Introduction to Modern Algebra

Part I. Groups and Subgroups

I.6. Cyclic Groups

Table of contents

(1) Theorem 6.1.
(2) Theorem 6.6.
(3) Exercise 6.45 .
(4) Theorem 6.10 .
(5) Theorem 6.14.

Theorem 6.1.

Theorem 6.1. Every cyclic group is abelian.

Proof. Let G be cyclic with generator $a \in G$, so $G=\langle a\rangle$. Let $g_{1}, g_{2} \in G$. Then $g_{1}=a^{r}$, and $g_{2}=a^{s}$ for some $r, s \in \mathbb{Z}$. Then $g_{1} g_{2}=a^{r} a^{s}=a^{r+s}=a^{s+r}=a^{s} a^{r}=g_{2} g_{1}$. Therefore $G=\langle a\rangle$ is abelian.

Theorem 6.1.

Theorem 6.1. Every cyclic group is abelian.

Proof. Let G be cyclic with generator $a \in G$, so $G=\langle a\rangle$. Let $g_{1}, g_{2} \in G$. Then $g_{1}=a^{r}$, and $g_{2}=a^{s}$ for some $r, s \in \mathbb{Z}$. Then $g_{1} g_{2}=a^{r} a^{s}=a^{r+s}=a^{s+r}=a^{s} a^{r}=g_{2} g_{1}$. Therefore $G=\langle a\rangle$ is abelian.

Theorem 6.6.

Theorem 6.6. A subgroup of a cyclic group is cyclic.

Proof. Let G be a cyclic group generated by $a \in G$ and let H be a subgroup of G. If H is the trivial subgroup $H=\{e\}$, then $a^{n} \in H$ for some $n \in \mathbb{Z}$. Since $\left(a^{n}\right)^{-1} \in H$, then $a^{-n} \in H$ as well, and so W.L.O.G. $a^{n} \in H$ for some $n \in \mathbb{N}$. Let m be the smallest natural number such that $a^{m} \in H$ (every nonempty subset of \mathbb{N} has a smallest element this is a property of \mathbb{N}).

Theorem 6.6.

Theorem 6.6. A subgroup of a cyclic group is cyclic.

Proof. Let G be a cyclic group generated by $a \in G$ and let H be a subgroup of G. If H is the trivial subgroup $H=\{e\}$, then $a^{n} \in H$ for some $n \in \mathbb{Z}$. Since $\left(a^{n}\right)^{-1} \in H$, then $a^{-n} \in H$ as well, and so W.L.O.G. $a^{n} \in H$ for some $n \in \mathbb{N}$. Let m be the smallest natural number such that $a^{m} \in H$ (every nonempty subset of \mathbb{N} has a smallest element this is a property of \mathbb{N}).

We now show that $H=\left\langle a^{m}\right\rangle$. Let $b \in H$. Then $b=a^{n}$ for some $n \in \mathbb{Z}$ since $G=\langle a\rangle$. By the Division Algorithm, there exists $q, r \in \mathbb{Z}$ such that $n=m q+r$ and $0 \leq r<m$. Then $a^{n}=a^{m q+r}=\left(a^{m}\right)^{q} a^{r}$, or $a^{r}=\left(\left(a^{m}\right)^{q}\right)^{-1} a^{n}=\left(a^{m}\right)^{-q} a^{n}$.

Theorem 6.6.

Theorem 6.6. A subgroup of a cyclic group is cyclic.

Proof. Let G be a cyclic group generated by $a \in G$ and let H be a subgroup of G. If H is the trivial subgroup $H=\{e\}$, then $a^{n} \in H$ for some $n \in \mathbb{Z}$. Since $\left(a^{n}\right)^{-1} \in H$, then $a^{-n} \in H$ as well, and so W.L.O.G. $a^{n} \in H$ for some $n \in \mathbb{N}$. Let m be the smallest natural number such that $a^{m} \in H$ (every nonempty subset of \mathbb{N} has a smallest element this is a property of \mathbb{N}).

We now show that $H=\left\langle a^{m}\right\rangle$. Let $b \in H$. Then $b=a^{n}$ for some $n \in \mathbb{Z}$ since $G=\langle a\rangle$. By the Division Algorithm, there exists $q, r \in \mathbb{Z}$ such that $n=m q+r$ and $0 \leq r<m$. Then $a^{n}=a^{m q+r}=\left(a^{m}\right)^{q} a^{r}$, or $a^{r}=\left(\left(a^{m}\right)^{q}\right)^{-1} a^{n}=\left(a^{m}\right)^{-q} a^{n}$.

