Introduction to Modern Algebra

Part I. Groups and Subgroups I.3. Isomorphic Binary Structures

Table of contents

Exercise 3.4

Exercise 3.4. Let $\langle S, * \rangle = \langle \mathbb{Z}, + \rangle$ and $\langle S', *' \rangle = \langle \mathbb{Z}, + \rangle$ and $\varphi(n) = n + 1$. Is φ an isomorphism?

Solution. Well, notice that φ is one-to-one and onto. However, consider $\varphi(1+2) = \varphi(3) = \varphi(3) + 1 = 4$ and $\varphi(1) + \varphi(2) = ((1) + 1) + ((2) + 1) = 5$ and so $\varphi(1+2) \neq \varphi(1) + \varphi(2)$ and φ and is NOT an isomorphism.

Exercise 3.4

Exercise 3.4. Let $\langle S, * \rangle = \langle \mathbb{Z}, + \rangle$ and $\langle S', *' \rangle = \langle \mathbb{Z}, + \rangle$ and $\varphi(n) = n + 1$. Is φ an isomorphism?

Solution. Well, notice that φ is one-to-one and onto. However, consider $\varphi(1+2) = \varphi(3) = \varphi(3) + 1 = 4$ and $\varphi(1) + \varphi(2) = ((1) + 1) + ((2) + 1) = 5$ and so $\varphi(1+2) \neq \varphi(1) + \varphi(2)$ and φ and is NOT an isomorphism.

Theorem 3.14 Suppose $\langle S, * \rangle$ has an identity element *e*. If $\varphi : S \to S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$, then $\varphi(e)$ is an identity element in $\langle S', *' \rangle$.

Proof. Let $s' \in S'$. Since φ is onto, then $\varphi(s) = s'$ for some $s \in S$. Then, since φ is an isomorphism, $\varphi(e) *' S' = \varphi(e) *' \varphi(s) = \varphi(e * s) = \varphi(s) = s'$. Similarly, $s' *' \varphi(e) = s'$. Therefore $\varphi(e)$ is an identity in $\langle S', *' \rangle$.

Theorem 3.14

Theorem 3.14 Suppose $\langle S, * \rangle$ has an identity element *e*. If $\varphi : S \to S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$, then $\varphi(e)$ is an identity element in $\langle S', *' \rangle$.

Proof. Let $s' \in S'$. Since φ is onto, then $\varphi(s) = s'$ for some $s \in S$. Then, since φ is an isomorphism, $\varphi(e) *' S' = \varphi(e) *' \varphi(s) = \varphi(e * s) = \varphi(s) = s'$. Similarly, $s' *' \varphi(e) = s'$. Therefore $\varphi(e)$ is an identity in $\langle S', *' \rangle$.

Exercise 3.16(a)

Exercise 3.16(a) Let $\langle S, * \rangle = \langle \mathbb{Z}, + \rangle$ and $\langle S', *' \rangle = \langle \mathbb{Z}, \circ \rangle$ where $a \circ b = a + b - 1$. Then $\varphi(n) = n + 1$, is an isomorphism from $\langle \mathbb{Z}, + \rangle$ to $\langle \mathbb{Z}, \circ \rangle$:

Proof. For all $a, b \in \mathbb{Z}$, $\varphi(a+b) = a+b+1$ and $\varphi(a) \circ \varphi(b) = (a+1) \circ (b+1) = a+b+1$ and so $\varphi(a+b) = \varphi(a) \circ \varphi(b)$ and φ (being one-to-one and onto) is an isomorphism. Notice the identity in $\langle \mathbb{Z}, \circ \rangle$ is $\varphi(0) = 0 + 1 = 1$.

Exercise 3.16(a)

Exercise 3.16(a) Let $\langle S, * \rangle = \langle \mathbb{Z}, + \rangle$ and $\langle S', *' \rangle = \langle \mathbb{Z}, \circ \rangle$ where $a \circ b = a + b - 1$. Then $\varphi(n) = n + 1$, is an isomorphism from $\langle \mathbb{Z}, + \rangle$ to $\langle \mathbb{Z}, \circ \rangle$:

Proof. For all $a, b \in \mathbb{Z}$, $\varphi(a+b) = a+b+1$ and $\varphi(a) \circ \varphi(b) = (a+1) \circ (b+1) = a+b+1$ and so $\varphi(a+b) = \varphi(a) \circ \varphi(b)$ and φ (being one-to-one and onto) is an isomorphism. Notice the identity in $\langle \mathbb{Z}, \circ \rangle$ is $\varphi(0) = 0 + 1 = 1$.

Exercise 3.26 If $\varphi: S \to S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$, then φ^{-1} is an isomorphism of $\langle S', *' \rangle$ with $\langle S, * \rangle$.

Proof. If $\varphi : S \to S'$ is one-to-one and onto, then $\varphi^{-1} : S' \to S$ is one-to-one and onto. Next, for all $a', b' \in S'$, there exists $a, b \in S$ such that $\varphi(a) = a'$ and $\varphi(b) = b'$. Also $\varphi^{-1}(a' *'b') = \varphi^{-1}(\varphi(a) *'\varphi(b)) = \varphi^{-1}(\varphi(a * b))$ (since φ is an isomorphism) = $a * b = \varphi^{-1}(a') * \varphi^{-1}(b')$. Therefore φ' is an isomorphism.

Exercise 3.26 If $\varphi : S \to S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$, then φ^{-1} is an isomorphism of $\langle S', *' \rangle$ with $\langle S, * \rangle$.

Proof. If $\varphi : S \to S'$ is one-to-one and onto, then $\varphi^{-1} : S' \to S$ is one-to-one and onto. Next, for all $a', b' \in S'$, there exists $a, b \in S$ such that $\varphi(a) = a'$ and $\varphi(b) = b'$. Also $\varphi^{-1}(a' *'b') = \varphi^{-1}(\varphi(a) *'\varphi(b)) = \varphi^{-1}(\varphi(a * b))$ (since φ is an isomorphism) = $a * b = \varphi^{-1}(a') * \varphi^{-1}(b')$. Therefore φ' is an isomorphism.

Exercise 3.33(b)

Exercise 3.33(b) Let $H = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$ and \cdot be matrix multiplication (H is closed \cdot by Exercise 2.23). Prove $\langle \mathbb{C}, \cdot \rangle$ is isomorphic to $\langle H, \cdot \rangle$.

Proof. For $z = a + ib \in \mathbb{C}$, define $\varphi(z) = \varphi(a + ib) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. Then φ is one-to-one and onto (right?). Also $\varphi((a + ib) \cdot (c + id)) = \varphi((ac - bd) + i(ad + bc))$

$$= \begin{bmatrix} ac - bd & -ad - bc \\ ad + bc & ac - bd \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \cdot \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$$

 $=\varphi(a+ib)\cdot\varphi(c+id)$. Therefore φ is an isomorphism.

Exercise 3.33(b)

Exercise 3.33(b) Let $H = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$ and \cdot be matrix multiplication (H is closed \cdot by Exercise 2.23). Prove $\langle \mathbb{C}, \cdot \rangle$ is isomorphic to $\langle H, \cdot \rangle$.

Proof. For $z = a + ib \in \mathbb{C}$, define $\varphi(z) = \varphi(a + ib) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. Then φ is one-to-one and onto (right?). Also $\varphi((a + ib) \cdot (c + id)) = \varphi((ac - bd) + i(ad + bc))$ $= \begin{bmatrix} ac - bd & -ad - bc \\ ad + bc & ac - bd \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \cdot \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$ $= \varphi(a + ib) \cdot \varphi(c + id).$ Therefore φ is an isomorphism.