Introduction to Modern Algebra

Part I. Groups and Subgroups

I.3. Isomorphic Binary Structures

Table of contents

(1) Exercise 3.4
(2) Theorem 3.14
(3) Exercise 3.16(a)
(4) Exercise 3.26

Exercise 3.4

Exercise 3.4. Let $\langle S, *\rangle=\langle\mathbb{Z},+\rangle$ and $\left\langle S^{\prime}, *^{\prime}\right\rangle=\langle\mathbb{Z},+\rangle$ and $\varphi(n)=n+1$. Is φ an isomorphism?

Solution. Well, notice that φ is one-to-one and onto. However, consider

 $\varphi(1+2)=\varphi(3)=\varphi(3)+1=4$ and $\varphi(1)+\varphi(2)=((1)+1)+((2)+1)=5$ and so $\varphi(1+2) \neq \varphi(1)+\varphi(2)$ and φ and is NOT an isomorphism.
Exercise 3.4

Exercise 3.4. Let $\langle S, *\rangle=\langle\mathbb{Z},+\rangle$ and $\left\langle S^{\prime}, *^{\prime}\right\rangle=\langle\mathbb{Z},+\rangle$ and $\varphi(n)=n+1$. Is φ an isomorphism?

Solution. Well, notice that φ is one-to-one and onto. However, consider $\varphi(1+2)=\varphi(3)=\varphi(3)+1=4$ and $\varphi(1)+\varphi(2)=((1)+1)+((2)+1)=5$ and so $\varphi(1+2) \neq \varphi(1)+\varphi(2)$ and φ and is NOT an isomorphism.

Theorem 3.14

Theorem 3.14 Suppose $\langle S, *\rangle$ has an identity element e. If $\varphi: S \rightarrow S^{\prime}$ is an isomorphism of $\langle S, *\rangle$ with $\left\langle S^{\prime}, *^{\prime}\right\rangle$, then $\varphi(e)$ is an identity element in $\left\langle S^{\prime}, *^{\prime}\right\rangle$.

Proof. Let $s^{\prime} \in S^{\prime}$. Since φ is onto, then $\varphi(s)=s^{\prime}$ for some $s \in S$.
Then, since φ is an isomorphism,
$\varphi(e) *^{\prime} S^{\prime}=\varphi(e) *^{\prime} \varphi(s)=\varphi(e * s)=\varphi(s)=s^{\prime}$. Similarly,
$s^{\prime} *^{\prime} \varphi(e)=s^{\prime}$. Therefore $\varphi(e)$ is an identity in $\left\langle S^{\prime}, *^{\prime}\right\rangle$.

Theorem 3.14

Theorem 3.14 Suppose $\langle S, *\rangle$ has an identity element e. If $\varphi: S \rightarrow S^{\prime}$ is an isomorphism of $\langle S, *\rangle$ with $\left\langle S^{\prime}, *^{\prime}\right\rangle$, then $\varphi(e)$ is an identity element in $\left\langle S^{\prime}, *^{\prime}\right\rangle$.

Proof. Let $s^{\prime} \in S^{\prime}$. Since φ is onto, then $\varphi(s)=s^{\prime}$ for some $s \in S$.
Then, since φ is an isomorphism,
$\varphi(e) *^{\prime} S^{\prime}=\varphi(e) *^{\prime} \varphi(s)=\varphi(e * s)=\varphi(s)=s^{\prime}$. Similarly, $s^{\prime} *^{\prime} \varphi(e)=s^{\prime}$. Therefore $\varphi(e)$ is an identity in $\left\langle S^{\prime}, *^{\prime}\right\rangle$.

Exercise 3.16(a)

Exercise 3.16(a) Let $\langle S, *\rangle=\langle\mathbb{Z},+\rangle$ and $\left\langle S^{\prime}, *^{\prime}\right\rangle=\langle\mathbb{Z}, \circ\rangle$ where $a \circ b=a+b-1$. Then $\varphi(n)=n+1$, is an isomorphism from $\langle\mathbb{Z},+\rangle$ to $\langle\mathbb{Z}, \circ\rangle$:

Proof. For all $a, b \in \mathbb{Z}, \varphi(a+b)=a+b+1$ and
$\varphi(a) \circ \varphi(b)=(a+1) \circ(b+1)=a+b+1$ and so
$\varphi(a+b)=\varphi(a) \circ \varphi(b)$ and φ (being one-to-one and onto) is an isomorphism. Notice the identity in $\langle\mathbb{Z}, \circ\rangle$ is $\varphi(0)=0+1=1$.