Theorem 6.6. (Continued)

Theorem 6.6. A subgroup of a cyclic group is cyclic.

Proof (Continued). Now since $a^{n}=b \in H$ (by hypothesis on b), $a^{m} \in H$ (since m is defined as the smallest natural number with this property), and since H is a group, then: $\left(a^{m}\right)^{q} \in H$ (closure under the binary operation), $\left(a^{m}\right)^{-q} \in H$ (inverse of $\left.\left(a^{m}\right)^{q}\right)$, and $\left(a^{m}\right)^{-q} a^{n} \in H$ (closure), or $a^{r} \in H$. But since m is the smallest natural number power such that $a^{m} \in H$ and since $0 \leq r<m$, it must be that $r=0$. Therefore $n=m q$ and $b=a^{n}=a^{m q}=\left(a^{m}\right)^{q}$. So each $b \in H$ is of the form $\left(a^{m}\right)^{q}$ for some $q \in \mathbb{Z}$. That is, $H=\left\langle a^{m}\right\rangle$ and so H is cyclic.

Exercise 6.45.

Exercise 6.45. Let $r, s \in \mathbb{N}$. Then $\{n r+m s \mid n, m \in \mathbb{Z}\}=A$ is a subgroup of \mathbb{Z}.

Proof. Since $0 \in \mathbb{Z}$, then $(0) r+(0) s=0 \in A$. If $a \in A$ then $a=n r+m s$ for some $n, m \in \mathbb{Z}$. Therefore $(-n) r+(-m) s=-(n r+m s)=-a \in A$. Associativity on A is inherited by associativity of addition on \mathbb{Z}. So by Theorem 4.15, A is a subgroup of \mathbb{Z}.

Exercise 6.45.

Exercise 6.45. Let $r, s \in \mathbb{N}$. Then $\{n r+m s \mid n, m \in \mathbb{Z}\}=A$ is a subgroup of \mathbb{Z}.

Proof. Since $0 \in \mathbb{Z}$, then (0) $r+(0) s=0 \in A$. If $a \in A$ then $a=n r+m s$ for some $n, m \in \mathbb{Z}$. Therefore $(-n) r+(-m) s=-(n r+m s)=-a \in A$. Associativity on A is inherited by associativity of addition on \mathbb{Z}. So by Theorem $4.15, A$ is a subgroup of \mathbb{Z}.

Theorem 6.10.

Theorem 6.10. Let G be a cyclic group with generator a. If G is of infinite order then G is isomorphic to $\langle\mathbb{Z},+\rangle$. If G has finite order n, then G is isomorphic to $\left\langle\mathbb{Z}_{n},+_{n}\right\rangle$.

Proof. CASE 1: Suppose that for all natural numbers $m, a^{m} \neq e$. Suppose $a^{h}=a^{k}$ for some $h \neq k$, say $h>k$. Then $e=a^{h} a^{-h}=a^{h} a^{-k}=a^{h-k}$, but we have assumed in this case that no natural number power of ' a ' yields the identity. Therefore if $h \neq k$ then $a^{h} \neq a^{k}$. So every element of G can be expressed as a^{m} for an unique $m \in \mathbb{Z}$. So the map $\varphi: G \rightarrow \mathbb{Z}$ defined as $\varphi\left(a^{i}\right)=i$ is therefore well defined (by the uniqueness of m comment above), one-to-one (different inputs a^{i} yield different outputs i), and onto \mathbb{Z}.

Now to show that φ preserves the binary operations:

$$
\varphi\left(a^{i} a^{j}\right)=\varphi\left(a^{i+j}\right)=i+j=\varphi(i)+\varphi(j) .
$$

Theorem 6.10.

Theorem 6.10. Let G be a cyclic group with generator a. If G is of infinite order then G is isomorphic to $\langle\mathbb{Z},+\rangle$. If G has finite order n, then G is isomorphic to $\left\langle\mathbb{Z}_{n},+_{n}\right\rangle$.

Proof. CASE 1: Suppose that for all natural numbers $m, a^{m} \neq e$. Suppose $a^{h}=a^{k}$ for some $h \neq k$, say $h>k$. Then $e=a^{h} a^{-h}=a^{h} a^{-k}=a^{h-k}$, but we have assumed in this case that no natural number power of ' a ' yields the identity. Therefore if $h \neq k$ then $a^{h} \neq a^{k}$. So every element of G can be expressed as a^{m} for an unique $m \in \mathbb{Z}$. So the map $\varphi: G \rightarrow \mathbb{Z}$ defined as $\varphi\left(a^{i}\right)=i$ is therefore well defined (by the uniqueness of m comment above), one-to-one (different inputs a^{i} yield different outputs i), and onto \mathbb{Z}.

