Introduction to Modern Algebra

Part I. Groups and Subgroups

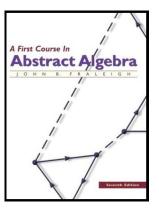


Table of contents

Theorem 5.14.

Theorem. 5.14. A subset H of a group G is a subgroup of G if and only if

- (1) H is closed under the binary operation of G,
- (2) the identity element e of G is in H,
- (3) for all $a \in H$ we have $a' = a^1 \in H$.

Proof. If *H* is a subgroup of *G*, then (1) holds since *H* is a group. Also, the equation ax = a has an unique solution in both *G* and *H* (Theorem 4.10) since both are groups. This unique solution in *G* is *e* and so *e* is also the unique solution in *H*. Hence $e \in H$ and (2) follows. Similarly, the equation ax = e has an unique in both *G* and *H* and so $a' = a^{-1} \in H$ for all $a \in H$ and (3) holds.

Theorem 5.14.

Theorem. 5.14. A subset H of a group G is a subgroup of G if and only if

- (1) H is closed under the binary operation of G,
- (2) the identity element e of G is in H,
- (3) for all $a \in H$ we have $a' = a^1 \in H$.

Proof. If *H* is a subgroup of *G*, then (1) holds since *H* is a group. Also, the equation ax = a has an unique solution in both *G* and *H* (Theorem 4.10) since both are groups. This unique solution in *G* is *e* and so *e* is also the unique solution in *H*. Hence $e \in H$ and (2) follows. Similarly, the equation ax = e has an unique in both *G* and *H* and so $a' = a^{-1} \in H$ for all $a \in H$ and (3) holds.

Theorem 5.14. (continued)

Theorem 5.14. A subset H of a group G is a subgroup of G if and only if

- (1) H is closed under the binary operation of G,
- (2) the identity element e of G is in H,
- (3) for all $a \in H$ we have $a' = a^1 \in H$.

Proof (continued). Now suppose $H \subset G$ and (1), (2), (3) hold. Then $(2) \implies$ there is an identity in H and G_2 holds for H. Similarly $(3) \implies$ for each $a \in H$, there is an inverse of a in H and G_3 holds for H. Since the binary operation is associative in G_1 then it is associative in H ((1) is needed here to guarantee that all of the results of the binary operation are in H in the equation a * (b * c) = (a * b) * c for $a, b, c \in H$). It is said that H "inherits" the associativity of * from G.

Theorem 5.17.

Theorem 5.17. Let G be a multiplicative group and let $a \in G$. Then $H = \{a^n \mid n \in \mathbb{Z}\}$ is a subgroup of G and is the "smallest" subgroup of G that contains a (that is, every subgroup of G which contains 'a' contains all the elements of H).

Proof. Let $x, y \in H$. Then $x = a^r$ and $y = a^s$ for some $r, s \in \mathbb{Z}$. So $xy = a^r a^s = a^{r+s} \in H$ and (1) of Theorem 5.14 holds. By definition, $a^0 = e$ and (2) of Theorem 5.14 holds. For any $a^r \in H$, we have $a^{-r} \in H$ and since $a^r a^{-r} = a^0 = e$, then $(a^r)' = (a^r)^{-1} \in H$ and (3) of Theorem 5.14 holds.

Theorem 5.17.

Theorem 5.17. Let G be a multiplicative group and let $a \in G$. Then $H = \{a^n \mid n \in \mathbb{Z}\}$ is a subgroup of G and is the "smallest" subgroup of G that contains a (that is, every subgroup of G which contains 'a' contains all the elements of H).

Proof. Let $x, y \in H$. Then $x = a^r$ and $y = a^s$ for some $r, s \in \mathbb{Z}$. So $xy = a^r a^s = a^{r+s} \in H$ and (1) of Theorem 5.14 holds. By definition, $a^0 = e$ and (2) of Theorem 5.14 holds. For any $a^r \in H$, we have $a^{-r} \in H$ and since $a^r a^{-r} = a^0 = e$, then $(a^r)' = (a^r)^{-1} \in H$ and (3) of Theorem 5.14 holds.

So *H* is a subgroup of *G* by Theorem 5.14. Now, let *K* be a subgroup of *G* containing *a*. Then, by the definition of group $e, a^{-1} \in K$. Since *K* is closed under the binary operation, then (by mathematical induction) all positive powers of *a* and all positive powers of a^{-1} are in *K*. That is, $H \subset K$. Therefore *H* is the "smallest" subgroup of *G* containing *a*.

Theorem 5.17.

Theorem 5.17. Let G be a multiplicative group and let $a \in G$. Then $H = \{a^n \mid n \in \mathbb{Z}\}$ is a subgroup of G and is the "smallest" subgroup of G that contains a (that is, every subgroup of G which contains 'a' contains all the elements of H).

Proof. Let $x, y \in H$. Then $x = a^r$ and $y = a^s$ for some $r, s \in \mathbb{Z}$. So $xy = a^r a^s = a^{r+s} \in H$ and (1) of Theorem 5.14 holds. By definition, $a^0 = e$ and (2) of Theorem 5.14 holds. For any $a^r \in H$, we have $a^{-r} \in H$ and since $a^r a^{-r} = a^0 = e$, then $(a^r)' = (a^r)^{-1} \in H$ and (3) of Theorem 5.14 holds.

So *H* is a subgroup of *G* by Theorem 5.14. Now, let *K* be a subgroup of *G* containing *a*. Then, by the definition of group $e, a^{-1} \in K$. Since *K* is closed under the binary operation, then (by mathematical induction) all positive powers of *a* and all positive powers of a^{-1} are in *K*. That is, $H \subset K$. Therefore *H* is the "smallest" subgroup of *G* containing *a*.