Exercise 3.16(a)

Exercise 3.16(a) Let $\langle S, *\rangle=\langle\mathbb{Z},+\rangle$ and $\left\langle S^{\prime}, *^{\prime}\right\rangle=\langle\mathbb{Z}, \circ\rangle$ where $a \circ b=a+b-1$. Then $\varphi(n)=n+1$, is an isomorphism from $\langle\mathbb{Z},+\rangle$ to $\langle\mathbb{Z}, \circ\rangle$:

Proof. For all $a, b \in \mathbb{Z}, \varphi(a+b)=a+b+1$ and $\varphi(a) \circ \varphi(b)=(a+1) \circ(b+1)=a+b+1$ and so $\varphi(a+b)=\varphi(a) \circ \varphi(b)$ and φ (being one-to-one and onto) is an isomorphism. Notice the identity in $\langle\mathbb{Z}, \circ\rangle$ is $\varphi(0)=0+1=1$.

Exercise 3.26

Exercise 3.26 If $\varphi: S \rightarrow S^{\prime}$ is an isomorphism of $\langle S, *\rangle$ with $\left\langle S^{\prime}, *^{\prime}\right\rangle$, then φ^{-1} is an isomorphism of $\left\langle S^{\prime}, *^{\prime}\right\rangle$ with $\langle S, *\rangle$.

Proof. If $\varphi: S \rightarrow S^{\prime}$ is one-to-one and onto, then $\varphi^{-1}: S^{\prime} \rightarrow S$ is one-to-one and onto. Next, for all $a^{\prime}, b^{\prime} \in S^{\prime}$, there exists $a, b \in S$ such that $\varphi(a)=a^{\prime}$ and $\varphi(b)=b^{\prime}$. Also $\varphi^{-1}\left(a^{\prime} *^{\prime} b^{\prime}\right)=\varphi^{-1}\left(\varphi(a) *^{\prime} \varphi(b)\right)=\varphi^{-1}(\varphi(a * b))$ (since φ is an isomorphism) $=a * b=\varphi^{-1}\left(a^{\prime}\right) * \varphi^{-1}\left(b^{\prime}\right)$. Therefore φ^{\prime} is an isomorphism.

Exercise 3.26

Exercise 3.26 If $\varphi: S \rightarrow S^{\prime}$ is an isomorphism of $\langle S, *\rangle$ with $\left\langle S^{\prime}, *^{\prime}\right\rangle$, then φ^{-1} is an isomorphism of $\left\langle S^{\prime}, *^{\prime}\right\rangle$ with $\langle S, *\rangle$.

Proof. If $\varphi: S \rightarrow S^{\prime}$ is one-to-one and onto, then $\varphi^{-1}: S^{\prime} \rightarrow S$ is one-to-one and onto. Next, for all $a^{\prime}, b^{\prime} \in S^{\prime}$, there exists $a, b \in S$ such that $\varphi(a)=a^{\prime}$ and $\varphi(b)=b^{\prime}$. Also $\varphi^{-1}\left(a^{\prime} *^{\prime} b^{\prime}\right)=\varphi^{-1}\left(\varphi(a) *^{\prime} \varphi(b)\right)=\varphi^{-1}(\varphi(a * b))$ (since φ is an isomorphism) $=a * b=\varphi^{-1}\left(a^{\prime}\right) * \varphi^{-1}\left(b^{\prime}\right)$. Therefore φ^{\prime} is an isomorphism.

Exercise 3.33(b)

Exercise 3.33(b) Let $H=\left\{\left.\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$ and • be matrix multiplication (H is closed \cdot by Exercise 2.23). Prove $\langle\mathbb{C}, \cdot\rangle$ is isomorphic to $\langle H, \cdot\rangle$.

Proof. For $z=a+i b \in \mathbb{C}$, define $\varphi(z)=\varphi(a+i b)=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ Then φ
is one-to-one and onto (right?). Also
$\varphi((a+i b) \cdot(c+i d))=\varphi((a c-b d)+i(a d+b c))$

$$
=\left[\begin{array}{cc}
a c-b d & -a d-b c \\
a d+b c & a c-b d
\end{array}\right]=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \cdot\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right]
$$

$=\varphi(a+i b) \cdot \varphi(c+i d)$. Therefore φ is an isomorphism.

Exercise 3.33(b)

Exercise 3.33(b) Let $H=\left\{\left.\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$ and \cdot be matrix multiplication (H is closed \cdot by Exercise 2.23). Prove $\langle\mathbb{C}, \cdot\rangle$ is isomorphic to $\langle H, \cdot\rangle$.

Proof. For $z=a+i b \in \mathbb{C}$, define $\varphi(z)=\varphi(a+i b)=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$. Then φ is one-to-one and onto (right?). Also

$$
\varphi((a+i b) \cdot(c+i d))=\varphi((a c-b d)+i(a d+b c))
$$

$$
=\left[\begin{array}{cc}
a c-b d & -a d-b c \\
a d+b c & a c-b d
\end{array}\right]=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \cdot\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right]
$$

$=\varphi(a+i b) \cdot \varphi(c+i d)$. Therefore φ is an isomorphism.