Now to show that φ preserves the binary operations:

$$
\varphi\left(a^{i} a^{j}\right)=\varphi\left(a^{i+j}\right)=i+j=\varphi(i)+\varphi(j) .
$$

Therefore φ is an isomorphism and G is isomorphic to $\langle\mathbb{Z},+\rangle$.

Theorem 6.10 (continued 1)

Theorem 6.10. Let G be a cyclic group with generator a. If G is of infinite order then G is isomorphic to $\langle\mathbb{Z},+\rangle$. If G has finite order n, then G is isomorphic to $\left\langle\mathbb{Z}_{n},+_{n}\right\rangle$.

Proof (continued). CASE 2: Suppose that $a^{m}=e$ for some natural number m. Let n be the smallest natural number such that $a^{n}=e$. If $s \in \mathbb{Z}$ and $s=n q+r$ for $0 \leq r<n(q$ and r given s and n by the Division Algorithm), then $a^{s}=a^{n q+r}=\left(a^{n}\right)^{q} a^{r}=e^{q} a^{r}=e a^{r}=a^{r}$. Similar to Case 1, if $0<k<h<n$ and $a^{h}=a^{k}$, then $a^{h-k}=e$ and $0<h-k<n$, contradicting the fact that n is the smallest positive exponent of ' a ' yielding e. So the following powers of a are distinct:
$a^{0}=e, a, a^{2}, \ldots, a^{n-1}$. Now define the map $\psi: G \rightarrow \mathbb{Z}_{n}$ as $\psi\left(a^{i}\right)=i$ for $i=0,1,2, \ldots, n-1$.

Theorem 6.10 (continued 2)

Theorem 6.10. Let G be a cyclic group with generator a. If G is of infinite order then G is isomorphic to $\langle\mathbb{Z},+\rangle$. If G has finite order n, then G is isomorphic to $\left\langle\mathbb{Z}_{n},+_{n}\right\rangle$.

Proof (continued). Then ψ is well defined, one-to-one, and onto \mathbb{Z}_{n}. Suppose $i+_{n} j=k($ that is $i+j=k(\bmod n)$, so $i+j=k+\ln$ for some $I \in \mathbb{Z})$. Then

$$
\begin{gathered}
\psi\left(a^{i} a^{j}\right)=\psi\left(a^{i+j}\right)=\psi\left(a^{k+l n}\right)=\psi\left(a^{k} a^{l n}\right) \\
=\psi\left(a^{k}\left(a^{n}\right)^{\prime}\right)=\psi\left(a^{k} e\right)=\psi\left(a^{k}\right)=k=i+{ }_{n} j=\psi\left(a^{i}\right)+_{n} \psi(j)
\end{gathered}
$$

Therefore ψ is an isomorphism and so G is isomorphic to \mathbb{Z}_{n}.

Theorem 6.14.

Theorem. 6.14. Let G be a cyclic group with n elements and with generator a. Let $b \in G$ where $b=a^{s}$. Then b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements where $d=\operatorname{gcd}(n, s)$. Also, $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.

Proof. By Theorem 5.17, b generates a cyclic subgroups of G; call it H. Now to show $|H|=\frac{n}{d}$. As in the proof of Case 2 of Theorem 6.10, the order of H is m where m is the smallest natural number such that $b^{m}=e$. Next, $b=a^{s}$ by hypothesis and so $b^{m}=e$ implies $\left(a^{s}\right)^{m}=e$.

Theorem 6.14.

Theorem. 6.14. Let G be a cyclic group with n elements and with generator a. Let $b \in G$ where $b=a^{s}$. Then b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements where $d=\operatorname{gcd}(n, s)$. Also, $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.

Proof. By Theorem 5.17, b generates a cyclic subgroups of G; call it H. Now to show $|H|=\frac{n}{d}$. As in the proof of Case 2 of Theorem 6.10, the order of H is m where m is the smallest natural number such that $b^{m}=e$. Next, $b=a^{s}$ by hypothesis and so $b^{m}=e$ implies $\left(a^{s}\right)^{m}=e$.

Since (again by Theorem 6.10 Case 2) $\{G\}=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$, then the only power of a which yields e are integer multiples of n. Therefore $a^{m s}=e$ implies that n divides $m s$. So

$$
a^{m s}=e \text { if and only if } \frac{n}{m s} .
$$

Let $d=\operatorname{gcd}(n, s)$. Then there exists integers (u) and (v) such that $d=(u) n+(v) s$ from the second paragraph of page 62.

