Introduction to Modern Algebra Part I. Groups and Subgroups 1.4. Groups #### Table of contents - 1 Theorem 4.15 - 2 Theorem 4.16 - Theorem 4.17a - 4.17b - **5** Corollary 4.18 **Theorem 4.15.** If $\langle G, * \rangle$ is a group, then (1) $a * c = b * c \implies b = c$ and (2) $b*a=c*a \implies b=c$ for all $a,b,c\in G$. These properties are called the left and right cancellation laws, respectively. **Proof.** Let $a, b, c \in G$ and let a' be the inverse of a. Then $a*b = a*c \implies a'*(a*b) = a'*(a*c)$. By associativity, (a'*a)*b=(a'*a)*c and e*b=e*c (since a' is the inverse of a) and b=c since e is the identity of G. Right cancellation follows similarly. **Theorem 4.15.** If $\langle G, * \rangle$ is a group, then (1) $a*c = b*c \implies b = c$ and (2) $b*a = c*a \implies b = c$ for all $a,b,c \in G$. These properties are called the left and right cancellation laws, respectively. **Proof.** Let $a, b, c \in G$ and let a' be the inverse of a. Then $a*b=a*c \implies a'*(a*b)=a'*(a*c)$. By associativity, (a'*a)*b=(a'*a)*c and e*b=e*c (since a' is the inverse of a) and b=c since e is the identity of G. Right cancellation follows similarly. \square **Theorem 4.16.** If $\langle G, * \rangle$ is a group, then the equations a * x = b and y * a = b have unique solutions x and y for all $a, b \in G$. **Proof.** First, consider a*=b. Then a'*(a*x)=a'*b and (a'*a)*x=a'*b by associativity, or e*x=a'*b and hence x=a'*b is a solution. To show uniqueness of solutions, suppose x_1 and x_2 are both solutions: $a*x_1=a*x_2=b$. Then by left cancellation (Theorem 4.15), $x_1=x_2$ and the solution is unique. The result follows similarly for equation y*a=b. **Theorem 4.16.** If $\langle G, * \rangle$ is a group, then the equations a * x = b and y * a = b have unique solutions x and y for all $a, b \in G$. **Proof.** First, consider a*=b. Then a'*(a*x)=a'*b and (a'*a)*x=a'*b by associativity, or e*x=a'*b and hence x=a'*b is <u>a</u> solution. To show uniqueness of solutions, suppose x_1 and x_2 are both solutions: $a*x_1=a*x_2=b$. Then by left cancellation (Theorem 4.15), $x_1=x_2$ and the solution is unique. The result follows similarly for equation y*a=b. #### Theorem 4.17a **Theorem. 4.17a.** In group $\langle G, * \rangle$, there is only on element $e \in G$ such that e * x = x * e = x for all $x \in G$. **Proof.** Uniqueness of the identity of a binary operation was shown in Theorem 3.13. #### Theorem 4.17a **Theorem. 4.17a.** In group $\langle G, * \rangle$, there is only on element $e \in G$ such that e * x = x * e = x for all $x \in G$. **Proof.** Uniqueness of the identity of a binary operation was shown in Theorem 3.13. #### Theorem 4.17b **Theorem. 4.17b.** In group $\langle G, * \rangle$ for any given $a \in G$ there is only one element $a' \in G$ such that a' * a = a * a' = e. That is, inverses are unique. **Proof.** Suppose that a' and a'' are both inverses of element $a \in G$. Then a*a'=a*a''=e and by left cancellation (Theorem 4.15), a'=a''. #### Theorem 4.17b **Theorem. 4.17b.** In group $\langle G, * \rangle$ for any given $a \in G$ there is only one element $a' \in G$ such that a' * a = a * a' = e. That is, inverses are unique. **Proof.** Suppose that a' and a'' are both inverses of element $a \in G$. Then a*a'=a*a''=e and by left cancellation (Theorem 4.15), a'=a''. ### Corollary 4.18 **Corollary 4.18.** Let G be a group. For all $a, b \in G$, we have (a * b)' = b' * a'. **Proof.** We often denote the inverse of a as $a' = a^{-1}$. We have $$(a*b)*(b'*a') = (a*b)*(b^{-1}*a^{-1})$$ $$= ((a*b)*b^{-1})*a^{-1} \text{ by associativity}$$ $$= (a*(b*b^{-1}))*a^{-1} \text{ by associativity}$$ $$= (a*e)*a^{-1}$$ $$= a*a^{-1}$$ $$= e.$$ So $b^{-1} * a^{-1}$ is the inverse of a * b. ## Corollary 4.18 **Corollary 4.18.** Let G be a group. For all $a, b \in G$, we have (a * b)' = b' * a'. **Proof.** We often denote the inverse of a as $a' = a^{-1}$. We have $$(a*b)*(b'*a') = (a*b)*(b^{-1}*a^{-1})$$ $$= ((a*b)*b^{-1})*a^{-1} \text{ by associativity}$$ $$= (a*(b*b^{-1}))*a^{-1} \text{ by associativity}$$ $$= (a*e)*a^{-1}$$ $$= a*a^{-1}$$ $$= e.$$ So $b^{-1} * a^{-1}$ is the inverse of a * b.