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Theorem 6.1.

Theorem 6.1.

Theorem 6.1. Every cyclic group is abelian.

Proof. Let G be cyclic with generator a ∈ G , so G = 〈a〉. Let g1, g2 ∈ G .
Then g1 = ar , and g2 = as for some r , s ∈ Z. Then
g1g2 = aras = ar+s = as+r = asar = g2g1. Therefore G = 〈a〉 is
abelian.
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Theorem 6.6.

Theorem 6.6.

Theorem 6.6. A subgroup of a cyclic group is cyclic.

Proof. Let G be a cyclic group generated by a ∈ G and let H be a
subgroup of G . If H is the trivial subgroup H = {e}, then an ∈ H for
some n ∈ Z. Since (an)−1 ∈ H, then a−n ∈ H as well, and so W.L.O.G.
an ∈ H for some n ∈ N. Let m be the smallest natural number such that
am ∈ H (every nonempty subset of N has a smallest element this is a
property of N).

We now show that H = 〈am〉. Let b ∈ H. Then b = an for some n ∈ Z
since G = 〈a〉. By the Division Algorithm, there exists q, r ∈ Z such that
n = mq + r and 0 ≤ r < m. Then an = amq+r = (am)q ar , or
ar = ((am)q)−1 an = (am)−q an.
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Theorem 6.6.

Theorem 6.6. (Continued)

Theorem 6.6. A subgroup of a cyclic group is cyclic.

Proof (Continued). Now since an = b ∈ H (by hypothesis on b), am ∈ H
(since m is defined as the smallest natural number with this property), and
since H is a group, then: (am)q ∈ H (closure under the binary operation),
(am)−q ∈ H (inverse of (am)q), and (am)−q an ∈ H (closure), or ar ∈ H.
But since m is the smallest natural number power such that am ∈ H and
since 0 ≤ r < m, it must be that r = 0. Therefore n = mq and
b = an = amq = (am)q. So each b ∈ H is of the form (am)q for some
q ∈ Z. That is, H = 〈am〉 and so H is cyclic.
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Exercise 6.45.

Exercise 6.45.

Exercise 6.45. Let r , s ∈ N. Then {nr + ms | n,m ∈ Z} = A is a
subgroup of Z.

Proof. Since 0 ∈ Z, then (0) r + (0) s = 0 ∈ A. If a ∈ A then a = nr + ms
for some n,m ∈ Z. Therefore (−n) r + (−m) s = − (nr + ms) = −a ∈ A.
Associativity on A is inherited by associativity of addition on Z. So by
Theorem 4.15, A is a subgroup of Z.
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Theorem 6.10.

Theorem 6.10.

Theorem 6.10. Let G be a cyclic group with generator a. If G is of
infinite order then G is isomorphic to 〈Z,+〉. If G has finite order n, then
G is isomorphic to 〈Zn,+n〉.

Proof. CASE 1: Suppose that for all natural numbers m, am 6= e.
Suppose ah = ak for some h 6= k, say h > k. Then
e = aha−h = aha−k = ah−k , but we have assumed in this case that no
natural number power of ‘a′ yields the identity. Therefore if h 6= k then
ah 6= ak . So every element of G can be expressed as am for an unique
m ∈ Z. So the map ϕ : G → Z defined as ϕ

(
ai

)
= i is therefore well

defined (by the uniqueness of m comment above), one-to-one (different
inputs ai yield different outputs i), and onto Z.

Now to show that ϕ preserves the binary operations:

ϕ
(
aiaj

)
= ϕ

(
ai+j

)
= i + j = ϕ (i) + ϕ (j) .

Therefore ϕ is an isomorphism and G is isomorphic to 〈Z,+〉.
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Theorem 6.10.

Theorem 6.10 (continued 1)

Theorem 6.10. Let G be a cyclic group with generator a. If G is of
infinite order then G is isomorphic to 〈Z,+〉. If G has finite order n, then
G is isomorphic to 〈Zn,+n〉.

Proof (continued). CASE 2: Suppose that am = e for some natural
number m. Let n be the smallest natural number such that an = e. If
s ∈ Z and s = nq + r for 0 ≤ r < n (q and r given s and n by the Division
Algorithm), then as = anq+r = (an)q ar = eqar = ear = ar . Similar to
Case 1, if 0 < k < h < n and ah = ak , then ah−k = e and 0 < h − k < n,
contradicting the fact that n is the smallest positive exponent of ‘a′

yielding e. So the following powers of a are distinct:
a0 = e, a, a2, . . . , an−1. Now define the map ψ : G → Zn as ψ

(
ai

)
= i for

i = 0, 1, 2, . . . , n − 1.
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Theorem 6.10.

Theorem 6.10 (continued 2)

Theorem 6.10. Let G be a cyclic group with generator a. If G is of
infinite order then G is isomorphic to 〈Z,+〉. If G has finite order n, then
G is isomorphic to 〈Zn,+n〉.

Proof (continued). Then ψ is well defined, one-to-one, and onto Zn.
Suppose i +n j = k (that is i + j = k (mod n), so i + j = k + ln for some
l ∈ Z). Then

ψ
(
aiaj

)
= ψ

(
ai+j

)
= ψ

(
ak+ln

)
= ψ

(
akaln

)
= ψ

(
ak (an)l

)
= ψ

(
ake

)
= ψ

(
ak

)
= k = i +n j = ψ

(
ai

)
+n ψ (j) .

