Introduction to Modern Algebra

Part I. Groups and Subgroups

I.4. Groups

Table of contents

(1) Theorem 4.15
(2) Theorem 4.16
(3) Theorem 4.17a

4 Theorem 4.17b
(5) Corollary 4.18

Theorem 4.15

Theorem 4.15. If $\langle G, *\rangle$ is a group, then (1) $a * c=b * c \Longrightarrow b=c$ and (2) $b * a=c * a \Longrightarrow b=c$ for all $a, b, c \in G$. These properties are called the left and right cancellation laws, respectively.

Proof. Let $a, b, c \in G$ and let a^{\prime} be the inverse of a. Then $a * b=a * c \Longrightarrow a^{\prime} *(a * b)=a^{\prime} *(a * c)$. By associativity, $\left(a^{\prime} * a\right) * b=\left(a^{\prime} * a\right) * c$ and $e * b=e * c\left(\right.$ since a^{\prime} is the inverse of a) and $b=c$ since e is the identity of G. Right cancellation follows similarly.

Theorem 4.15

Theorem 4.15. If $\langle G, *\rangle$ is a group, then (1) $a * c=b * c \Longrightarrow b=c$ and (2) $b * a=c * a \Longrightarrow b=c$ for all $a, b, c \in G$. These properties are called the left and right cancellation laws, respectively.

Proof. Let $a, b, c \in G$ and let a^{\prime} be the inverse of a. Then $a * b=a * c \Longrightarrow a^{\prime} *(a * b)=a^{\prime} *(a * c)$. By associativity, $\left(a^{\prime} * a\right) * b=\left(a^{\prime} * a\right) * c$ and $e * b=e * c$ (since a^{\prime} is the inverse of a) and $b=c$ since e is the identity of G. Right cancellation follows similarly. \square

Theorem 4.16

Theorem 4.16. If $\langle G, *\rangle$ is a group, then the equations $a * x=b$ and $y * a=b$ have unique solutions x and y for all $a, b \in G$.

Proof. First, consider $a *=b$. Then $a^{\prime} *(a * x)=a^{\prime} * b$ and $\left(a^{\prime} * a\right) * x=a^{\prime} * b$ by associativity, or $e * x=a^{\prime} * b$ and hence $x=a^{\prime} * b$ is a solution. To show uniqueness of solutions, suppose x_{1} and x_{2} are both solutions : $a * x_{1}=a * x_{2}=b$. Then by left cancellation (Theorem 4.15), $x_{1}=x_{2}$ and the solution is unique. The result follows similarly for equation $y * a=b$.

Theorem 4.16

Theorem 4.16. If $\langle G, *\rangle$ is a group, then the equations $a * x=b$ and $y * a=b$ have unique solutions x and y for all $a, b \in G$.

Proof. First, consider $a *=b$. Then $a^{\prime} *(a * x)=a^{\prime} * b$ and $\left(a^{\prime} * a\right) * x=a^{\prime} * b$ by associativity, or $e * x=a^{\prime} * b$ and hence $x=a^{\prime} * b$ is a solution. To show uniqueness of solutions, suppose x_{1} and x_{2} are both solutions : $a * x_{1}=a * x_{2}=b$. Then by left cancellation (Theorem 4.15), $x_{1}=x_{2}$ and the solution is unique. The result follows similarly for equation $y * a=b$.

Theorem 4.17a

Theorem. 4.17a. In group $\langle G, *\rangle$, there is only on element $e \in G$ such that $e * x=x * e=x$ for al $x \in G$.

Proof. Uniqueness of the identity of a binary operation was shown in Theorem 3.13.

Theorem 4.17a

Theorem. 4.17a. In group $\langle G, *\rangle$, there is only on element $e \in G$ such that $e * x=x * e=x$ for al $x \in G$.

Proof. Uniqueness of the identity of a binary operation was shown in Theorem 3.13.

Theorem 4.17b

Theorem. 4.17b. In group $\langle G, *\rangle$ for any given $a \in G$ there is only one element $a^{\prime} \in G$ such that $a^{\prime} * a=a * a^{\prime}=e$. That is, inverses are unique.

Proof. Suppose that a^{\prime} and $a^{\prime \prime}$ are both inverses of element $a \in G$. Then $a * a^{\prime}=a * a^{\prime \prime}=e$ and by left cancellation (Theorem 4.15), $a^{\prime}=a^{\prime \prime}$.

Theorem 4.17b

Theorem. 4.17b. In group $\langle G, *\rangle$ for any given $a \in G$ there is only one element $a^{\prime} \in G$ such that $a^{\prime} * a=a * a^{\prime}=e$. That is, inverses are unique.

Proof. Suppose that a^{\prime} and $a^{\prime \prime}$ are both inverses of element $a \in G$. Then $a * a^{\prime}=a * a^{\prime \prime}=e$ and by left cancellation (Theorem 4.15), $a^{\prime}=a^{\prime \prime}$.

Corollary 4.18

Corollary 4.18. Let G be a group. For all $a, b \in G$, we have $(a * b)^{\prime}=b^{\prime} * a^{\prime}$.

Proof. We often denote the inverse of a as $a^{\prime}=a^{-1}$. We have

$$
\begin{aligned}
(a * b) *\left(b^{\prime} * a^{\prime}\right) & =(a * b) *\left(b^{-1} * a^{-1}\right) \\
& =\left((a * b) * b^{-1}\right) * a^{-1} \text { by associativity } \\
& =\left(a *\left(b * b^{-1}\right)\right) * a^{-1} \text { by associativity } \\
& =(a * e) * a^{-1} \\
& =a * a^{-1} \\
& =e
\end{aligned}
$$

So $b^{-1} * a^{-1}$ is the inverse of $a * b$.

Corollary 4.18

Corollary 4.18. Let G be a group. For all $a, b \in G$, we have $(a * b)^{\prime}=b^{\prime} * a^{\prime}$.

Proof. We often denote the inverse of a as $a^{\prime}=a^{-1}$. We have

$$
\begin{aligned}
(a * b) *\left(b^{\prime} * a^{\prime}\right) & =(a * b) *\left(b^{-1} * a^{-1}\right) \\
& =\left((a * b) * b^{-1}\right) * a^{-1} \text { by associativity } \\
& =\left(a *\left(b * b^{-1}\right)\right) * a^{-1} \text { by associativity } \\
& =(a * e) * a^{-1} \\
& =a * a^{-1} \\
& =e
\end{aligned}
$$

So $b^{-1} * a^{-1}$ is the inverse of $a * b$.

