed.

Proof. (Continued) Since $\{E:F\}$ is by definition, the number of different isomorphic mappings of E onto a subfield of \bar{F} leaving F fixed, as shown above, such isomorphic mappings are all automorphisms of E (and of course an automorphism of E leaving F fixed is such a mapping). Since G(E/F) is the group of automorphisms of E leaving F fixed, the result follows.

Corollary 50.7. (Continued)

Corollary. 50.7. If $E \leq \bar{F}$ is a splitting field over F, then every isomorphic mapping of E onto a subfield of \bar{F} leaving F fixed is actually and automorphism of E. In particular, if E is a splitting field of finite degree over F, then $\{E:F\}=|G(E/F)|$, where G(E/F) is the group of automorphisms of E leaving F fixed.

Proof. (Continued) Since $\{E:F\}$ is by definition, the number of different isomorphic mappings of E onto a subfield of \overline{F} leaving F fixed, as shown above, such isomorphic mappings are all automorphisms of E (and of course an automorphism of E leaving F fixed is such a mapping). Since G(E/F) is the group of automorphisms of E leaving F fixed, the result follows.