Therefore ψ is an isomorphism and so G is isomorphic to Zn.
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Theorem 6.14.

Theorem 6.14.

Theorem. 6.14. Let G be a cyclic group with n elements and with
generator a. Let b ∈ G where b = as . Then b generates a cyclic subgroup
H of G containing n

d elements where d = gcd (n, s). Also, 〈as〉 = 〈at〉 if
and only if gcd (s, n) = gcd (t, n).

Proof. By Theorem 5.17, b generates a cyclic subgroups of G ; call it H.
Now to show |H| = n

d . As in the proof of Case 2 of Theorem 6.10, the
order of H is m where m is the smallest natural number such that bm = e.
Next, b = as by hypothesis and so bm = e implies (as)m = e.

Since (again by Theorem 6.10 Case 2) {G} =
{
e, a, a2, . . . , an−1

}
, then

the only power of a which yields e are integer multiples of n. Therefore
ams = e implies that n divides ms. So

ams = e if and only if
n

ms
. (∗)

Let d = gcd (n, s). Then there exists integers (u) and (v) such that
d = (u) n + (v) s from the second paragraph of page 62.
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Theorem 6.14.

Theorem 6.14 (continued 1)

Theorem. 6.14. Let G be a cyclic group with n elements and with
generator a. Let b ∈ G where b = as . Then b generates a cyclic subgroup
H of G containing n

d elements where d = gcd (n, s). Also, 〈as〉 = 〈at〉 if
and only if gcd (s, n) = gcd (t, n).

Proof (continued). Since d is a division of both n and s (recall
d = gcd (n, s)), we may write 1 = d

d = un
d + vs

d =⇒ 1 = u
(

n
d

)
+ v

(
s
d

)
.

Next, any integer which divides both n
d and s

d , must divide
1 = u

(
n
d

)
+ v

(
s
d

)
. Therefore, such an integer must divide 1 and the

integer must be 1. Hence, n
d and s

d must be relatively prime. Therefore(
n
d

) (
s
d

)
= n

s is some (positive) rational number. Hence, for some smallest
positive m ∈ N, we have m

(
n
s

)
∈ N.

Next m
(

s
n

)
= m s/d

n/d ∈ N and since n
d and s

d are relatively prime, then n
d

must divide m. So the smallest such value of m is n
d : m = n

d . (∗∗)
Now, (∗) implies ams = e iff n

ms . The smallest such m for which n
ms is

m = n
d by (∗∗).
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Theorem 6.14.

Theorem 6.14 (continued 2)

Theorem. 6.14. Let G be a cyclic group with n elements and with
generator a. Let b ∈ G where b = as . Then b generates a cyclic subgroup
H of G containing n

d elements where d = gcd (n, s). Also, 〈as〉 = 〈at〉 if
and only if gcd (s, n) = gcd (t, n).

Proof (continued). So m is the smallest natural number such that
ams = (as)m = bm = e and by Case 2 of Theorem 6.10, the order of
H = 〈b〉 is m = n

d . Next, by Theorem 6.10 we know that a cyclic group
with n elements is isomorphic to Zn. In Zn, if d is a division of n, then 〈d〉
is a cyclic subgroup of Zn with n

d elements:
〈d〉 = {0, d , 2d , 3d , . . . , (n − 1) d}. So 〈d〉 contans all m ∈ Zn such that
gcd (m, n) = d . So 〈d〉 is the only subgroup of Zn of order n

d (since the
only possible generators of a group of this order is an element for which
d = gcd (m, n) by the first part of the theorem).
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Theorem 6.14.

Theorem 6.14 (continued 3)

Theorem 6.14. Let G be a cyclic group with n elements and with
generator a. Let b ∈ G where b = as . Then b generates a cyclic subgroup
H of G containing n

d elements where d = gcd (n, s). Also, 〈as〉 = 〈at〉 if
and only if gcd (s, n) = gcd (t, n).

Proof (Continued). So m is the smallest natural number such that
ams = (as)m = bm = e and by Case 2 of Theorem 6.10, the order of
H = 〈b〉 is m = n

d .

Next, by Theorem 6.10 we know that a cyclic group with n elements is
isomorphic to Zn. In Zn, if d is a division of n, then 〈d〉 is a cyclic
subgroup of Zn with n

d elements: 〈d〉 = {0, d , 2d , 3d , . . . , (n − 1) d}. So
〈d〉 contans all m ∈ Zn such that gcd (m, n) = d . So 〈d〉 is the only
subgroup of Zn of order n

d (since the only possible generators of a group of
this order is an element for which d = gcd (m, n) by the first point of the
theorem).
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Theorem 6.14.

Theorem 6.14 (continued 4)

Theorem 6.14. Let G be a cyclic group with n elements and with
generator a. Let b ∈ G where b = as . Then b generates a cyclic subgroup
H of G containing n

d elements where d = gcd (n, s). Also, 〈as〉 = 〈at〉 if
and only if gcd (s, n) = gcd (t, n).

Proof (continued). By this uniqueness and the first part of this theorem,
〈as〉 has order gcd (s, n) and 〈at〉 has order gcd (t, n), so 〈as〉 = 〈at〉 iff
gcd (s, n) = gcd (t, n).
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