Theorem 6.14.

Theorem. 6.14. Let G be a cyclic group with n elements and with generator a. Let $b \in G$ where $b=a^{s}$. Then b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements where $d=\operatorname{gcd}(n, s)$. Also, $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.

Proof. By Theorem 5.17, b generates a cyclic subgroups of G; call it H. Now to show $|H|=\frac{n}{d}$. As in the proof of Case 2 of Theorem 6.10, the order of H is m where m is the smallest natural number such that $b^{m}=e$. Next, $b=a^{s}$ by hypothesis and so $b^{m}=e$ implies $\left(a^{s}\right)^{m}=e$.

Since (again by Theorem 6.10 Case 2) $\{G\}=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$, then the only power of a which yields e are integer multiples of n. Therefore $a^{m s}=e$ implies that n divides ms. So

$$
\begin{equation*}
a^{m s}=e \text { if and only if } \frac{n}{m s} . \tag{*}
\end{equation*}
$$

Let $d=\operatorname{gcd}(n, s)$. Then there exists integers (u) and (v) such that $d=(u) n+(v) s$ from the second paragraph of page 62.

Theorem 6.14 (continued 1)

Theorem. 6.14. Let G be a cyclic group with n elements and with generator a. Let $b \in G$ where $b=a^{s}$. Then b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements where $d=\operatorname{gcd}(n, s)$. Also, $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.

Proof (continued). Since d is a division of both n and s (recall $d=\operatorname{gcd}(n, s)$), we may write $1=\frac{d}{d}=\frac{u n}{d}+\frac{v s}{d} \Longrightarrow 1=u\left(\frac{n}{d}\right)+v\left(\frac{s}{d}\right)$. Next, any integer which divides both $\frac{n}{d}$ and $\frac{s}{d}$, must divide $1=u\left(\frac{n}{d}\right)+v\left(\frac{s}{d}\right)$. Therefore, such an integer must divide 1 and the integer must be 1 . Hence, $\frac{n}{d}$ and $\frac{s}{d}$ must be relatively prime. Therefore $\left(\frac{n}{d}\right)\left(\frac{s}{d}\right)=\frac{n}{s}$ is some (positive) rational number. Hence, for some smallest positive $m \in \mathbb{N}$, we have $m\left(\frac{n}{s}\right) \in \mathbb{N}$.
Next $m\left(\frac{s}{n}\right)=m \frac{s / d}{n / d} \in \mathbb{N}$ and since $\frac{n}{d}$ and $\frac{s}{d}$ are relatively prime, then $\frac{n}{d}$
must divide m. So the smallest such value of m is $\frac{n}{d}: m=\frac{n}{d} . \quad(* *)$ Now, (*) implies $a^{m s}=e$ iff $\frac{n}{m s}$. The smallest such m for which $\frac{n}{m s}$ is $m=\frac{n}{d}$ by (**).

Theorem 6.14 (continued 1)

Theorem. 6.14. Let G be a cyclic group with n elements and with generator a. Let $b \in G$ where $b=a^{s}$. Then b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements where $d=\operatorname{gcd}(n, s)$. Also, $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.
Proof (continued). Since d is a division of both n and s (recall $d=\operatorname{gcd}(n, s))$, we may write $1=\frac{d}{d}=\frac{u n}{d}+\frac{v s}{d} \Longrightarrow 1=u\left(\frac{n}{d}\right)+v\left(\frac{s}{d}\right)$. Next, any integer which divides both $\frac{n}{d}$ and $\frac{s}{d}$, must divide $1=u\left(\frac{n}{d}\right)+v\left(\frac{s}{d}\right)$. Therefore, such an integer must divide 1 and the integer must be 1 . Hence, $\frac{n}{d}$ and $\frac{s}{d}$ must be relatively prime. Therefore $\left(\frac{n}{d}\right)\left(\frac{s}{d}\right)=\frac{n}{s}$ is some (positive) rational number. Hence, for some smallest positive $m \in \mathbb{N}$, we have $m\left(\frac{n}{s}\right) \in \mathbb{N}$.
Next $m\left(\frac{s}{n}\right)=m \frac{s / d}{n / d} \in \mathbb{N}$ and since $\frac{n}{d}$ and $\frac{s}{d}$ are relatively prime, then $\frac{n}{d}$ must divide m. So the smallest such value of m is $\frac{n}{d}: m=\frac{n}{d}$. (**) Now, (*) implies $a^{m s}=e$ iff $\frac{n}{m s}$. The smallest such m for which $\frac{n}{m s}$ is $m=\frac{n}{d}$ by ($* *$).

Theorem 6.14 (continued 2)

Theorem. 6.14. Let G be a cyclic group with n elements and with generator a. Let $b \in G$ where $b=a^{s}$. Then b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements where $d=\operatorname{gcd}(n, s)$. Also, $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.

Proof (continued). So m is the smallest natural number such that $a^{m s}=\left(a^{s}\right)^{m}=b^{m}=e$ and by Case 2 of Theorem 6.10, the order of $H=\langle b\rangle$ is $m=\frac{n}{d}$. Next, by Theorem 6.10 we know that a cyclic group with n elements is isomorphic to \mathbb{Z}_{n}. In \mathbb{Z}_{n}, if d is a division of n, then $\langle d\rangle$ is a cyclic subgroup of \mathbb{Z}_{n} with $\frac{n}{d}$ elements:
$\langle d\rangle=\{0, d, 2 d, 3 d, \ldots,(n-1) d\}$. So $\langle d\rangle$ contans all $m \in \mathbb{Z}_{n}$ such that $\operatorname{gcd}(m, n)=d$. So $\langle d\rangle$ is the only subgroup of \mathbb{Z}_{n} of order $\frac{n}{d}$ (since the only possible generators of a group of this order is an element for which $d=\operatorname{gcd}(m, n)$ by the first part of the theorem $)$.

Theorem 6.14 (continued 3)

Theorem 6.14. Let G be a cyclic group with n elements and with generator a. Let $b \in G$ where $b=a^{s}$. Then b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements where $d=\operatorname{gcd}(n, s)$. Also, $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.

Proof (Continued). So m is the smallest natural number such that $a^{m s}=\left(a^{s}\right)^{m}=b^{m}=e$ and by Case 2 of Theorem 6.10, the order of $H=\langle b\rangle$ is $m=\frac{n}{d}$.

Next, by Theorem 6.10 we know that a cyclic group with n elements is isomorphic to \mathbb{Z}_{n}. In \mathbb{Z}_{n}, if d is a division of n, then $\langle d\rangle$ is a cyclic subgroup of \mathbb{Z}_{n} with $\frac{n}{d}$ elements: $\langle d\rangle=\{0, d, 2 d, 3 d, \ldots,(n-1) d\}$. So $\langle d\rangle$ contans all $m \in \mathbb{Z}_{n}$ such that $\operatorname{gcd}(m, n)=d$. So $\langle d\rangle$ is the only subgroup of \mathbb{Z}_{n} of order $\frac{n}{d}$ (since the only possible generators of a group of this order is an element for which $d=\operatorname{gcd}(m, n)$ by the first point of the theorem).

Theorem 6.14 (continued 3)

Theorem 6.14. Let G be a cyclic group with n elements and with generator a. Let $b \in G$ where $b=a^{s}$. Then b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements where $d=\operatorname{gcd}(n, s)$. Also, $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.

Proof (Continued). So m is the smallest natural number such that $a^{m s}=\left(a^{s}\right)^{m}=b^{m}=e$ and by Case 2 of Theorem 6.10, the order of $H=\langle b\rangle$ is $m=\frac{n}{d}$.

Next, by Theorem 6.10 we know that a cyclic group with n elements is isomorphic to \mathbb{Z}_{n}. In \mathbb{Z}_{n}, if d is a division of n, then $\langle d\rangle$ is a cyclic subgroup of \mathbb{Z}_{n} with $\frac{n}{d}$ elements: $\langle d\rangle=\{0, d, 2 d, 3 d, \ldots,(n-1) d\}$. So $\langle d\rangle$ contans all $m \in \mathbb{Z}_{n}$ such that $\operatorname{gcd}(m, n)=d$. So $\langle d\rangle$ is the only subgroup of \mathbb{Z}_{n} of order $\frac{n}{d}$ (since the only possible generators of a group of this order is an element for which $d=\operatorname{gcd}(m, n)$ by the first point of the theorem).

Theorem 6.14 (continued 4)

Theorem 6.14. Let G be a cyclic group with n elements and with generator a. Let $b \in G$ where $b=a^{s}$. Then b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements where $d=\operatorname{gcd}(n, s)$. Also, $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.

Proof (continued). By this uniqueness and the first part of this theorem, $\left\langle a^{s}\right\rangle$ has order $\operatorname{gcd}(s, n)$ and $\left\langle a^{t}\right\rangle$ has order $\operatorname{gcd}(t, n)$, so $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ iff $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.

